238 results on '"Jean-Luc Ravanat"'
Search Results
2. Nanoscintillator Coating: A Key Parameter That Strongly Impacts Internalization, Biocompatibility, and Therapeutic Efficacy in Pancreatic Cancer Models
- Author
-
Clémentine Aubrun Fulbert, Frédéric Chaput, Sarah Stelse‐Masson, Maxime Henry, Benoit Chovelon, Sylvain Bohic, Dennis Brueckner, Jan Garrevoet, Christine Moriscot, Benoit Gallet, Julien Vollaire, Olivier Nicoud, Frédéric Lerouge, Sandrine Denis‐Quanquin, Xavier Jaurand, Thibault Jacquet, Anthony Nomezine, Véronique Josserand, Jean‐Luc Coll, Jean‐Luc Ravanat, Hélène Elleaume, and Anne‐Laure Bulin
- Subjects
biocompatibility ,nanoparticle functionalization ,nanoscintillators ,pancreatic cancer ,radiation dose‐enhancement ,radiotherapy ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Pancreatic cancer is associated with a poor prognosis despite multimodal treatments. To improve the efficacy of radiotherapy, the use of nanoscintillators is emerging. Made of high‐Z elements, they absorb X‐rays more efficiently than tissues and can locally enhance the radiation dose provided they have accumulated near tumor cells. This study focuses on the role of the coating, a key parameter that controls both in vitro and in vivo properties of nanoparticles, including their internalization, biocompatibility, and therapeutic efficacy. Polyethylene glycol and tripolyphosphate molecules are used to coat lanthanum fluoride nanoscintillators, and their properties are evaluated on pancreatic cancer models. The experiments demonstrate a higher internalization of the nanoparticles when coated with tripolyphosphate, in both 2D and 3D culture models, correlating with greater efficacy under X‐rays, which may be associated with higher radiation dose‐enhancement. The nanoparticles are also injected intravenously in healthy or tumor‐bearing mice in order to study their toxicity, pharmacokinetics, and biodistribution. Despite a strong liver and spleen accumulation, especially for the tripolyphosphate‐coated nanoparticles, no toxicity is observed for either coating. Because they show promising radiation dose‐enhancement in vitro in both culture models and a limited toxicity in vivo, polyethylene glycol‐coated nanoparticles are good candidates for biomedical applications.
- Published
- 2024
- Full Text
- View/download PDF
3. Perinatal foodborne titanium dioxide exposure-mediated dysbiosis predisposes mice to develop colitis through life
- Author
-
Caroline Carlé, Delphine Boucher, Luisa Morelli, Camille Larue, Ekaterina Ovtchinnikova, Louise Battut, Kawthar Boumessid, Melvin Airaud, Muriel Quaranta-Nicaise, Jean-Luc Ravanat, Gilles Dietrich, Sandrine Menard, Gérard Eberl, Nicolas Barnich, Emmanuel Mas, Marie Carriere, Ziad Al Nabhani, and Frédérick Barreau
- Subjects
Perinatal period ,Foodborne TiO2 ,Intestinal barrier function ,Intestinal stem cells ,Microbiota ,Colitis ,Toxicology. Poisons ,RA1190-1270 ,Industrial hygiene. Industrial welfare ,HD7260-7780.8 - Abstract
Abstract Background Perinatal exposure to titanium dioxide (TiO2), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel diseases (IBD) later in life. Here, we investigate the impact of perinatal foodborne TiO2 exposure on the intestinal mucosal function and the susceptibility to develop IBD-associated colitis. Pregnant and lactating mother mice were exposed to TiO2 until pups weaning and the gut microbiota and intestinal barrier function of their offspring was assessed at day 30 post-birth (weaning) and at adult age (50 days). Epigenetic marks was studied by DNA methylation profile measuring the level of 5-methyl-2′-deoxycytosine (5-Me-dC) in DNA from colic epithelial cells. The susceptibility to develop IBD has been monitored using dextran-sulfate sodium (DSS)-induced colitis model. Germ-free mice were used to define whether microbial transfer influence the mucosal homeostasis and subsequent exacerbation of DSS-induced colitis. Results In pregnant and lactating mice, foodborne TiO2 was able to translocate across the host barriers including gut, placenta and mammary gland to reach embryos and pups, respectively. This passage modified the chemical element composition of foetus, and spleen and liver of mothers and their offspring. We showed that perinatal exposure to TiO2 early in life alters the gut microbiota composition, increases the intestinal epithelial permeability and enhances the colonic cytokines and myosin light chain kinase expression. Moreover, perinatal exposure to TiO2 also modifies the abilities of intestinal stem cells to survive, grow and generate a functional epithelium. Maternal TiO2 exposure increases the susceptibility of offspring mice to develop severe DSS-induced colitis later in life. Finally, transfer of TiO2-induced microbiota dysbiosis to pregnant germ-free mice affects the homeostasis of the intestinal mucosal barrier early in life and confers an increased susceptibility to develop colitis in adult offspring. Conclusions Our findings indicate that foodborne TiO2 consumption during the perinatal period has negative long-lasting consequences on the development of the intestinal mucosal barrier toward higher colitis susceptibility. This demonstrates to which extent environmental factors influence the microbial-host interplay and impact the long-term mucosal homeostasis.
- Published
- 2023
- Full Text
- View/download PDF
4. The thiolation of uridine 34 in tRNA, which controls protein translation, depends on a [4Fe-4S] cluster in the archaeum Methanococcus maripaludis
- Author
-
Ornella Bimai, Pierre Legrand, Jean-Luc Ravanat, Nadia Touati, Jingjing Zhou, Nisha He, Marine Lénon, Frédéric Barras, Marc Fontecave, and Béatrice Golinelli-Pimpaneau
- Subjects
Medicine ,Science - Abstract
Abstract Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.
- Published
- 2023
- Full Text
- View/download PDF
5. In vitro reconstitution of an efficient nucleotide excision repair system using mesophilic enzymes from Deinococcus radiodurans
- Author
-
Anna Seck, Salvatore De Bonis, Christine Saint-Pierre, Didier Gasparutto, Jean-Luc Ravanat, and Joanna Timmins
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Reconstitution of D radiodurans nucleotide excision repair provides insights into the kinetics of repair on different DNA substrates and determines the order and precise sites of incisions on the 5’ and 3’ sides of the lesion.
- Published
- 2022
- Full Text
- View/download PDF
6. Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
- Author
-
Anne‐Laure Bulin, Mans Broekgaarden, Frédéric Chaput, Victor Baisamy, Jan Garrevoet, Benoît Busser, Dennis Brueckner, Antonia Youssef, Jean‐Luc Ravanat, Christophe Dujardin, Vincent Motto‐Ros, Frédéric Lerouge, Sylvain Bohic, Lucie Sancey, and Hélène Elleaume
- Subjects
glioblastoma ,nanoscintillators ,radiation dose‐enhancement ,synchrotron radiation ,X‐ray‐induced photodynamic therapy ,Science - Abstract
Abstract To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down‐convert X‐rays into photons with energies ranging from UV to near‐infrared. During radiotherapy, these scintillating properties amplify radiation‐induced damage by UV‐C emission or photodynamic effects. Additionally, nanoscintillators that contain high‐Z elements are likely to induce another, currently unexplored effect: radiation dose‐enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X‐rays by high‐Z elements compared to tissues, resulting in increased production of tissue‐damaging photo‐ and Auger electrons. In this study, Geant4 simulations reveal that rare‐earth composite LaF3:Ce nanoscintillators effectively generate photo‐ and Auger‐electrons upon orthovoltage X‐rays. 3D spatially resolved X‐ray fluorescence microtomography shows that LaF3:Ce highly concentrates in microtumors and enhances radiotherapy in an X‐ray energy‐dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF3:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose‐enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers.
- Published
- 2020
- Full Text
- View/download PDF
7. Impairment of Base Excision Repair in Dermal Fibroblasts Isolated From Nevoid Basal Cell Carcinoma Patients
- Author
-
Aurélie Charazac, Nour Fayyad, David Beal, Sandrine Bourgoin-Voillard, Michel Seve, Sylvie Sauvaigo, Jérôme Lamartine, Pascal Soularue, Sandra Moratille, Michèle T. Martin, Jean-Luc Ravanat, Thierry Douki, and Walid Rachidi
- Subjects
nevoid basal cell carcinoma syndrome ,PTCH1 mutation ,DNA repair ,base excision repair ,ROS production ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
The nevoid basal cell carcinoma syndrome (NBCCS), also called Gorlin syndrome is an autosomal dominant disorder whose incidence is estimated at about 1 per 55,600–256,000 individuals. It is characterized by several developmental abnormalities and an increased predisposition to the development of basal cell carcinomas (BCCs). Cutaneous fibroblasts from Gorlin patients have been shown to exhibit an increased sensitivity to ionizing radiations. Mutations in the tumor suppressor gene PTCH1, which is part of the Sonic Hedgehog (SHH) signaling pathway, are responsible for these clinical manifestations. As several genetic mutations in the DNA repair genes are responsible of photo or radiosensitivity and high predisposition to cancers, we hypothesized that these effects in Gorlin syndrome might be due to a defect in the DNA damage response (DDR) and/or the DNA repair capacities. Therefore, the objective of this work was to investigate the sensitivity of skin fibroblasts from NBCCS patients to different DNA damaging agents and to determine the ability of these agents to modulate the DNA repair capacities. Gorlin fibroblasts showed high radiosensitivity and also less resistance to oxidative stress-inducing agents when compared to control fibroblasts obtained from healthy individuals. Gorlin fibroblasts harboring PTCH1 mutations were more sensitive to the exposure to ionizing radiation and to UVA. However, no difference in cell viability was shown after exposure to UVB or bleomycin. As BER is responsible for the repair of oxidative DNA damage, we decided to assess the BER pathway efficacy in Gorlin fibroblasts. Interestingly, a concomitant decrease of both BER gene expression and BER protein activity was observed in Gorlin fibroblasts when compared to control. Our results suggest that low levels of DNA repair within Gorlin cells may lead to an accumulation of oxidative DNA damage that could participate and partly explain the radiosensitivity and the BCC-prone phenotype in Gorlin syndrome.
- Published
- 2020
- Full Text
- View/download PDF
8. Enhancement of IUdR Radiosensitization by Low-Energy Photons Results from Increased and Persistent DNA Damage.
- Author
-
Emilie Bayart, Frédéric Pouzoulet, Lucie Calmels, Jonathan Dadoun, Fabien Allot, Johann Plagnard, Jean-Luc Ravanat, André Bridier, Marc Denozière, Jean Bourhis, and Eric Deutsch
- Subjects
Medicine ,Science - Abstract
Low-energy X-rays induce Auger cascades by photoelectric absorption in iodine present in the DNA of cells labeled with 5-iodo-2'-deoxyuridine (IUdR). This photoactivation therapy results in enhanced cellular sensitivity to radiation which reaches its maximum with 50 keV photons. Synchrotron core facilities are the only way to generate such monochromatic beams. However, these structures are not adapted for the routine treatment of patients. In this study, we generated two beams emitting photon energy means of 42 and 50 keV respectively, from a conventional 225 kV X-ray source. Viability assays performed after pre-exposure to 10 μM of IUdR for 48h suggest that complex lethal damage is generated after low energy photons irradiation compared to 137Cs irradiation (662KeV). To further decipher the molecular mechanisms leading to IUdR-mediated radiosensitization, we analyzed the content of DNA damage-induced foci in two glioblastoma cell lines and showed that the decrease in survival under these conditions was correlated with an increase in the content of DNA damage-induced foci in cell lines. Moreover, the follow-up of repair kinetics of the induced double-strand breaks showed the maximum delay in cells labeled with IUdR and exposed to X-ray irradiation. Thus, there appears to be a direct relationship between the reduction of radiation survival parameters and the production of DNA damage with impaired repair of these breaks. These results further support the clinical potential use of a halogenated pyrimidine analog combined with low-energy X-ray therapy.
- Published
- 2017
- Full Text
- View/download PDF
9. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells.
- Author
-
Sandrine Pereira, Véronique Malard, Jean-Luc Ravanat, Anne-Hélène Davin, Jean Armengaud, Nicolas Foray, and Christelle Adam-Guillermin
- Subjects
Medicine ,Science - Abstract
The term "bystander effect" is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01-0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.
- Published
- 2014
- Full Text
- View/download PDF
10. DNA Damage and Radical Reactions: Mechanistic Aspects, Formation in Cells and Repair Studies
- Author
-
Jean Cadet, Thomas Carell, Luciano Cellai, Chryssostomos Chatgilialoglu, Thanasis Gimisis, Miguel Miranda, Peter O'Neill, Jean-Luc Ravanat, and Marc Robert
- Subjects
Base excision repair ,Dna ,Guanine radical cation ,Pathway ,Chemistry ,QD1-999 - Abstract
Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromopurine 2'-deoxyribonucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclopurine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclobutadipyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of •OH radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non–double strand break bistranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage.
- Published
- 2008
- Full Text
- View/download PDF
11. Structural and functional insights into the activation of the dual incision activity of UvrC, a key player in bacterial NER
- Author
-
Anna Seck, Salvatore De Bonis, Meike Stelter, Mats Ökvist, Müge Senarisoy, Mohammad Rida Hayek, Aline Le Roy, Lydie Martin, Christine Saint-Pierre, Célia M Silveira, Didier Gasparutto, Smilja Todorovic, Jean-Luc Ravanat, Joanna Timmins, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), European Synchrotron Radiation Facility (ESRF), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Instituto de Tecnologia Química e Biológica António Xavier (ITQB), and Universidade Nova de Lisboa = NOVA University Lisbon (NOVA)
- Subjects
MESH: DNA Damage ,MESH: DNA Repair ,MESH: Escherichia coli ,[SDV]Life Sciences [q-bio] ,Genetics ,MESH: DNA Helicases ,MESH: Endodeoxyribonucleases ,MESH: Bacterial Proteins ,MESH: DNA, Bacterial ,MESH: Deinococcus - Abstract
Bacterial nucleotide excision repair (NER), mediated by the UvrA, UvrB and UvrC proteins is a multistep, ATP-dependent process, that is responsible for the removal of a very wide range of chemically and structurally diverse DNA lesions. DNA damage removal is performed by UvrC, an enzyme possessing a dual endonuclease activity, capable of incising the DNA on either side of the damaged site to release a short single-stranded DNA fragment containing the lesion. Using biochemical and biophysical approaches, we have probed the oligomeric state, UvrB- and DNA-binding abilities and incision activities of wild-type and mutant constructs of UvrC from the radiation resistant bacterium, Deinococcus radiodurans. Moreover, by combining the power of new structure prediction algorithms and experimental crystallographic data, we have assembled the first model of a complete UvrC, revealing several unexpected structural motifs and in particular, a central inactive RNase H domain acting as a platform for the surrounding domains. In this configuration, UvrC is maintained in a ‘closed’ inactive state that needs to undergo a major rearrangement to adopt an ‘open’ active state capable of performing the dual incision reaction. Taken together, this study provides important insight into the mechanism of recruitment and activation of UvrC during NER.
- Published
- 2023
- Full Text
- View/download PDF
12. A noncanonical response to replication stress protects genome stability through ROS production, in an adaptive manner
- Author
-
Sandrine Ragu, Nathalie Droin, Gabriel Matos-Rodrigues, Aurélia Barascu, Sylvain Caillat, Gabriella Zarkovic, Capucine Siberchicot, Elodie Dardillac, Camille Gelot, Josée Guirouilh-Barbat, J. Pablo Radicella, Alexander A. Ishchenko, Jean-Luc Ravanat, Eric Solary, Bernard S. Lopez, and Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire (CEA, IBFJ, IRCM)
- Subjects
[SDV]Life Sciences [q-bio] ,Cell Biology ,Molecular Biology - Abstract
Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way. Indeed, replication stress-induced ROS (RIR) activate FOXO1-controlled detoxification genes such as SEPP1, catalase, GPX1, and SOD2. Primary cells tightly control the production of RIR: They are excluded from the nucleus and are produced by the cellular NADPH oxidases DUOX1/DUOX2, whose expression is controlled by NF-κB, which is activated by PARP1 upon replication stress. In parallel, inflammatory cytokine gene expression is induced through the NF-κB-PARP1 axis upon nonblocking replication stress. Increasing replication stress intensity accumulates DNA double-strand breaks and triggers the suppression of RIR by p53 and ATM. These data underline the fine-tuning of the cellular response to stress that protects genome stability maintenance, showing that primary cells adapt their responses to replication stress severity.
- Published
- 2023
- Full Text
- View/download PDF
13. Fine tuning of quantum dots photocatalysts for the synthesis of tropane alkaloid skeletons
- Author
-
Ali Dabbous, Eloïse Colson, Debargha Chakravorty, Jean‐Marie Mouesca, Christian Lombard, Sylvain Caillat, Jean‐Luc Ravanat, Fabien Dubois, Fabrice Dénès, Philippe Renaud, and Vincent Maurel
- Subjects
Organic Chemistry ,General Chemistry ,Catalysis - Abstract
Several types of Quantum Dots (QDs) (CdS, CdSe and InP, as well as core-shell QDs such as type I InP-ZnS, quasi type-II CdSe-CdS and inverse type-I CdS-CdSe) were considered for generating α-aminoalkyl free radicals. The feasibility of the oxidation of the N-aryl amines and the generation of the desired radical was evidenced experimentally by quenching of the photoluminescence of the QDs and by testing a vinylation reaction using an alkenylsulfone radical trap. The QDs were tested in a radical [3+3]-annulation reaction giving access to tropane skeletons and that requires the completion of two consecutive catalytic cycles. Several QDs such as CdS core, CdSe core and inverted type I CdS-CdSe core-shell proved to be efficient photocatalysts for this reaction. Interestingly, the addition of a second shorter chain ligand to the QDs appeared to be essential to complete the second catalytic cycle and to obtain the desired bicyclic tropane derivatives. Finally, the scope of the [3+3]-annulation reaction was explored for the best performing QDs and isolated yields that compares well with classical iridium photocatalysis were obtained.
- Published
- 2023
- Full Text
- View/download PDF
14. A subclass of archaeal U8-tRNA sulfurases requires a [4Fe-4S] cluster for catalysis
- Author
-
Nisha He, Jingjing Zhou, Ornella Bimai, Jonathan Oltmanns, Jean-Luc Ravanat, Christophe Velours, Volker Schünemann, Marc Fontecave, Béatrice Golinelli-Pimpaneau, Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Technische Universität Kaiserslautern (TU Kaiserslautern), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Microbiologie Fondamentale et Pathogénicité (MFP), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Collège de France - Chaire Chimie des processus biologiques, and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Genetics ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] - Abstract
Sulfuration of uridine 8, in bacterial and archaeal tRNAs, is catalyzed by enzymes formerly known as ThiI, but renamed here TtuI. Two different classes of TtuI proteins, which possess a PP-loop-containing pyrophosphatase domain that includes a conserved cysteine important for catalysis, have been identified. The first class, as exemplified by the prototypic Escherichia coli enzyme, possesses an additional C-terminal rhodanese domain harboring a second cysteine, which serves to form a catalytic persulfide. Among the second class of TtuI proteins that do not possess the rhodanese domain, some archaeal proteins display a conserved CXXC + C motif. We report here spectroscopic and enzymatic studies showing that TtuI from Methanococcus maripaludis and Pyrococcus furiosus can assemble a [4Fe–4S] cluster that is essential for tRNA sulfuration activity. Moreover, structural modeling studies, together with previously reported mutagenesis experiments of M. maripaludis TtuI, indicate that the [4Fe–4S] cluster is coordinated by the three cysteines of the CXXC + C motif. Altogether, our results raise a novel mechanism for U8-tRNA sulfuration, in which the cluster is proposed to catalyze the transfer of sulfur atoms to the activated tRNA substrate.
- Published
- 2022
- Full Text
- View/download PDF
15. In vitro reconstitution of an efficient nucleotide excision repair system using mesophilic enzymes from Deinococcus radiodurans
- Author
-
Anna Seck, Salvatore De Bonis, Christine Saint-Pierre, Didier Gasparutto, Jean-Luc Ravanat, Joanna Timmins, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Grenoble Instruct-ERIC center (ISBG, UMS 3518 CNRS-CEA-UGA-EMBL), Grenoble Partnership for Structural Biology (PSB), GRAL LABEX, ARCANE LABEX, ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), and ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
- Subjects
MESH: DNA Damage ,MESH: DNA Repair ,Endodeoxyribonucleases ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,DNA Repair ,QH301-705.5 ,Escherichia coli Proteins ,Medicine (miscellaneous) ,MESH: Escherichia coli Proteins ,MESH: Deinococcus ,General Biochemistry, Genetics and Molecular Biology ,MESH: Endodeoxyribonucleases ,Deinococcus ,Biology (General) ,General Agricultural and Biological Sciences ,DNA Damage - Abstract
Nucleotide excision repair (NER) is a universal and versatile DNA repair pathway, capable of removing a very wide range of lesions, including UV-induced pyrimidine dimers and bulky adducts. In bacteria, NER involves the sequential action of the UvrA, UvrB and UvrC proteins to release a short 12- or 13-nucleotide DNA fragment containing the damaged site. Although bacterial NER has been the focus of numerous studies over the past 40 years, a number of key questions remain unanswered regarding the mechanisms underlying DNA damage recognition by UvrA, the handoff to UvrB and the site-specific incision by UvrC. In the present study, we have successfully reconstituted in vitro a robust NER system using the UvrABC proteins from the radiation resistant bacterium, Deinococcus radiodurans. We have investigated the influence of various parameters, including temperature, salt, protein and ATP concentrations, protein purity and metal cations, on the dual incision by UvrABC, so as to find the optimal conditions for the efficient release of the short lesion-containing oligonucleotide. This newly developed assay relying on the use of an original, doubly-labelled DNA substrate has allowed us to probe the kinetics of repair on different DNA substrates and to determine the order and precise sites of incisions on the 5′ and 3′ sides of the lesion. This new assay thus constitutes a valuable tool to further decipher the NER pathway in bacteria.
- Published
- 2021
- Full Text
- View/download PDF
16. Targeting G‐Rich DNA Structures with Photoreactive Bis‐Cyclometallated Iridium(III) Complexes
- Author
-
Frédérique Loiseau, Justin Weynand, Jean-Luc Ravanat, Benjamin Elias, Jérôme Dejeu, Eric Defrancq, Hughes Bonnet, Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain = Catholic University of Louvain (UCL), Département de Chimie Moléculaire - Ingéniérie et Intéractions BioMoléculaires (DCM - I2BM), Département de Chimie Moléculaire (DCM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (DCM - CIRE ), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Département de Chimie Moléculaire - Chimie Inorganique Redox (DCM - CIRE ), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR-16-CE11-0006,G4-TopIPro,Caractérisation des topologies de G-quadruplexes in vivo et identification des protéines partenaires(2016), ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017), and UCL - SST/IMCN/MOST - Molecular Chemistry, Materials and Catalysis
- Subjects
Circular dichroism ,Guanine ,Stereochemistry ,chemistry.chemical_element ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,Iridium ,Ligands ,010402 general chemistry ,G-quadruplex ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,Electron transfer ,Coordination Complexes ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Surface plasmon resonance ,DNA structures iridium ligand design photoinduced electron transfer photophysics ,010405 organic chemistry ,Circular Dichroism ,Organic Chemistry ,DNA ,General Chemistry ,Telomere ,Ligand (biochemistry) ,0104 chemical sciences ,G-Quadruplexes ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry ,Oxidation-Reduction - Abstract
International audience; In this work, we report on the synthesis and the characterisation of three novel iridium(III) bis-cyclometalated complexes. Their photophysics has been fully characterized by classical methods and revealed charge transfer (CT) and ligand centered (LC) transitions. Their ability to selectively interact with G-quadruplex telomeric DNA over duplex DNA has been studied by Circular Dichroïsm (CD), Bio Layer Interferometry (BLI) and Surface Plasmon Resonance (SPR) analyses. Interestingly, one of them is able to perform photo-induced electron transfer (PET) with guanine DNA base, which can in turn lead to oxidative damage (such as 8-oxo-guanine) to the telomeric sequence. To the best of our knowledge, this is the first study of highly photo-oxidant bis-cyclometalated iridium(III) complexes towards G-quadruplex telomeric DNA. 2
- Published
- 2019
- Full Text
- View/download PDF
17. Probing interaction of a trilysine peptide with DNA underlying formation of guanine–lysine cross-links: insights from molecular dynamics
- Author
-
Antonio Monari, Chen-Hui Chan, Elise Dumont, Jean-Luc Ravanat, Laboratoire de Chimie - UMR5182 (LC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC), Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
- Subjects
Guanine ,Stereochemistry ,education ,Oligonucleotides ,General Physics and Astronomy ,Peptide ,02 engineering and technology ,Molecular Dynamics Simulation ,010402 general chemistry ,complex mixtures ,01 natural sciences ,chemistry.chemical_compound ,Molecular dynamics ,[CHIM]Chemical Sciences ,Molecule ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Binding Sites ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Oligonucleotide ,Lysine ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Radical ion ,Covalent bond ,Quantum Theory ,Thermodynamics ,bacteria ,0210 nano-technology ,Oligopeptides ,DNA - Abstract
DNA-protein cross-links constitute bulky DNA lesions that interfere with the cellular machinery. Amongst these stable covalently tethered adducts, the efficient nucleophilic addition of the free amino group of lysines onto the guanine radical cation has been evidenced. In vitro addition of a trilysine peptide onto a guanine radical cation generated in a TGT oligonucleotide is so efficient that competitive addition of a water molecule, giving rise to 8-oxo-7,8-dihydroguanine, is not observed. This suggests a spatial proximity between guanine and lysine for the stabilization of the prereactive complex. We report all-atom microsecond scale molecular dynamics simulations that probe the structure and interactions of the trilysine peptide (KKK) with two oligonucleotides. Our simulations reveal a strong, electrostatically driven yet dynamic interaction, spanning several association modes. Furthermore, the presence of neighbouring cytosines has been identified as a factor favoring KKK binding. Relying on ab initio molecular dynamics on a model system constituted of guanine and methylammonium, we also corroborate a mechanistic pathway involving fast deprotonation of the guanine radical cation followed by hydrogen transfer from ammonium leaving as a result a nitrogen reactive species that can subsequently cross-link with guanine. Our study sheds new light on a ubiquitous mechanism for DNA-protein cross-links also stressing out possible sequence dependences.
- Published
- 2019
- Full Text
- View/download PDF
18. Iron–sulfur biology invades tRNA modification: the case of U34 sulfuration
- Author
-
Karolina Podskoczyj, Christophe Velours, Grazyna Leszczynska, Jingjing Zhou, Marine Lénon, Marc Fontecave, Jean-Luc Ravanat, Béatrice Golinelli-Pimpaneau, Nadia Touati, Frédéric Barras, Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Adaptation au stress et Métabolisme chez les entérobactéries - Stress adaptation and metabolism in enterobacteria (SAMe), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE), Institut de Recherche de Chimie Paris (IRCP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ministère de la Culture (MC), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Lódź, ANR-11-LABX-0011,DYNAMO,Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire.(2011), ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)
- Subjects
chemistry.chemical_classification ,0303 health sciences ,TRNA modification ,AcademicSubjects/SCI00010 ,Nucleic Acid Enzymes ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,[SDV]Life Sciences [q-bio] ,030302 biochemistry & molecular biology ,Mutagenesis ,Biology ,medicine.disease_cause ,Uridine ,03 medical and health sciences ,chemistry.chemical_compound ,Enzyme ,Biosynthesis ,chemistry ,Biochemistry ,Transfer RNA ,Genetics ,medicine ,Escherichia coli ,Nucleoside ,030304 developmental biology - Abstract
Sulfuration of uridine 34 in the anticodon of tRNAs is conserved in the three domains of life, guaranteeing fidelity of protein translation. In eubacteria, it is catalyzed by MnmA-type enzymes, which were previously concluded not to depend on an iron–sulfur [Fe–S] cluster. However, we report here spectroscopic and iron/sulfur analysis, as well as in vitro catalytic assays and site-directed mutagenesis studies unambiguously showing that MnmA from Escherichia coli can bind a [4Fe–4S] cluster, which is essential for sulfuration of U34-tRNA. We propose that the cluster serves to bind and activate hydrosulfide for nucleophilic attack on the adenylated nucleoside. Intriguingly, we found that E. coli cells retain s2U34 biosynthesis in the ΔiscUA ΔsufABCDSE strain, lacking functional ISC and SUF [Fe–S] cluster assembly machineries, thus suggesting an original and yet undescribed way of maturation of MnmA. Moreover, we report genetic analysis showing the importance of MnmA for sustaining oxidative stress.
- Published
- 2021
- Full Text
- View/download PDF
19. Radiation Dose-Enhancement Is a Potent Radiotherapeutic Effect of Rare-Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma
- Author
-
Dennis Brueckner, Sylvain Bohic, Benoit Busser, Lucie Sancey, Frédéric Chaput, Vincent Motto-Ros, Frédéric Lerouge, Jan Garrevoet, Jean-Luc Ravanat, Mans Broekgaarden, Hélène Elleaume, Christophe Dujardin, Victor Baisamy, Antonia Youssef, Anne-Laure Bulin, Synchrotron Radiation for Biomedicine = Rayonnement SynchroTROn pour la Recherche BiomédicalE (STROBE), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Chimie - UMR5182 (LC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC), Deutsches Elektronen-Synchrotron [Zeuthen] (DESY), Helmholtz-Gemeinschaft = Helmholtz Association, Cancer Targets & Experimental Therapeutics, Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE), Luminescence (LUMINESCENCE), Institut Lumière Matière [Villeurbanne] (ILM), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Spectrométrie des biomolécules et agrégats (SPECTROBIO), ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), ANR-11-INBS-0006,FLI,France Life Imaging(2011), Lerouge, Frédéric, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA), European Synchroton Radiation Facility [Grenoble] (ESRF), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Rayet, Béatrice, Physique, Radiobiologie, Imagerie Médicale et Simulation - - PRIMES2011 - ANR-11-LABX-0063 - LABX - VALID, Infrastructures - France Life Imaging - - FLI2011 - ANR-11-INBS-0006 - INBS - VALID, and École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Materials science ,General Chemical Engineering ,medicine.medical_treatment ,Rare earth ,GLIOBLASTOMA ,General Physics and Astronomy ,Medicine (miscellaneous) ,Context (language use) ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry, Genetics and Molecular Biology (miscellaneous) ,radiation dose‐enhancement ,RADIATION THERAPY ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Radioresistance ,medicine ,General Materials Science ,lcsh:Science ,Full Paper ,synchrotron radiation ,Spatially resolved ,Radiation dose ,X‐ray‐induced photodynamic therapy ,General Engineering ,glioblastoma ,Full Papers ,RADIATION DOSE ENHANCEMENT ,021001 nanoscience & nanotechnology ,medicine.disease ,0104 chemical sciences ,3. Good health ,NANOSCINTILLATORS ,Radiation therapy ,nanoscintillators ,Photoelectric absorption ,Cancer research ,lcsh:Q ,0210 nano-technology ,Glioblastoma ,ddc:624 - Abstract
Advanced science xx, 2001675 (1-18) (2020). doi:10.1002/advs.202001675, To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down‐convert X‐rays into photons with energies ranging from UV to near‐infrared. During radiotherapy, these scintillating properties amplify radiation‐induced damage by UV‐C emission or photodynamic effects. Additionally, nanoscintillators that contain high‐Z elements are likely to induce another, currently unexplored effect: radiation dose‐enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X‐rays by high‐Z elements compared to tissues, resulting in increased production of tissue‐damaging photo‐ and Auger electrons. In this study, Geant4 simulations reveal that rare‐earth composite LaF$_3$:Ce nanoscintillators effectively generate photo‐ and Auger‐electrons upon orthovoltage X‐rays. 3D spatially resolved X‐ray fluorescence microtomography shows that LaF$_3$:Ce highly concentrates in microtumors and enhances radiotherapy in an X‐ray energy‐dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF$_3$:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose‐enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers., Published by Wiley-VCH, Weinheim
- Published
- 2020
- Full Text
- View/download PDF
20. Solid-phase synthesis of branched oligonucleotides containing a biologically relevant dCyd341 interstrand crosslink DNA lesion
- Author
-
Didier Gasparutto, Christine Saint-Pierre, Jean-Luc Ravanat, Marisa L Taverna Porro, Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
- Subjects
Exonuclease ,Stereochemistry ,Biochemistry ,DNA DAMAGE ,purl.org/becyt/ford/1 [https] ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Solid-phase synthesis ,Ribose ,purl.org/becyt/ford/1.4 [https] ,Physical and Theoretical Chemistry ,Protecting group ,BRANCHED OLIGONUCLEOTIDE ,Solid-Phase Synthesis Techniques ,030304 developmental biology ,INTERSTRAND CROSS-LINKS ,0303 health sciences ,Phosphoramidite ,biology ,Oligonucleotide ,Organic Chemistry ,chemistry ,Oligodeoxyribonucleotides ,030220 oncology & carcinogenesis ,biology.protein ,[CHIM.RADIO]Chemical Sciences/Radiochemistry ,Cytosine ,DNA ,DNA Damage - Abstract
Branched oligonucleotides containing a biologically relevant DNA lesion, dCyd341, which involves an interstrand crosslink between a cytosine base on one strand and a ribose moiety on the opposite strand, were prepared in a single automated solid-phase synthesis. For this, we first prepared the phosphoramidite analogue of dCyd341 bearing an orthogonal levulinyl protecting group. Then, following the synthesis of the first DNA strand containing dCyd341, the levulinic group was removed and the synthesis was then continued from the free base hydroxyl group at the branching point, using traditional phosphoramidites. The synthesized oligonucleotides were fully characterized by MALDI-TOF/MS and were enzymatically digested, and the presence of the lesion was confirmed by HPLC-MS/MS and the sequence was finally controlled upon exonuclease digestion followed by MALDI-TOF/MS analysis. The developed strategy was successfully employed for the preparation of several short linear and branched oligonucleotides containing the aforementioned lesion. Fil: Taverna Porro, Marisa Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina Fil: Saint Pierre, Christine. Universite Grenoble Alpes; Francia Fil: Gasparutto, Didier. Universite Grenoble Alpes; Francia Fil: Ravanat, Jean Luc. Universite Grenoble Alpes; Francia
- Published
- 2020
- Full Text
- View/download PDF
21. Endogenous natural and radiation-induced DNA lesions: differences and similarities and possible implications for human health and radiological protection
- Author
-
Jean-Luc Ravanat, Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
0301 basic medicine ,DNA repair ,DNA damage ,Health, Toxicology and Mutagenesis ,Endogeny ,Biology ,medicine.disease_cause ,Bioinformatics ,Ionizing radiation ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,medicine ,Safety, Risk, Reliability and Quality ,Waste Management and Disposal ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Renewable Energy, Sustainability and the Environment ,Public Health, Environmental and Occupational Health ,Review article ,genomic DNA ,030104 developmental biology ,Nuclear Energy and Engineering ,chemistry ,030220 oncology & carcinogenesis ,DNA ,Oxidative stress - Abstract
International audience; During the last few decades, a considerable amount of work has been done to better assess the effects of ionizing radiation on living organisms. In particular a lot of attention has been focused on the consequences of modifications of the DNA macromolecule, the support of the genetic information. Detailed information is now available on the formation of radiation-induced DNA lesions at the physical, chemical and biological levels. Emphasis will be placed in this review article on the differences and similarities, in term of DNA lesions formation and outcome, between endogenous oxidative stress and ionizing radiation, both stresses that could produce oxidative DNA lesions through similar mechanistic pathways involving mostly reactive oxygen species. If the chemical nature of the generated lesions is similar, the differences in term of biological consequences could be attributed to their spatial distribution in genomic DNA, since ionizing radiations produce lesions in cluster. These clusters of lesions represent a challenge for the DNA repair machinery. In contrast, endogenous oxidative stress generates scattered lesions that could be repaired with a much higher efficacy and fidelity. Possible implication of the use of DNA damage and repair for human health purposes and radiological protection will be discussed.
- Published
- 2018
- Full Text
- View/download PDF
22. Frontispiece: Targeting G‐Rich DNA Structures with Photoreactive Bis‐Cyclometallated Iridium(III) Complexes
- Author
-
Eric Defrancq, Benjamin Elias, Frédérique Loiseau, Justin Weynand, Jean-Luc Ravanat, Jérôme Dejeu, and Hughes Bonnet
- Subjects
chemistry.chemical_compound ,chemistry ,Organic Chemistry ,Polymer chemistry ,chemistry.chemical_element ,General Chemistry ,Iridium ,Catalysis ,DNA ,Photoinduced electron transfer - Published
- 2019
- Full Text
- View/download PDF
23. Contrast‐enhanced synchrotron radiation therapy: From bench to bedside
- Author
-
Hélène Elleaume, Jean-François Adam, Rachel Delorme, Florence Taupin, Laure Bobyk, Mélanie Flaender, Jean-Luc Ravanat, Sylvain Bohic, Michel Renier, Paul Berkvens, Némoz, C., Brochard, T., Tamizhanban, K., François Estève, Jacques Balosso, Synchrotron Radiation for Biomedicine = Rayonnement SynchroTROn pour la Recherche BiomédicalE (STROBE), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Synchrotron Radiation for Biomedicine Laboratory (STROBE), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Synchrotron Radiation Facility (ESRF), Biomedical Beamline (ID17), Département de cancérologie et radiothérapie, CHU Grenoble, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,[SDV.CAN]Life Sciences [q-bio]/Cancer - Abstract
International audience; Background: Radiation therapy remains a fundamental tool for cancer treatment, but selective dose deposition within a targeted‐tumor, while sparing surrounding structures, remains a challenge. This objective can be achieved by loading the tumor with high‐Z elements prior delivery of radiation therapy. Synchrotron sources are ideal sources since they provide high‐intensity and tunable monochromatic X‐rays within the optimal energy‐range.Aim: We evaluated the ability of various high-Z elements, either as molecular agents (iodine or gadolinium contrast agents) or in the form of nanoparticles (gold and gadolinium), to act as radiation dose-enhancers through theoretical and experimental studies.Methods: Clonogenic assays were used to quantify cell survival after irradiation in the presence of the dose-enhancers using monochromatic X-rays from a synchrotron or 1.25 MeV photons from a Cobalt-60 source. Preclinical studies were performed on rats bearing F98 glioma after administration of either iodine as contrast agent or AuNPs. In parallel, Monte Carlo simulations were performed to evaluate the dose, for comparisons. Finally, a pilot clinical study was performed using an iodinated contrast agent as the radiation-dose-enhancer. 14 Patients with brain metastases received one fraction of the overall radiotherapy treatment at the synchrotron, the additional fractions were delivered using a conventional Linac at the university hospital.Results/Conclusions Radiosensitization was demonstrated with all agents in combination with X-irradiation at low energies. The radiation dose-enhancements were found to be highly energy-dependent for all agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Iodine and Gd contrast agents or AuNPs act as dose-enhancers. Increase of the animal’s survival was observed after iodine systemic injection or intracerebral infusion of AuNPs. The phase I-II clinical studies demonstrated the feasibility of this technique. Our overall experience will be summarized, pointing out the advantages and difficulties of applying this method for the treatment of brain tumors.
- Published
- 2019
24. Radioluminescent nanomaterials to induce deep-tissue PDT: towards a complete description of the therapeutic contributions (Conference Presentation)
- Author
-
Tayyaba Hasan, Lucie Sancey, Frédéric Chaput, Mans Broekgaarden, Jean-Luc Ravanat, H. Elleaume, and Anne-Laure Bulin
- Subjects
030207 dermatology & venereal diseases ,0303 health sciences ,03 medical and health sciences ,Presentation ,0302 clinical medicine ,Deep tissue ,business.industry ,media_common.quotation_subject ,030303 biophysics ,Medicine ,Nanotechnology ,business ,media_common - Published
- 2019
- Full Text
- View/download PDF
25. The three Endonuclease III variants of Deinococcus radiodurans possess distinct and complementary DNA repair activities
- Author
-
Filipe Rollo, Salvatore De Bonis, Elin Moe, Cécilia Hognon, Anna Seck, Antonio Monari, Meike Stelter, Jean-Luc Ravanat, Aili Sarre, Joanna Timmins, François Dehez, University of Tromsø (UiT), Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
DNA, Complementary ,DNA Repair ,Protein Conformation ,DNA repair ,Eukaryotic DNA replication ,Molecular Dynamics Simulation ,Biochemistry ,Genome ,Substrate Specificity ,Deoxyribonuclease (Pyrimidine Dimer) ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Complementary DNA ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,biology ,Deinococcus radiodurans ,Cell Biology ,Base excision repair ,biology.organism_classification ,Pyrimidines ,chemistry ,DNA glycosylase ,030220 oncology & carcinogenesis ,Mutation ,Biocatalysis ,Deinococcus ,DNA - Abstract
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase that removes oxidized pyrimidines from DNA. The genome of Deinococcus radiodurans encodes for an unusually high number of DNA glycosylases, including three EndoIII enzymes (drEndoIII1-3). Here, we compare the properties of these enzymes to those of their well-studied homologues from E. coli and human. Our biochemical and mutational data, reinforced by MD simulations of EndoIII-DNA complexes, reveal that drEndoIII2 exhibits a broad substrate specificity and a catalytic efficiency surpassing that of its counterparts. In contrast, drEndoIII1 has much weaker and uncoupled DNA glycosylase and AP-lyase activities, a characteristic feature of eukaryotic DNA glycosylases, and was found to present a relatively robust activity on single-stranded DNA substrates. To our knowledge, this is the first report of such an activity for an EndoIII. In the case of drEndoIII3, no catalytic activity could be detected, but its ability to specifically recognize lesion-containing DNA using a largely rearranged substrate binding pocket suggests that it may play an alternative role in genome maintenance. Overall, these findings reveal that D. radiodurans possesses a unique set of DNA repair enzymes, including three non-redundant EndoIII variants with distinct properties and complementary activities, which together contribute to genome maintenance in this bacterium.
- Published
- 2019
- Full Text
- View/download PDF
26. Correction to article ‘Iron–sulfur biology invades tRNA modification: the case of U34 sulfuration’
- Author
-
Frédéric Barras, Jingjing Zhou, Jean-Luc Ravanat, Marine Lénon, Béatrice Golinelli-Pimpaneau, Nadia Touati, Karolina Podskoczyj, Christophe Velours, Grazyna Leszczynska, and Marc Fontecave
- Subjects
TRNA modification ,AcademicSubjects/SCI00010 ,Escherichia coli Proteins ,Iron ,chemistry.chemical_element ,Computational biology ,Biology ,Sulfur ,chemistry ,RNA, Transfer ,Genetics ,Escherichia coli ,RNA Processing, Post-Transcriptional ,Corrigendum - Abstract
Sulfuration of uridine 34 in the anticodon of tRNAs is conserved in the three domains of life, guaranteeing fidelity of protein translation. In eubacteria, it is catalyzed by MnmA-type enzymes, which were previously concluded not to depend on an iron-sulfur [Fe-S] cluster. However, we report here spectroscopic and iron/sulfur analysis, as well as in vitro catalytic assays and site-directed mutagenesis studies unambiguously showing that MnmA from Escherichia coli can bind a [4Fe-4S] cluster, which is essential for sulfuration of U34-tRNA. We propose that the cluster serves to bind and activate hydrosulfide for nucleophilic attack on the adenylated nucleoside. Intriguingly, we found that E. coli cells retain s2U34 biosynthesis in the ΔiscUA ΔsufABCDSE strain, lacking functional ISC and SUF [Fe-S] cluster assembly machineries, thus suggesting an original and yet undescribed way of maturation of MnmA. Moreover, we report genetic analysis showing the importance of MnmA for sustaining oxidative stress.
- Published
- 2021
27. UV and ionizing radiations induced DNA damage, differences and similarities
- Author
-
Jean-Luc Ravanat, Thierry Douki, Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Ionizing radiation ,0301 basic medicine ,Radiation ,Chemistry ,Singlet oxygen ,DNA damage ,Radical ,Free radical damage to DNA ,Pyrimidine dimer ,010402 general chemistry ,Photochemistry ,01 natural sciences ,7. Clean energy ,UV radiation ,0104 chemical sciences ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,Radiolysis ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Photosensitizer ,[CHIM.RADIO]Chemical Sciences/Radiochemistry ,DNA - Abstract
International audience; Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.
- Published
- 2016
- Full Text
- View/download PDF
28. Impact of nanoparticles on DNA repair processes: current knowledge and working hypotheses
- Author
-
Jean-Luc Ravanat, Marie Carrière, Thierry Douki, Sylvie Sauvaigo, Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), and LXRepair
- Subjects
0301 basic medicine ,DNA Repair ,DNA damage ,Computer science ,DNA repair ,Health, Toxicology and Mutagenesis ,Gene induction ,Computational biology ,Working hypothesis ,Toxicology ,medicine.disease_cause ,03 medical and health sciences ,DNA Repair Protein ,Genetics ,medicine ,Animals ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Genetics (clinical) ,Protein function ,DNA ,Review article ,030104 developmental biology ,Nanoparticles ,Genotoxicity ,DNA Damage - Abstract
International audience; The potential health effects of exposure to nanomaterials (NMs) is currently heavily studied. Among the most often reported impact is DNA damage, also termed genotoxicity. While several reviews relate the DNA damage induced by NMs and the techniques that can be used to prove such effects, the question of impact of NMs on DNA repair processes has never been specifically reviewed. The present review article proposes to fill this gap of knowledge by critically describing the DNA repair processes that could be affected by nanoparticle (NP) exposure, then by reporting the current state of the art on effects of NPs on DNA repair, at the level of protein function, gene induction and post-transcriptional modifications, and taking into account the advantages and limitations of the different experimental approaches. Since little is known about this impact, working hypothesis for the future are then proposed.
- Published
- 2016
- Full Text
- View/download PDF
29. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish
- Author
-
Sandrine Pereira, Virginie Camilleri, Jean-Paul Bourdineaud, Kewin Gombeau, Isabelle Cavalie, Christelle Adam-Guillermin, Jean-Luc Ravanat, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Recherche commun IRSN-CNRS-Lille1 'Cinétique Chimique, Combustion, Réactivité' (C3R), Université de Lille, Sciences et Technologies-Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE)
- Subjects
Male ,0301 basic medicine ,Water Pollutants, Radioactive ,HpaII ,Health, Toxicology and Mutagenesis ,010501 environmental sciences ,medicine.disease_cause ,Methylation ,01 natural sciences ,Andrology ,03 medical and health sciences ,Sex Factors ,Tandem Mass Spectrometry ,medicine ,Animals ,Environmental Chemistry ,Epigenetics ,Waste Management and Disposal ,Zebrafish ,Chromatography, High Pressure Liquid ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Demethylation ,Genetics ,biology ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,General Medicine ,biology.organism_classification ,Pollution ,030104 developmental biology ,Organ Specificity ,Toxicity ,DNA methylation ,Uranium ,Female ,Oxidative stress - Abstract
We examined the effects of chronic exposure to different concentrations (2 and 20 μg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects.
- Published
- 2016
- Full Text
- View/download PDF
30. Dose-dependent genomic DNA hypermethylation and mitochondrial DNA damage in Japanese tree frogs sampled in the Fukushima Daiichi area
- Author
-
Jean-Marc Bonzom, Kewin Gombeau, Thierry Lengagne, Daniel Orjollet, Jean-Paul Bourdineaud, Jean-Luc Ravanat, Nicolas Dubourg, Olivier Armant, Virginie Camilleri, Christelle Adam-Guillermin, Isabelle Cavalie, Karine Beaugelin-Seiller, Laboratoire d'écotoxicologie des radionucléides (IRSN/PSE-ENV/SRTE/LECO), Service de recherche sur les transferts et les effets des radionucléides sur les écosystèmes (IRSN/PSE-ENV/SRTE), Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Institut de biochimie et génétique cellulaires (IBGC), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Laboratoire de recherche sur les transferts des radionucléides dans les écosystèmes terrestres (IRSN/PSE-ENV/SRTE/LR2T), Microbiologie Fondamentale et Pathogénicité (MFP), Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de micro-irradiation, de métrologie et de dosimétrie neutrons (IRSN/PSE-SANTE/SDOS/LMDN), Service de dosimétrie (IRSN/PSE-SANTE/SDOS), Institut de Radioprotection et de sûreté nucléaire PSE-ENV/SRTE/LECO (IRSN), Institut de Radioprotection et de sûreté Nucléaire (PSE-ENV/SRTE/LR2T (URSN), Microbiologie Fondamentale et Pathogénicité [Bordeaux] (MFP), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and INSN, PSE-SANTE/SDOS/LMDN
- Subjects
Genome instability ,Mitochondrial DNA ,010504 meteorology & atmospheric sciences ,Health, Toxicology and Mutagenesis ,Zoology ,010501 environmental sciences ,Biology ,Radiation Dosage ,DNA, Mitochondrial ,01 natural sciences ,chemistry.chemical_compound ,Japan ,Radiation Monitoring ,Animals ,Fukushima Nuclear Accident ,Environmental Chemistry ,Ecotoxicology ,Japanese tree frog-Dryophytes japonicus ,Fukushima ,Waste Management and Disposal ,0105 earth and related environmental sciences ,mitochondrial DNA damage ,Dose-Response Relationship, Radiation ,Genomics ,General Medicine ,Methylation ,DNA Methylation ,Pollution ,genomic DNA ,Fukushima daiichi ,chemistry ,Cesium Radioisotopes ,13. Climate action ,DNA methylation ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,ionizing radiation ,DNA ,DNA Damage - Abstract
International audience; The long-term consequences of the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) that occurred on March 2011, have been scarcely studied on wildlife. We sampled Japanese tree frogs (Dryophytes japonicus), in a 50-km area around the FDNPP to test for an increase of DNA damages and variation of DNA methylation level. The ambient dose rate ranged between 0.4 and 2.8 µGy h-1 and the total estimated dose rate absorbed by frogs ranged between 0.4 and 4.9 µGy h-1. Frogs from contaminated sites exhibited a dose dependent increase of global genomic DNA methylation level (5-mdC and 5-hmdC) and of mitochondrial DNA damages. Such DNA damages may indicate a genomic instability, which may induce physiological adaptations governed by DNA methylation changes. This study stresses the need for biological data combining targeted molecular methods and classic ecotoxicology, in order to better understand the impacts on wildlife of long term exposure to low ionizing radiation levels.
- Published
- 2020
- Full Text
- View/download PDF
31. Natural variability and modulation by environmental stressors of global genomic cytosine methylation levels in a freshwater crustacean, Gammarus fossarum
- Author
-
Thérèse Bastide, Nicolas Delorme, Pauline Cribiu, Jean-Luc Ravanat, Hervé Quéau, Alain Devaux, Sylvain Caillat, Arnaud Chaumot, Olivier Geffard, Sylvie Bony, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), École Nationale des Travaux Publics de l'État (ENTPE), École Nationale des Travaux Publics de l'État (ENTPE)-Ministère de l'Ecologie, du Développement Durable, des Transports et du Logement, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), 'Ministere de la transition ecologique et solidaire' (France), 'Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture' (France), 'Institut National de la Recherche Agronomique' (France), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
0301 basic medicine ,Range (biology) ,Health, Toxicology and Mutagenesis ,Sentinel species ,Zoology ,Fresh Water ,Aquatic Science ,Ecotoxicology ,03 medical and health sciences ,Cytosine ,Animals ,Amphipoda ,14. Life underwater ,Epigenetics ,ComputingMilieux_MISCELLANEOUS ,Invertebrate ,biology ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Stressor ,Environmental stressor ,Genomics ,DNA Methylation ,biology.organism_classification ,Crustacean ,EPIGENETICS ,030104 developmental biology ,GAMMARUS FOSSARUM ,13. Climate action ,DNA methylation ,[SDE]Environmental Sciences ,ENVIRONMENTAL STRESSOR ,Biomarkers ,Water Pollutants, Chemical ,Cadmium - Abstract
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA [ADD1_IRSTEA]Systèmes aquatiques soumis à des pressions multiples; International audience; To improve the assessment of aquatic organism responses to environmental stressors, there is an interest in studying epigenetic marks in addition to other validated biomarkers. Indeed, the epigenetic marks may be influenced by the surrounding environment. Non-model invertebrates such as gammarids are sentinel organisms representative of the diversity of natural stream communities. Despite their ecologically relevance, the epigenetic responses have been to date poorly documented in these species. The present study explores the measurement of the global cytosine methylation level in the genome of the freshwater crustacean Gammarus fossarum. In a first step, natural variability of global cytosine methylation level (basal level) was assessed by studying the effect of sex, age and sampling site of organisms. Results showed a significant effect of age and sampling site. In a second step, effects of water temperature and food starvation were studied. For both factors, a hypermethylation was observed after 1 month of exposure. In a third step, gammarids were exposed to a range of environmentally relevant cadmium concentrations (0.05-5 µg/L) in order to assess the effect of a chemical stress. Whatever the cadmium concentration used, a significant hypomethylation was observed after 14 days followed by a trend for hypermethylation after 1 month of exposure. These results are the first ones dealing with the 5Cmethylation status in gammarids. The results constitute potential markers of environmental stresses in relevant sentinel species widely used in ecotoxicological studies.
- Published
- 2018
- Full Text
- View/download PDF
32. Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes
- Author
-
Mohamed G. Atta, Jean-Philippe Deglasse, Diego Balboa, Stéphane Demine, Ewan R. Pearson, Sanna Toivonen, Esteban Diaz Villamil, Timo Otonkoski, Andrea Alex Schiavo, Piero Marchetti, Jean-Christophe Jonas, Cristina Cosentino, Mariana Igoillo-Esteve, Nathalie Pachera, Jean-Luc Ravanat, Decio L. Eizirik, Miriam Cnop, Université libre de Bruxelles (ULB), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche Expérimentale et Clinique-Pôle d'Endocrinologie, Diabétologie, et Nutrition (EDIN), Université Catholique de Louvain = Catholic University of Louvain (UCL), Research Programs [Helsinki], Haartman Institute [Helsinki], Faculty of Medecine [Helsinki], University of Helsinki-University of Helsinki-Faculty of Medecine [Helsinki], University of Helsinki-University of Helsinki, Pediatric Research Center [Helsinki], Ninewells Hospital and Medical School [Dundee], Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Department of Clinical and Experimental Medicine [Pisa, Italy], University of Pisa [Italy], Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Centre of Excellence in Stem Cell Metabolism, Research Programme for Molecular Neurology, Timo Pyry Juhani Otonkoski / Principal Investigator, Research Programs Unit, Faculty of Medicine, University of Helsinki, Children's Hospital, Clinicum, HUS Children and Adolescents, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Faculty of Medecine [Helsinki], Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, and University of Pisa - Università di Pisa
- Subjects
0301 basic medicine ,INTELLECTUAL DISABILITY ,Diabetes Mellitus -- genetics -- metabolism ,Genetic Linkage ,Apoptosis ,chemistry.chemical_compound ,Diabetes mellitus genetics ,0302 clinical medicine ,ENDOPLASMIC-RETICULUM STRESS ,RNA, Transfer ,RNA interference ,Insulin-Secreting Cells ,Protein biosynthesis ,Cells, Cultured ,Apoptosis -- genetics ,Cell Death ,Nucleic Acid Enzymes ,METHYLATION ,Translation (biology) ,Cell Differentiation ,Sciences bio-médicales et agricoles ,Middle Aged ,3. Good health ,Cell biology ,GENOME ,Transfer RNA ,Cell Death -- genetics ,Induced Pluripotent Stem Cells ,Guanosine ,Methyltransferases -- deficiency -- genetics -- metabolism ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,DNA Fragmentation ,Biology ,RNA, Transfer -- metabolism ,Induced Pluripotent Stem Cells -- physiology ,03 medical and health sciences ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Diabetes Mellitus ,Genetics ,Animals ,Humans ,Aged ,Cell Differentiation -- genetics ,IDENTIFICATION ,TRNA Methyltransferase ,RNA ,CDKAL1 ,Methyltransferases ,DNA Methylation ,GENE ,Rats ,030104 developmental biology ,chemistry ,Mutation ,1182 Biochemistry, cell and molecular biology ,3111 Biomedicine ,TRANSLATION ,030217 neurology & neurosurgery ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,Insulin-Secreting Cells -- metabolism -- physiology - Abstract
Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic β-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in β-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced β-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic β-cell demise relevant to monogenic and polygenic forms of diabetes., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2018
- Full Text
- View/download PDF
33. Redox Photocatalysis with Water-Soluble Core–Shell CdSe-ZnS Quantum Dots
- Author
-
Jean-Marie Mouesca, Marina Gromova, Jérôme Chauvin, Serge Gambarelli, Didier Gasparutto, Timothée Chauviré, Vincent Maurel, Jean-Luc Ravanat, Colette Lebrun, Pierre-Henri Jouneau, Reconnaissance Ionique et Chimie de Coordination (RICC), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Magnetic Resonance (RM ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (DCM - CIRE), Département de Chimie Moléculaire (DCM), Université Joseph Fourier - Grenoble 1 (UJF)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), and Département de Chimie Moléculaire - Chimie Inorganique Redox (DCM - CIRE)
- Subjects
Visible-Light Irradiation ,One-Electron Oxidation ,Inorganic chemistry ,Semiconductor Nanocrystals ,02 engineering and technology ,Reaction intermediate ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Redox ,Correlation-Energy ,Nanorod Heterostructures ,Core shell ,chemistry.chemical_compound ,Physical and Theoretical Chemistry ,Charge Separation ,Hydrogen production ,[PHYS]Physics [physics] ,Singlet Oxygen ,Chemistry ,Singlet oxygen ,Hydrogen-Production ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Efficient ,General Energy ,Quantum dot ,Hole Transfer ,Photocatalysis ,0210 nano-technology ,Visible spectrum - Abstract
International audience; The use of CdSe-ZnS type I quantum.clots as redox photocatalysts with visible light in water is investigated by monitoring the oxidation reaction of 8-oxo-2'-deoxyguanosine and the reduction of nitrophenylalanine derivatives. The detection of reaction intermediates and the identification and quantitation of reaction products establish that both reactions are photocatalyzed simultaneously by CdSe-ZnS type I quantum dots. The photocatalyzed reactions are observed without the need for sacrificial reactants and with high turnover numbers (>400). These results demonstrate that CdSe-ZnS type I quantum dots can work efficiently as redox photocatalysts in water solution.
- Published
- 2015
- Full Text
- View/download PDF
34. Iron–sulfur biology invades tRNA modification: the case of U34 sulfuration.
- Author
-
Jingjing, Zhou, Marine, Lénon, Jean-Luc, Ravanat, Touati, Nadia, Christophe, Velours, Karolina, Podskoczyj, Grazyna, Leszczynska, Marc, Fontecave, Frédéric, Barras, and Béatrice, Golinelli-Pimpaneau
- Published
- 2021
- Full Text
- View/download PDF
35. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity
- Author
-
Jean-Luc Ravanat, Christophe Morell, Elise Dumont, Antonio Monari, Emmanuelle Bignon, Chen-Hui Chan, Laboratoire de Chimie - UMR5182 (LC), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Analytiques (ISA), Université Claude Bernard Lyon 1 (UCBL), Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Universite de Lyon, within the program 'Investissements d'Avenir' (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR) through the PhD fellowship of C.H.C., ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC), Institut de Chimie du CNRS (INC)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Spermidine ,Guanine ,Stereochemistry ,polyamines ,Molecular Dynamics Simulation ,010402 general chemistry ,DNA condensation ,01 natural sciences ,Catalysis ,Nucleobase ,03 medical and health sciences ,Molecular dynamics ,chemistry.chemical_compound ,noncovalent interactions ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Putrescine ,cross-coupling ,Non-covalent interactions ,Binding site ,chemistry.chemical_classification ,Binding Sites ,Organic Chemistry ,Isothermal titration calorimetry ,General Chemistry ,DNA ,Biogenic Polyamines ,molecular dynamics ,0104 chemical sciences ,Crystallography ,030104 developmental biology ,chemistry ,Nucleic Acid Conformation ,Thermodynamics ,Spermine - Abstract
We acknowledge the Pole Scientifique de Modeisation Numerique (PSMN) for computational resources.; International audience; Biogenic polyamines, which play a role in DNA condensation and stabilization, are ubiquitous and are found at millimolar concentration in the nucleus of eukaryotic cells. The interaction modes of three polyamines-putrescine (Put), spermine (Spm), and spermidine (Spd)-with a self-complementary 16 base pair (bp) duplex, are investigated by all-atom explicit-solvent molecular dynamics. The length of the amine aliphatic chain leads to a change of the interaction mode from minor groove binding to major groove binding. Through all-atom dynamics, noncovalent interactions that stabilize the polyamine-DNA complex and prefigure the reactivity, leading to the low-barrier formation of deleterious DNA-polyamine cross-links, after one-electron oxidation of a guanine nucleobase, are unraveled. The binding strength is quantified from the obtained trajectories by molecular mechanics generalized Born surface area post-processing (MM-GBSA). The values of binding free energies provide the same affinity order, Put
- Published
- 2017
- Full Text
- View/download PDF
36. Nonredox thiolation in tRNA occurring via sulfur activation by a [4Fe-4S] cluster
- Author
-
Sylvain Caillat, Béatrice Golinelli-Pimpaneau, Nadia Touati, Marc Fontecave, Jean-Luc Ravanat, Simon Arragain, Laurent Binet, Ornella Bimai, Mohamed G. Atta, Pierre Legrand, Collège de France - Chaire Chimie des processus biologiques, Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL, Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR-11-LABX-0011,DYNAMO,Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire.(2011), Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Université Pierre et Marie Curie - Paris 6 (UPMC), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie [2017-2019] (CIBEST [2017-2019]), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), CNRS- Institut de Recherche Renard, Chimie-ParisTech, 75005 Paris, France, Institut de Recherche de Chimie Paris (IRCP), Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC), ANR-11-LABX-0011/11-LABX-0011,DYNAMO,Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire.(2011), Chaire Chimie des processus biologiques, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
0301 basic medicine ,Iron-Sulfur Proteins ,TRNA modification ,Sulfide ,Stereochemistry ,thiouridine synthetase ,Sulfurtransferase ,chemistry.chemical_element ,Models, Biological ,Catalysis ,03 medical and health sciences ,[Fe-S] cluster ,RNA, Transfer ,Oxidoreductase ,U54-tRNA ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Thermotoga maritima ,Sulfhydryl Compounds ,Cloning, Molecular ,RNA Processing, Post-Transcriptional ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,chemistry.chemical_classification ,Multidisciplinary ,Binding Sites ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[CHIM.CATA]Chemical Sciences/Catalysis ,Biological Sciences ,Ligand (biochemistry) ,biology.organism_classification ,Sulfur ,030104 developmental biology ,Biochemistry ,chemistry ,Multigene Family ,Sulfurtransferases ,Transfer RNA ,Spectrophotometry, Ultraviolet ,thiolation ,tRNA modification ,Oxidation-Reduction ,Genome, Bacterial - Abstract
International audience; Sulfur is present in several nucleosides within tRNAs. In particular, thiolation of the universally conserved methyl-uridine at position 54 stabilizes tRNAs from thermophilic bacteria and hyperthermo-philic archaea and is required for growth at high temperature. The simple nonredox substitution of the C2-uridine carbonyl oxygen by sulfur is catalyzed by tRNA thiouridine synthetases called TtuA. Spectroscopic, enzymatic, and structural studies indicate that TtuA carries a catalytically essential [4Fe-4S] cluster and requires ATP for activity. A series of crystal structures shows that (i) the cluster is ligated by only three cysteines that are fully conserved, allowing the fourth unique iron to bind a small ligand, such as exogenous sulfide, and (ii) the ATP binding site, localized thanks to a protein-bound AMP molecule, a reaction product, is adjacent to the cluster. A mechanism for tRNA sulfuration is suggested, in which the unique iron of the catalytic cluster serves to bind exogenous sul-fide, thus acting as a sulfur carrier. tRNA modification | thiolation | [Fe-S] cluster | thiouridine synthetase | U54-tRNA T he cellular translation machinery contains essential components such as tRNAs. To achieve their function, they feature a great variety of well-conserved posttranscriptional chemical modifications. Sulfur is present in several of these modified nucleosides: thiouridine and derivatives (s 4 U8, s 2 U34, and m 5 s 2 U54), 2-thioadenosine derivatives (ms 2 i 6 A37 and ms 2 t 6 A37), and 2-thiocytidine (s 2 C32). However, mechanisms of sulfur insertion into tRNAs are largely unknown, and the enzymes responsible for these reactions are incompletely characterized. Whereas redox conversion of a C-H to a C-S bond (synthesis of ms 2 i 6 A37 and ms 2 t 6 A37) depends on redox enzymes from the RadicalS -adenosyl-L-methionine iron-sulfur enzyme family, simple nonredox conversion of C = O to C = S group (synthesis of s 2 U34 and s 4 U8) is not expected to require such redox clusters. Intriguingly, we recently discovered that the ATP-dependent formation of s 2 C32 in some tRNAs is catalyzed by an iron-sulfur enzyme, TtcA (1). However, the role of its cluster has not been defined. In the same superfamily, TtuA enzymes catalyze the C2-thiolation of uridine 54 in the T loop of thermophilic tRNAs (Fig. 1A), allowing stabilization of tRNAs at high temperature in thermophilic microorganisms. Sequences analysis shows that they share conserved cysteines and ATP binding motif (Fig. S1). Here, we report a detailed biochemical and structural characterization of TtuA that shows the presence of a [4Fe-4S] cluster essential for activity. The crystal structures of Pyrococcus horikoshii TtuA (PhTtuA) show that the cluster, chelated by only three cysteines, is adjacent to the ATP binding site. The presence of electron density near the fourth iron, nonbonded to the protein, indicates that the cluster can bind an exogenous substrate. We propose that thiolation occurs via sulfur binding to the cluster and transfer to the tRNA substrate. The fact that the catalytic [4Fe-4S] cluster serves as a sulfur carrier during a nonredox thiolation reaction illustrates an unknown function in iron-sulfur enzymology. Results m 5 s 2 U but Not s 2 C Is Present in tRNAs from Thermotoga maritima. In the Thermotoga maritima genome, only one homolog of the ttuA gene was detected (2). It was earlier suggested that TtuA could perform thiolation of both C32 and m 5 U54 in this organism (2), because both s 2 C and m 5 s 2 U were detected in bulk tRNAs (3). However, our results show that, although 10.7 m 5 s 2 U modifications per 1,000 uridines were detected, both m 5 U and s 2 C were under the threshold of detection (below one modification per million normal nucleosides) (Fig. S2). T. maritima TtuA Binds an [Fe-S] Cluster. Recombinant T. maritima TtuA (TmTtuA) was purified as an apoprotein, apo-TmTtuA (Fig. 2A and Fig. S3A), then anaerobically treated with ferrous iron and L-cysteine in the presence of a cysteine desulfurase, and finally, purified (Fig. S3B) in the form of a homogeneous dimeric brownish protein, named holo-TmTtuA. Metal analysis (1.6 ± 0.1 Zn, 3.1 ± 0.2 Fe, and 2.6 ± 0.3 S per monomer) and UV-visible as well as EPR spectroscopy (Fig. 2) show that one TmTtuA monomer binds Significance Posttranscriptional modifications of tRNA are essential for trans-lational fidelity. More specifically, mechanisms of selective sul-furation of tRNAs are still largely unknown, and the enzymes responsible for these reactions are incompletely investigated. Therefore, characterizing such systems at the molecular level is greatly valuable to our understanding of a whole class of tRNA modification reactions. We study TtuA, a representative member of a tRNA modification enzyme superfamily, and show that it intriguingly catalyzes a nonredox sulfur insertion within tRNA using a catalytically essential [4Fe-4S] cluster. This report opens perspectives regarding functions of iron-sulfur proteins in biology as well as chemical reactions catalyzed by iron-sulfur clusters.
- Published
- 2017
- Full Text
- View/download PDF
37. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement
- Author
-
Mélanie Flaender, Mathieu Agelou, Jean-Luc Ravanat, Florence Taupin, H. Elleaume, Christophe Champion, R. Delorme, Laboratoire Modélisation et Simulation de Systèmes (LM2S), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC (UMR_8165)), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Rayonnement Synchrotron et Recherche Medicale (RSRM), Université Joseph Fourier - Grenoble 1 (UJF)-European Synchrotron Radiation Facility (ESRF)-Institut National de la Santé et de la Recherche Médicale (INSERM), European Synchrotron Radiation Facility (ESRF), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), ANR-10-BLAN-1532,RAPHAELO,Radiothérapie par Photo-Activation d'Eléments LOurds(2010), ANR-11-IDEX-0007-02/11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), European Synchrotron Radiation Facility (ESRF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Gadolinium ,chemistry.chemical_element ,Contrast Media ,Metal Nanoparticles ,Nanotechnology ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,[CHIM.THER]Chemical Sciences/Medicinal Chemistry ,Radiation ,radiation therapy ,Models, Biological ,Secondary electrons ,Spectral line ,030218 nuclear medicine & medical imaging ,Monte Carlo simulations ,03 medical and health sciences ,0302 clinical medicine ,Nuclear magnetic resonance ,particle transport ,Penelope ,X-rays ,contrast agents ,Irradiation ,Particle Size ,Clonogenic assay ,Monte Carlo ,Cellular localization ,Cell Nucleus ,Range (particle radiation) ,dosimetry ,Radiotherapy ,Biological Transport ,gamma-rays ,General Medicine ,simulation ,dose-enhancement ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,chemistry ,radiosensitivity ,030220 oncology & carcinogenesis ,[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,nanoparticles ,radiosensitization ,ionizing radiation ,Monte Carlo Method - Abstract
Purpose Nanoparticles appear as a novel tool to enhance the effectiveness of radiotherapy in cancer treatments. Many parameters influence their efficacy, such as their size, concentration, composition, their cellular localization, as well as the photon source energy. The current Monte Carlo study aims at comparing the dose-enhancement in presence of gadolinium (Gd), either as isolated atoms or atoms clustered in nanoparticles (NPs), by investigating the role played by these physical parameters at the cellular and the nanometer scale. In parallel, in vitro assays were performed in presence of either the gadolinium contrast agent (GdCA) Magnevist® or ultrasmall gadolinium NPs (GdNPs, 3 nm) for comparison with the simulations. Methods PENELOPE Monte Carlo Code was used for in silico dose calculations. Monochromatic photon beams were used to calculate dose-enhancements in different cell compartments and low-energy secondary electron spectra dependence with energy. Particular attention has been placed on the interplay between the X-ray beam energy, the Gd localization and its distance from cellular targets. Clonogenic assays were used to quantify F98 rat glioma cell survival after irradiation in the presence of GdNPs or GdCA, using monochromatic X-rays with energies in the 30 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. The simulations that correspond to the experimental conditions were compared with the experimental results. Results In silico, a highly heterogeneous and clustered Gd-atom distribution, a massive production of low energy electrons around GdNPs and an optimal X-ray beam energy, above the Gd K-edge, were key factors found to increase microscopic doses, which could potentially induce cell death. The different Gd localizations studied all resulted in a lower dose enhancement for the nucleus component than for cytoplasm or membrane compartments, with a maximum dose-enhancement factor (DEF) found at 65 keV and 58 keV, respectively. In vitro, radiosensitization was observed with GdNPs incubated 5h with the cells (2.1 mg Gd/mL) at all energies. Experimental DEFs were found to be greater than computational DEFs but follow a similar trend with irradiation energy. However, an important radiosensitivity was observed experimentally with GdNPs at high energy (1.25 MeV), whereas no effect was expected from modeling. This effect was correlated with GdNPs incubation time. In vitro, GdCA provided no dose-enhancement at 1.25 MeV energies, in agreement with computed data. Conclusions These results provide a foundation on which to base optimizations of the physical parameters in Gd radiation-enhanced therapy. Strong evidence was provided that GdCA or GdNPs could both be used for radiation dose-enhancement therapy. Their in vivo biological distribution, in the tumor volume and at the cellular scale, will be the key factor for providing large dose-enhancements and determine their therapeutic efficacy. This article is protected by copyright. All rights reserved.
- Published
- 2017
- Full Text
- View/download PDF
38. Enhancement of IUdR Radiosensitization by Low-Energy Photons Results from Increased and Persistent DNA Damage
- Author
-
Jonathan Dadoun, Jean Bourhis, Eric Deutsch, L. Calmels, Fabien Allot, Marc Denoziere, Johann Plagnard, Frederic Pouzoulet, Emilie Bayart, Jean-Luc Ravanat, André Bridier, Unité de radiothérapie moléculaire ( UMR 1030 ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut Gustave Roussy ( IGR ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Plateforme de Radiothérapie Expérimentale, Département de Recherche Translationnelle, Institut Curie-Institut Curie, Département de radiothérapie [Gustave Roussy], Institut Gustave Roussy ( IGR ), Laboratoire National Henri Becquerel ( BNM/LNHB ), Laboratoire National Henri Becquerel (BNM/LNHB), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie ( CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé ( SYMMES ), Institut Nanosciences et Cryogénie ( INAC ), Université Grenoble Alpes ( UGA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes ( UGA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut Nanosciences et Cryogénie ( INAC ), Université Grenoble Alpes ( UGA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes ( UGA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ), Radiation Oncology Service, Centre Hospitalier Universitaire Vaudois [Lausanne] ( CHUV ), Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, ANR-10-BLAN-1532,RAPHAELO,Radiothérapie par Photo-Activation d'Eléments LOurds ( 2010 ), Radiothérapie moléculaire (UMR 1030), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Curie [Paris]-Institut Curie [Paris], Institut Gustave Roussy (IGR), Laboratoire National Henri Becquerel (LNHB), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre Hospitalier Universitaire Vaudois [Lausanne] (CHUV), ANR-10-BLAN-1532,RAPHAELO,Radiothérapie par Photo-Activation d'Eléments LOurds(2010), Rayet, Béatrice, BLANC - Radiothérapie par Photo-Activation d'Eléments LOurds - - RAPHAELO2010 - ANR-10-BLAN-1532 - BLANC - VALID, Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Gustave Roussy (IGR)-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST))
- Subjects
IODODEOXYURIDINE IUDR ,Radiation-Sensitizing Agents ,medicine.medical_treatment ,Cancer Treatment ,lcsh:Medicine ,DOUBLE-STRAND BREAKS ,Biochemistry ,Radiation Tolerance ,030218 nuclear medicine & medical imaging ,[ SDV.CAN ] Life Sciences [q-bio]/Cancer ,Pyrimidine analogue ,chemistry.chemical_compound ,0302 clinical medicine ,HUMAN FIBROBLASTS ,Medicine and Health Sciences ,lcsh:Science ,Multidisciplinary ,Physics ,X-ray ,Nucleic acids ,Chemistry ,Oncology ,Cesium Radioisotopes ,030220 oncology & carcinogenesis ,Physical Sciences ,[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,Engineering and Technology ,HIGH-LET RADIATION ,Tumor Suppressor p53-Binding Protein 1 ,[CHIM.RADIO]Chemical Sciences/Radiochemistry ,[ CHIM.RADIO ] Chemical Sciences/Radiochemistry ,Elementary Particles ,Research Article ,Chemical Elements ,Iodine ,Clinical Oncology ,DNA repair ,DNA damage ,Cell Survival ,CELL LUNG-CANCER ,RTOG 86-12 ,Biophysics ,Radiation Therapy ,Equipment ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Radiation ,Animals ,Cell Line, Tumor ,Cell Survival/drug effects ,DNA Damage/drug effects ,Dose-Response Relationship, Radiation ,Humans ,Idoxuridine/pharmacology ,Kinetics ,Photons ,Radiation Tolerance/drug effects ,Radiation-Sensitizing Agents/pharmacology ,Rats ,Synchrotrons ,Tumor Suppressor p53-Binding Protein 1/metabolism ,X-Rays ,03 medical and health sciences ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,CHROMOSOME-DAMAGE ,Dosimetry ,Idoxuridine ,cancer, radioactivity, ionizing radiation, photons, radiotherapy, irradiation, radiosensitization, low-energy X-ray therapy ,[CHIM.RADIO] Chemical Sciences/Radiochemistry ,[ PHYS.PHYS.PHYS-MED-PH ] Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,medicine ,Genetics ,HALOGENATED PYRIMIDINES ,Irradiation ,Particle Physics ,[PHYS.PHYS.PHYS-MED-PH] Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,Biology and life sciences ,business.industry ,lcsh:R ,DNA ,Radiation therapy ,chemistry ,X-RAY ,lcsh:Q ,Clinical Medicine ,Particle Accelerators ,Nuclear medicine ,business ,ACTIVATION THERAPY - Abstract
International audience; Low-energy X-rays induce Auger cascades by photoelectric absorption in iodine present in the DNA of cells labeled with 5-iodo-2'-deoxyuridine (IUdR). This photoactivation therapy results in enhanced cellular sensitivity to radiation which reaches its maximum with 50 keV photons. Synchrotron core facilities are the only way to generate such monochromatic beams. However, these structures are not adapted for the routine treatment of patients. In this study, we generated two beams emitting photon energy means of 42 and 50 keV respectively, from a conventional 225 kV X-ray source. Viability assays performed after pre-exposure to 10 μM of IUdR for 48h suggest that complex lethal damage is generated after low energy photons irradiation compared to 137 Cs irradiation (662KeV). To further decipher the molecular mechanisms leading to IUdR-mediated radiosensitization, we analyzed the content of DNA damage-induced foci in two glioblastoma cell lines and showed that the decrease in survival under these conditions was correlated with an increase in the content of DNA damage-induced foci in cell lines. Moreover, the follow-up of repair kinetics of the induced double-strand breaks showed the maximum delay in cells labeled with IUdR and exposed to X-ray irradiation. Thus, there appears to be a direct relationship between the reduction of radiation survival parameters and the production of DNA damage with impaired repair of these breaks. These results further support the clinical potential use of a haloge-nated pyrimidine analog combined with low-energy X-ray therapy.
- Published
- 2017
- Full Text
- View/download PDF
39. Design of a synthetic luminescent probe from a biomolecule binding domain: selective detection of AU-rich mRNA sequences
- Author
-
Laurent Raibaut, Geoffrey D. Shimberg, William Vasseur, Sarah L. J. Michel, Olivier Sénèque, Christine Saint-Pierre, Jean-Luc Ravanat, Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland [Baltimore]-University of Maryland [Baltimore], Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), ANR-12-BS07-0012,LUMZIF,Doigts de zinc luminescents : vers des sondes optiques proche-infrarouge basées sur les lanthanides pour l'imagerie biologique du zinc(2012), ANR-11-LABX-0003,ARCANE,Grenoble, une chimie bio-motivée(2011), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
0301 basic medicine ,Zinc finger ,chemistry.chemical_classification ,Messenger RNA ,Tandem ,Chemistry ,Biomolecule ,[SDV]Life Sciences [q-bio] ,RNA ,Sequence (biology) ,Nanotechnology ,RNA-binding protein ,General Chemistry ,010402 general chemistry ,01 natural sciences ,Combinatorial chemistry ,0104 chemical sciences ,03 medical and health sciences ,030104 developmental biology ,Binding domain - Abstract
International audience; We report the design of a luminescent sensor based upon the zinc finger (ZF) protein TIS11d, that allows for the selective time-resolved detection of the UUAUUUAUU sequence of the 3 0-untranslated region of messenger RNA. This sensor is composed of the tandem ZF RNA binding domain of TIS11d functionalized with a luminescent Tb 3+ complex on one of the ZFs and a sensitizing antenna on the other. This work provides the proof of principle that an RNA binding protein can be re-engineered as an RNA sensor and, more generally, that tunable synthetic luminescent probes for biomolecules can be obtained by modifying biomolecule-binding domains.
- Published
- 2017
- Full Text
- View/download PDF
40. Ionizing radiation biomarkers in epidemiological studies – An update
- Author
-
Jean-Luc Ravanat, Mohammed Abderrafi Benotmane, Julia Hess, Eileen Pernot, Dominique Laurier, Bjorn Baselet, Olivier Laurent, Sarah Baatout, Mats Harms-Ringhdahl, Penny A. Jeggo, Grainne Manning, Maria Gomolka, Roel Quintens, Tamara V. Azizova, Horst Zitzelsberger, Catharine M L West, An Aerts, Yann Gueguen, Christophe Badie, Soile Tapio, Laure Sabatier, Eric Blanchardon, Natasa Anastasov, Omid Azimzadeh, Ellina Macaeva, Michaela Kreuzer, Janet Hall, Karine Tack, Elisabeth Cardis, Siamak Haghdoost, Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre for Genome Damage and Stability, University of Sussex, Translational Radiobiology Group, The University of Manchester, Department of Transitional Medicine, Oxford Road, Manchester, M13 9PL, Federal Office for Radiation Protection (BfS), Radiobiology Unit, Belgian Nuclear Research Centre, Public Health England [London], Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Helmholtz-Zentrum München (HZM), Southern Urals Biophysics Institute, Department of Biomedical Molecular Biology [Ghent], Universiteit Gent = Ghent University [Belgium] (UGENT), Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain = Catholic University of Louvain (UCL)-Université Catholique de Louvain = Catholic University of Louvain (UCL), Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University-The Wenner-Gren Institute, Stockholm University, Epidemiologie-Biostatistique [Bordeaux], Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux Ségalen [Bordeaux 2], Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique (CEA), DRF/PROCyTOX , Fontenay-aux-Roses , France., ommissariat à l'Energie Atomique (CEA), DRF/PROCyTOX , Fontenay-aux-Roses , France. Code (UMR, EA, ...), Center for Research in Environmental Epidemiology (CREAL), Universitat Pompeu Fabra [Barcelona] (UPF)-Catalunya ministerio de salud, European Project: 249689,EC:FP7:Fission,FP7-Fission-2009,DOREMI(2010), Bundesamt für Strahlenschutz - Federal Office for Radiation Protection (BfS), Helmholtz Zentrum München = German Research Center for Environmental Health, Universiteit Gent = Ghent University (UGENT), Stockholm University-Stockholm University, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
0301 basic medicine ,Oncology ,Adult ,Ionizing radiation ,medicine.medical_specialty ,Effects ,DNA Repair ,Health, Toxicology and Mutagenesis ,[SDV]Life Sciences [q-bio] ,Biology ,Radiation Dosage ,Exposure ,Toxicology ,03 medical and health sciences ,0302 clinical medicine ,Internal medicine ,Radiation, Ionizing ,Epidemiology ,Genetics ,medicine ,Humans ,Genetic Predisposition to Disease ,Low dose rate ,Stage (cooking) ,Child ,Paediatric patients ,Solid tumour ,Individual sensitivity ,Radiació ionitzant ,3. Good health ,030104 developmental biology ,030220 oncology & carcinogenesis ,Potential biomarkers ,Molecular epidemiology ,Marcadors bioquímics ,Biomarker (medicine) ,[CHIM.RADIO]Chemical Sciences/Radiochemistry ,Biomarkers ,Individual Sensitivity ,Ionizing Radiation ,Molecular Epidemiology ,DNA Damage - Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of
- Published
- 2017
- Full Text
- View/download PDF
41. Oxidative DNA damage and repair in the radioresistant archaeon Thermococcus gammatolerans
- Author
-
Ewa Barbier, Christine Saint-Pierre, Aurore Gorlas, Amine Hachemi, Arnaud Lagorce, Murielle Dutertre, Lucie Morand, Jean Armengaud, Jean-Luc Ravanat, Thierry Douki, Jean Breton, Didier Gasparutto, Fabrice Confalonieri, Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Interactions Hôtes-Pathogènes-Environnements (IHPE), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Perpignan Via Domitia (UPVD), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Innovations technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Médicaments et Technologies pour la Santé (MTS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Université de Perpignan Via Domitia (UPVD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
0301 basic medicine ,Proteomics ,DNA Repair ,Oxidative phosphorylation ,Biology ,Toxicology ,Radiation Tolerance ,Oxidative dna damage ,03 medical and health sciences ,chemistry.chemical_compound ,Radioresistance ,Irradiation ,030102 biochemistry & molecular biology ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Thermococcus gammatolerans ,General Medicine ,biology.organism_classification ,Thermococcus ,030104 developmental biology ,DNA, Archaeal ,Biochemistry ,chemistry ,Transcriptome ,Nucleoside ,Oxidation-Reduction ,DNA ,Bacteria ,DNA Damage - Abstract
International audience; The hyperthermophilic archaeon Thermococcus gammatolerans can resist huge doses of γ-irradiation, up to 5.0 kGy, without loss of viability. The potential to withstand such harsh conditions is probably due to complementary passive and active mechanisms, including repair of damaged chromosomes. In this work, we documented the formation and repair of oxidative DNA lesions in T. gammatolerans. The basal level of the oxidized nucleoside, 8-oxo-2′-deoxyguanosine (8-oxo-dGuo), was established at 9.2 (± 0.9) 8-oxo-dGuo per 106 nucleosides, a higher level than those usually measured in eukaryotic cells or bacteria. A significant increase in oxidative damage, i.e., up to 24.2 (± 8.0) 8-oxo-dGuo/106 nucleosides, was measured for T. gammatolerans exposed to a 5.0 kGy dose of γ-rays. Surprisingly, the yield of radiation-induced modifications was lower than those previously observed for human cells exposed to doses corresponding to a few grays. One hour after irradiation, 8-oxo-dGuo levels were significantly reduced, indicating an efficient repair. Two putative base excision repair (BER) enzymes, TGAM_1277 and TGAM_1653, were demonstrated both by proteomics and transcriptomics to be present in the cells without exposure to ionizing radiation. Their transcripts were moderately upregulated after gamma irradiation. After heterologous production and purification of these enzymes, biochemical assays based on electrophoresis and MALDI-TOF (matrix-assisted laser desorption ionization–time of flight) mass spectrometry indicated that both have a β-elimination cleavage activity. TGAM_1653 repairs 8-oxo-dGuo, whereas TGAM_1277 is also able to remove lesions affecting pyrimidines (1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd)). This work showed that in normal growth conditions or in the presence of a strong oxidative stress, T. gammatolerans has the potential to rapidly reduce the extent of DNA oxidation, with at least these two BER enzymes as bodyguards with distinct substrate ranges.
- Published
- 2016
- Full Text
- View/download PDF
42. Direct Oxidative Damage of Naked DNA Generated upon Absorption of UV Radiation by Nucleobases
- Author
-
Dimitra Markovitsi, Jean-Luc Ravanat, Thierry Douki, Akos Banyasz, Miguel Gomez-Mendoza, SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Biomolécules Excitées (DICO), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire Interactions, Dynamiques et Lasers (ex SPAM) (LIDyl), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interactions, Dynamiques et Lasers (ex SPAM) (LIDyl), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Dynamique et Interactions en phase Condensée (DICO)
- Subjects
0301 basic medicine ,Guanine ,DNA damage ,Ultraviolet Rays ,education ,Pyrimidine dimer ,010402 general chemistry ,Photochemistry ,01 natural sciences ,03 medical and health sciences ,chemistry.chemical_compound ,General Materials Science ,Photosensitizer ,Physical and Theoretical Chemistry ,Chromatography, High Pressure Liquid ,Rose Bengal ,Chemistry ,Singlet oxygen ,8-Hydroxy-2'-deoxyguanosine ,Deoxyguanosine ,DNA oxidation ,DNA ,3. Good health ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,030104 developmental biology ,8-Hydroxy-2'-Deoxyguanosine ,Oxidation-Reduction ,DNA Damage - Abstract
International audience; It has been shown that in addition to formation of pyrimidine dimers, UV irradiation of DNA in the absence of photosensitizer also induces formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine, but the mechanism of formation of that oxidized base has not been clearly established. In the present study, we provide an unambiguous demonstration that absorption of UVC and UVB radiation by the nucleobases induces DNA oxidation via a direct process (one-electron oxidation) and not singlet oxygen. Evidence arose from the fact that polyamine-guanine adducts that are specifically produced through the transient formation of guanine radical cation are generated following UV irradiation of DNA in the presence of a polyamine even in the absence of any photosensitizer.
- Published
- 2016
- Full Text
- View/download PDF
43. Epigenetic, histopathological and transcriptomic effects following exposure to depleted uranium in adult zebrafish and their progeny
- Author
-
Jean-Paul Bourdineaud, Virginie Camilleri, Kewin Gombeau, Christelle Adam-Guillermin, Isabelle Cavalie, Jean-Luc Ravanat, Olivier Armant, Magali Floriani, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Karlsruhe Institute of Technology (KIT), Laboratoire de Recherche commun IRSN-CNRS-Lille1 'Cinétique Chimique, Combustion, Réactivité' (C3R), Université de Lille, Sciences et Technologies-Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
0301 basic medicine ,Water Pollutants, Radioactive ,animal structures ,Embryo, Nonmammalian ,Health, Toxicology and Mutagenesis ,010501 environmental sciences ,Aquatic Science ,Eye ,01 natural sciences ,Epigenesis, Genetic ,Transcriptome ,Andrology ,03 medical and health sciences ,Myosin ,Gene expression ,Animals ,Epigenetics ,Muscle, Skeletal ,Zebrafish ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,biology ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Embryo ,Cell cycle ,biology.organism_classification ,Molecular biology ,030104 developmental biology ,Larva ,embryonic structures ,DNA methylation ,Uranium ,Female ,Water Pollutants, Chemical ,Photoreceptor Cells, Vertebrate - Abstract
This study investigated the effects of adult zebrafish exposure to a nominal concentration of 20μgL-1 of depleted uranium (DU) for six days upon DNA methylation, gene expression and the appearance of histopathological damage in their progeny. In the embryos at the 2-8 cell stage, the parental exposure induced significant DU accumulation, with levels seven times higher than those measured in the control embryos, but in larvae 96h post-fertilisation (hpf), uranium concentration had already returned to a level identical to that of the control larvae. A significant two-fold increase in the global level of DNA methylation was observed in embryos as early as the prim5 (24 hpf) stage and was still maintained at the 96 hpf stage despite the fact that DU had already been depurated at the later stage. RNA sequencing analysis indicated an impact of parental exposure upon the total RNAs transmitted from the mother to eggs, and the up-regulated genes were those associated with post-traductional protein modification and trafficking and cellular signalling pathways, whereas the down-regulated genes concerned the translational process, cell cycle regulation and several cell signalling pathways. Alterations of photoreceptor cells and the axon-axon junctions between photoreceptors were observed in the eyes of adult fish exposed for 10days to DU. Actin and myosin filament disorganisation was observed in the skeletal muscles of 96 hpf larvae, at a stage when the maternally transmitted DU had already been excreted. These data reveal the extreme sensitivity of zebrafish embryos to DU transmitted through the oocyte by exposed females.
- Published
- 2016
- Full Text
- View/download PDF
44. Near diffusion-controlled reaction of a Zn(Cys)
- Author
-
Vincent, Lebrun, Jean-Luc, Ravanat, Jean-Marc, Latour, and Olivier, Sénèque
- Subjects
Chemistry - Abstract
Reaction rate constants of HOCl with zinc-bound cysteines are determined, demonstrating that zinc fingers are potent targets for HOCl and may serve as HOCl sensors., Hypochlorous acid (HOCl) is one of the strongest oxidants produced in mammals to kill invading microorganisms. The bacterial response to HOCl involves proteins that are able to sense HOCl using methionine, free cysteines or zinc-bound cysteines of zinc finger sites. Although the reactivity of methionine or free cysteine with HOCl is well documented at the molecular level, this is not the case for zinc-bound cysteines. We present here a study that aims at filling this gap. Using a model peptide of the Zn(Cys)4 zinc finger site of the chaperone Hsp33, a protein involved in the defence against HOCl in bacteria, we show that HOCl oxidation of this model leads to the formation of two disulfides. A detailed mechanistic and kinetic study of this reaction, relying on stopped-flow measurements and competitive oxidation with methionine, reveals very high rate constants: the absolute second-order rate constants for the reaction of the model zinc finger with HOCl and its conjugated base ClO– are (9.3 ± 0.8) × 108 M–1 s–1 and (1.2 ± 0.2) × 104 M–1 s–1, the former approaching the diffusion limit. Revised values of the second-order rate constants for the reaction of methionine with HOCl and ClO– were also determined to be (5.5 ± 0.8) × 108 M–1 s–1 and (7 ± 5) × 102 M–1 s–1, respectively. At physiological pH, the zinc finger site reacts faster with HOCl than methionine and glutathione or cysteine. This study demonstrates that zinc fingers are potent targets for HOCl and confirms that they may serve as HOCl sensors as proposed for Hsp33.
- Published
- 2016
45. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages
- Author
-
Jean-Luc Ravanat, Thierry Rabilloud, Bastien Dalzon, Jean Marc Strub, Véronique Collin-Faure, Hélène Diemer, Marie Carrière, Alain Van Dorsselaer, Catherine Aude-Garcia, Sarah Cianférani, Protéomique, Métaux et Différenciation (ProMD ), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Spectrométrie de Masse BioOrganique [Strasbourg] (LSMBO), Département Sciences Analytiques et Interactions Ioniques et Biomoléculaires (DSA-IPHC), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Institut Pluridisciplinaire Hubert Curien (IPHC), and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Proteomics ,Cell signaling ,Proteome ,DNA damage ,Zirconium dioxide ,Biophysics ,02 engineering and technology ,MESH: Zinc Oxide ,Mitochondrion ,Biochemistry ,Cell Line ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,Phagocytosis ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Zinc oxide ,Animals ,MESH: Animals ,MESH: Mice ,Glutathione biosynthesis ,biology ,Macrophages ,MESH: Proteomics ,Methylglyoxal ,MESH: Macrophages ,021001 nanoscience & nanotechnology ,Aryl hydrocarbon receptor ,Methyglyoxal ,Mitochondria ,MESH: Cell Line ,Heme oxygenase ,MESH: Proteome ,030104 developmental biology ,chemistry ,Cell culture ,Cancer cell ,biology.protein ,Nanoparticles ,0210 nano-technology ,MESH: Nanoparticles - Abstract
The cellular responses of the J774 macrophage cell line to zinc oxide and zirconium oxide nanoparticles have been studied by a comparative quantitative, protein level based proteomic approach. The most prominent results have been validated by targeted approaches. These approaches have been carried out under culture conditions that stimulate mildly the aryl hydrocarbon receptor, thereby mimicking conditions that can be encountered in vivo in complex environments. The comparative approach with two nanoparticles allows to separate the common responses, which can be attributed to the phagocytosis event per se, from the response specific to each type of nanoparticles. The zinc-specific responses are the most prominent ones and include mitochondrial proteins too, but also signaling molecules such as MyD88, proteins associated with methylglyoxal detoxification (glyoxalase 2, aldose reductase) and deoxyribonucleotide hydrolases. The in cellulo inhibition of GAPDH by zinc was also documented, representing a possible source of methylglyoxal in the cells, leading to an increase in methylglyoxal-modified DNA bases. These observations may be mechanistically associated with the genotoxic effect of zinc and its selective effects on cancer cells.The responses of the murine J774 macrophage cell lines to two types of metallic oxide nanoparticles (zinc oxide and zirconium dioxide) were studied by a comparative 2D gel based approach. This allows sorting of shared responses from nanoparticle-specific responses. Zinc oxide nanoparticles induced specifically a strong decrease in the mitochondrial function, in phagocytosis and also an increase in the methylglyoxal-associated DNA damage, which may explain the well known genotoxicity of zinc. In conclusion, this study allows highlighting of pathways that may play an important role in the toxicity of the zinc oxide nanoparticles.
- Published
- 2016
- Full Text
- View/download PDF
46. Probing the reactivity of singlet oxygen with purines
- Author
-
Christophe Morell, Raymond Grüber, Yohann Moreau, Jean-Luc Ravanat, Elise Dumont, Emmanuelle Bignon, Antonio Monari, Laboratoire de Chimie - UMR5182 (LC), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chemometrics and theoretical chemistry. - Chimiométrie et chimie théorique, Institut des Sciences Analytiques (ISA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Lésions des Acides Nucléiques (LAN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC), Chemometrics and Theoretical Chemistry - Chimiométrie et chimie théorique, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Guanine ,chemistry.chemical_element ,Molecular Dynamics Simulation ,Biology ,010402 general chemistry ,Photochemistry ,7. Clean energy ,01 natural sciences ,Oxygen ,Nucleobase ,Adduct ,Molecular dynamics ,chemistry.chemical_compound ,Chemical Biology and Nucleic Acid Chemistry ,Genetics ,Reactivity (chemistry) ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Purine metabolism ,Singlet Oxygen ,010405 organic chemistry ,Singlet oxygen ,DNA ,Models, Theoretical ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,3. Good health ,0104 chemical sciences ,Biochemistry ,chemistry ,Purines ,Quantum Theory ,Oxidation-Reduction - Abstract
International audience; The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state.
- Published
- 2016
- Full Text
- View/download PDF
47. Chapter 20. Reactions of Singlet Oxygen with Nucleic Acids
- Author
-
Jean-Luc Ravanat, Jean Cadet, Paolo Di Mascio, and Thierry Douki
- Subjects
chemistry.chemical_classification ,chemistry.chemical_compound ,chemistry ,Guanine ,Singlet oxygen ,Nucleic acid ,RNA ,Nucleotide ,Oxidative phosphorylation ,Photochemistry ,DNA ,Nuclear DNA - Abstract
The chapter is aimed at providing an updated overview of the main available data on the oxidation of nucleic acids by singlet oxygen (1O2). Mechanistic insights into the selective oxidative pathways of guanine, the predominant DNA and RNA target, were gained from detailed model studies. These have also allowed identification of spiroiminodihydantoin and minor 8-oxo-7,8-dihydroguanine as the main decomposition products of nucleosides and nucleotides. Evidence has been provided that the latter guanine oxidation product and thionucleobases are also highly reactive to singlet oxygen. The 1O2 oxidation of isolated and cellular DNA and RNA is much more specific giving rise almost exclusively to 8-oxo-7,8-dihydroguanine though the intermediacy of 4,8-endoperoxide that subsequently rearranges into easily reducible 8-hydroperoxyguanine. It was also shown that 1O2 is not able to induce significant levels of strand breaks and/or alkali-labile sites in cellular DNA upon exposure to a chemical source of singlet oxygen. UVA irradiation of cells and human skin is able to oxidatively damage nuclear DNA as inferred from the measurement of 8-oxo-7,8-dihydroguanine. This has been rationalized in terms of the predominant implication of 1O2 produced by type-II photosensitization mechanism over Fenton-type reactions.
- Published
- 2016
- Full Text
- View/download PDF
48. COST Action CM1201 'Biomimetic Radical Chemistry': free radical chemistry successfully meets many disciplines
- Author
-
Jean-Luc Ravanat, Carla Ferreri, Ullrich Jahn, Bernard T. Golding, ISOF Bio Free Radicals, Consiglio Nazionale delle Ricerche [Bologna] (CNR), School of Chemistry [Newcastle], Newcastle University [Newcastle], Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB / CAS), Czech Academy of Sciences [Prague] (CAS), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Research groups ,Free Radicals ,Radical ,Nanotechnology ,Biochemistry ,phospholipid remodeling ,03 medical and health sciences ,Biomimetics ,membrane stress ,Humans ,Medicine ,Cost action ,bio-inspired synthetic methodologies ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Radical enzyme ,business.industry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Membrane stress ,DNA damage and repair ,General Medicine ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,030104 developmental biology ,biomimetic models ,Engineering ethics ,Working group ,business - Abstract
International audience; The COST Action CM1201 “Biomimetic Radical Chemistry” has been active since December 2012 for 4 years, developing research topics organized into four working groups: WG1 – Radical Enzymes, WG2 – Models of DNA damage and consequences, WG3 – Membrane stress, signalling and defenses, and WG4 – Bio-inspired synthetic strategies. International collaborations have been established among the participating 80 research groups with brilliant interdisciplinary achievements. Free radical research with a biomimetic approach has been realized in the COST Action and are summarized in this overview by the four WG leaders.
- Published
- 2016
- Full Text
- View/download PDF
49. Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the B-DNA Helix
- Author
-
Emmanuelle Bignon, Iñaki Tuñón, Elise Dumont, Christophe Morell, Raymond Grüber, Jean-Luc Ravanat, Juan Aranda, Laboratoire de Chimie - UMR5182 (LC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC), Chemometrics and Theoretical Chemistry - Chimiométrie et chimie théorique, Institut des Sciences Analytiques (ISA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Departamento de quimica fisica, Universitat de València (UV), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), We acknowledge the Pole Scientifique de Modelisations Numeriques (PSMN) for computational resources. We thank Dr. Antonio Monari for scientific discussions and assistance using Curves+. J.A. and I.T. acknowledge financial support from FEDER funds and the Ministerio de Economia y Competitividad (project CTQ2012-36253-C03-03) and the Generalitat Valenciana (ACOMP/2015/239). J.A. thanks the Ministerio de Economia y Competitividad for an FPI fellowship. This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of the Universite de Lyon within the program 'Investissements d'Avenir' (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR) and by the COST action CM1201 'Biomimetic Radical Chemistry'., ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Chemometrics and theoretical chemistry. - Chimiométrie et chimie théorique, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Guanine ,Base pair ,Molecular Dynamics Simulation ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Catalysis ,03 medical and health sciences ,Molecular dynamics ,chemistry.chemical_compound ,Polydeoxyribonucleotides ,Reactivity (chemistry) ,Base Pairing ,Singlet Oxygen ,Chemistry ,Singlet oxygen ,Organic Chemistry ,Solvation ,General Chemistry ,0104 chemical sciences ,030104 developmental biology ,Covalent bond ,Helix ,DNA, B-Form ,Oxidation-Reduction ,[CHIM.RADIO]Chemical Sciences/Radiochemistry - Abstract
International audience; Oxidatively generated DNA lesions are numerous and versatile, and have been the subject of intensive research since the discovery of 8-oxoguanine in 1984. Even for this prototypical lesion, the precise mechanism of formation remains elusive due to the inherent difficulties in characterizing high-energy intermediates. We have probed the stability of the guanine endoperoxide in B-DNA as a key intermediate and determined a unique activation free energy of around 6 kcal mol−1 for the formation of the first C−O covalent bond upon the attack of singlet molecular oxygen (1O2) on the central guanine of a solvated 13 base-pair poly(dG-dC), described by means of quantum mechanics/molecular mechanics (QM/MM) simulations. The B-helix remains stable upon oxidation in spite of the bulky character of the guanine endoperoxide. Our modeling study has revealed the nature of the versatile 1O2 attack in terms of free energy and shows a sensitivity to electrostatics and solvation as it involves a charge-separated intermediate.
- Published
- 2016
- Full Text
- View/download PDF
50. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity
- Author
-
Jean-Luc Ravanat, Martin Clémancey, Yohann Moreau, Farhad Forouhar, Mohamed G. Atta, Jean-Marc Latour, Etienne Mulliez, Nicolas Duraffourg, Serge Gambarelli, Thibaut Molle, Vincent Fourmond, Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Department of Biological Sciences, Columbia University, New York, New York, USA., Columbia University [New York], Northeast Structural Genomics Consortium, Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Bioénergétique et Ingénierie des Protéines (BIP ), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
- Subjects
Iron-Sulfur Proteins ,0301 basic medicine ,S-Adenosylmethionine ,Reaction mechanism ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Chemical reaction ,Redox ,Catalysis ,Cofactor ,law.invention ,03 medical and health sciences ,law ,Cluster (physics) ,Molecule ,[CHIM]Chemical Sciences ,Electron paramagnetic resonance ,biology ,Chemistry ,Escherichia coli Proteins ,Spectrum Analysis ,0104 chemical sciences ,3. Good health ,Crystallography ,030104 developmental biology ,Sulfurtransferases ,Mutagenesis, Site-Directed ,biology.protein ,Density functional theory ,Oxidation-Reduction - Abstract
International audience; RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron–sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS– ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.