1. Nanolabyrinthine ZrAlN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases
- Author
-
Naureen Ghafoor, Lars J. S. Johnson, Dmitri O. Klenov, Jelly Demeulemeester, Patrick Desjardins, Ivan Petrov, Lars Hultman, and Magnus Odén
- Subjects
Biotechnology ,TP248.13-248.65 ,Physics ,QC1-999 - Abstract
Self-organization on the nanometer scale is a trend in materials research. Thermodynamic driving forces may, for example, yield chessboard patterns in metal alloys [Y. Ni and A. G. Khachaturyan, Nature Mater. 8, 410–414 (2009)]10.1038/nmat2431 or nitrides [P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, and C. Mitterer, Appl. Phys. Lett. 83, 2049 (2003)]10.1063/1.1608464 during spinodal decomposition. Here, we explore the ZrN-AlN system, which has one of the largest positive enthalpies of mixing among the transition metal aluminum nitrides [D. Holec, R. Rachbauer, L. Chen, L. Wang, D. Luefa, and P. H. Mayrhofer, Surf. Coat. Technol. 206, 1698–1704 (2011)10.1016/j.surfcoat.2011.09.019; B. Alling, A. Karimi, and I. Abrikosov, Surf. Coat. Technol. 203, 883–886 (2008)]10.1016/j.surfcoat.2008.08.027. Surprisingly, a highly regular superhard (36 GPa) two-dimensional nanolabyrinthine structure of two intergrown single crystal phases evolves during magnetron sputter thin film synthesis of Zr0.64Al0.36N/MgO(001). The self-organization is surface driven and the synergistic result of kinetic limitations, where the enthalpy reduction balances both investments in interfacial and elastic energies.
- Published
- 2013
- Full Text
- View/download PDF