36 results on '"Jensen OP"'
Search Results
2. Winter distribution of blue crab Callinectes sapidus in Chesapeake Bay: application and cross-validation of a two-stage generalized additive model
- Author
-
Jensen, OP, primary, Seppelt, R, additional, Miller, TJ, additional, and Bauer, LJ, additional
- Published
- 2005
- Full Text
- View/download PDF
3. Testing food web theory in a large lake: The role of body size in habitat coupling in Lake Michigan.
- Author
-
Maitland BM, Bootsma HA, Bronte CR, Bunnell DB, Feiner ZS, Fenske KH, Fetzer WW, Foley CJ, Gerig BS, Happel A, Höök TO, Keppeler FW, Kornis MS, Lepak RF, McNaught AS, Roth BM, Turschak BA, Hoffman JC, and Jensen OP
- Subjects
- Animals, Models, Biological, Michigan, Food Chain, Lakes, Body Size
- Abstract
The landscape theory of food web architecture (LTFWA) describes relationships among body size, trophic position, mobility, and energy channels that serve to couple heterogenous habitats, which in turn promotes long-term system stability. However, empirical tests of the LTFWA are rare and support differs among terrestrial, freshwater, and marine systems. Further, it is unclear whether the theory applies in highly altered ecosystems dominated by introduced species such as the Laurentian Great Lakes. Here, we provide an empirical test of the LTFWA by relating body size, trophic position, and the coupling of different energy channels using stable isotope data from species throughout the Lake Michigan food web. We found that body size was positively related to trophic position, but for a given trophic position, organisms predominately supported by pelagic energy had smaller body sizes than organisms predominately supported by nearshore benthic energy. We also found a hump-shaped trophic relationship in the food web where there is a gradual increase in the coupling of pelagic and nearshore energy channels with larger body sizes as well as higher trophic positions. This highlights the important role of body size and connectivity among habitats in structuring food webs. However, important deviations from expectations are suggestive of how species introductions and other anthropogenic impacts can affect food web structure in large lakes. First, native top predators appear to be flexible couplers that may provide food web resilience, whereas introduced top predators may confer less stability when they specialize on a single energy pathway. Second, some smaller bodied prey fish and invertebrates, in addition to mobile predators, coupled energy from pelagic and nearshore energy channels, which suggests that some prey species may also be important integrators of energy pathways in the system. We conclude that patterns predicted by the LTFWA are present in the face of species introductions and other anthropogenic stressors to a degree, but time-series evaluations are needed to fully understand the mechanisms that promote stability., (© 2024 The Author(s). Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
- Published
- 2024
- Full Text
- View/download PDF
4. The ocean's disappearing giants Kings of Their Own Ocean: Tuna, Obsession, and the Future of Our Seas Karen Pinchin Dutton, 2023. 320 pp.
- Author
-
Jensen OP
- Abstract
A journalist documents the struggle to catch, tag, and restore populations of Atlantic bluefin tuna.
- Published
- 2023
- Full Text
- View/download PDF
5. Shrinking body size and climate warming: Many freshwater salmonids do not follow the rule.
- Author
-
Solokas MA, Feiner ZS, Al-Chokachy R, Budy P, DeWeber JT, Sarvala J, Sass GG, Tolentino SA, Walsworth TE, and Jensen OP
- Subjects
- Animals, Fishes, Climate Change, Temperature, Fresh Water, Body Size, Salmonidae
- Abstract
Declining body size is believed to be a universal response to climate warming and has been documented in numerous studies of marine and anadromous fishes. The Salmonidae are a family of coldwater fishes considered to be among the most sensitive species to climate warming; however, whether the shrinking body size response holds true for freshwater salmonids has yet to be examined at a broad spatial scale. We compiled observations of individual fish lengths from long-term surveys across the Northern Hemisphere for 12 species of freshwater salmonids and used linear mixed models to test for spatial and temporal trends in body size (fish length) spanning recent decades. Contrary to expectations, we found a significant increase in length overall but with high variability in trends among populations and species. More than two-thirds of the populations we examined increased in length over time. Secondary regressions revealed larger-bodied populations are experiencing greater increases in length than smaller-bodied populations. Mean water temperature was weakly predictive of changes in body length but overall minimal influences of environmental variables suggest that it is difficult to predict an organism's response to changing temperatures by solely looking at climatic factors. Our results suggest that declining body size is not universal, and the response of fishes to climate change may be largely influenced by local factors. It is important to know that we cannot assume the effects of climate change are predictable and negative at a large spatial scale., (© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
6. Quantifying fish range shifts across poorly defined management boundaries.
- Author
-
Palacios-Abrantes J, Crosson S, Dumas C, Fujita R, Levine A, Longo C, and Jensen OP
- Subjects
- Animals, Fisheries, Climate Change, Seasons, Acclimatization, Conservation of Natural Resources methods, Fishes, Bass, Flounder
- Abstract
Management regimes of marine resources that rely on spatial boundaries might be poorly adapted to climate change shifts in species distributions. This is of specific concern for the management of fish stocks that cross management jurisdictions, known as shared stocks. Transitioning to dynamic rules in spatial management has been suggested as a solution for mismatches between species distributions and the spatial boundaries. However, in many cases spatial boundaries are not clearly drawn, hampering such transitions. Here, we use black sea bass (Centropristis striata), summer flounder (Paralichthys dentatus) and scup (Stenotomus chrysops) as case studies to explore different approaches to designing spatial regulatory units to facilitate the adaptation of fisheries management to shifting distributions of shared stocks. First, we determine the yearly distribution of each stock within the United States Exclusive Economic Zone from 1951 to 2019 during Fall and Spring sampling seasons. Second, we explore two approaches for drawing regulatory units based on state waters and historical landings. Finally, we estimate each state's proportion of the stock's distribution and compare historical and recent values. We show that the distribution of all three stocks has changed relative to the years used to determine the current quota allocation across states, with an overall gain for central-northern states at the expense of the southernmost states. In terms of the distribution of allocation, we find that, while seasonal differences exist, the biggest differences in the proportion of the stock spatial distribution attributed to each state come from the method for designing regulatory units. Here, we show that the method used to define allocation units can have meaningful impacts on resulting adaptive policy. As climate change-driven conflicts in fishing resource allocation are expected to increase and deepen around the world, we provide a replicable approach to make an informed and transparent choice to support data-driven decision-making., Competing Interests: The authors have declared that no competing interests exist., (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
- Published
- 2023
- Full Text
- View/download PDF
7. Early impacts of the largest Amazonian hydropower project on fish communities.
- Author
-
Keppeler FW, Andrade MC, Trindade PAA, Sousa LM, Arantes CC, Winemiller KO, Jensen OP, and Giarrizzo T
- Subjects
- Animals, Biodiversity, Ecosystem, Fresh Water, Phylogeny, Fishes, Rivers
- Abstract
Hydropower is a threat to freshwater fishes. Despite a recent boom in dam construction, few studies have assessed their impact on mega-diverse tropical rivers. Using a before-after study design, we investigated the early impacts of the Belo Monte hydroelectric complex, the third-largest hydropower project in the world, on fishes of the Xingu River, a major clear-water tributary of the lower Amazon. We explored impacts across different river sectors (upstream, reservoir, reduced flow sector, and downstream) and spatial scales (individual sectors vs. all sectors combined) using joint species distribution models and different facets of diversity (taxonomic, functional, and phylogenetic). After 5 years of the Belo Monte operation, species richness declined ~12% in lentic and ~16% in lotic environments. Changes in abundance were of less magnitude (<4%). Effects were particularly negative for species of the families Serrasalmidae (mainly pacus), Anostomidae (headstanders), Auchenipteridae, and Pimelodidae (catfishes), whereas no taxonomic group consistently increased in richness or abundance. The reservoir and downstream sectors were the most impacted, with declines of ~24-29% in fish species richness, overall reductions in fish body size and trophic level, and a change in average body shape. Richness and abundance also declined in the reduced river flow, and changes in size, shape, and position of fins were observed. Relatively minor changes were found in the upstream sector. Variation in functional and phylogenetic diversity following river impoundment was subtle; however, across sectors, we found a reduction in functional divergence, indicating a decline in the abundance of species located near the extremities of community functional space. This may be the first sign of an environmental filtering process reducing functional diversity in the region. Greater changes in flow and habitats are expected as hydropower operations ramp up, and continued monitoring is warranted to understand the full scope and magnitude of ecological impacts., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
8. WTO must ban harmful fisheries subsidies.
- Author
-
Sumaila UR, Skerritt DJ, Schuhbauer A, Villasante S, Cisneros-Montemayor AM, Sinan H, Burnside D, Abdallah PR, Abe K, Addo KA, Adelsheim J, Adewumi IJ, Adeyemo OK, Adger N, Adotey J, Advani S, Afrin Z, Aheto D, Akintola SL, Akpalu W, Alam L, Alava JJ, Allison EH, Amon DJ, Anderies JM, Anderson CM, Andrews E, Angelini R, Anna Z, Antweiler W, Arizi EK, Armitage D, Arthur RI, Asare N, Asche F, Asiedu B, Asuquo F, Badmus L, Bailey M, Ban N, Barbier EB, Barley S, Barnes C, Barrett S, Basurto X, Belhabib D, Bennett E, Bennett NJ, Benzaken D, Blasiak R, Bohorquez JJ, Bordehore C, Bornarel V, Boyd DR, Breitburg D, Brooks C, Brotz L, Campbell D, Cannon S, Cao L, Cardenas Campo JC, Carpenter S, Carpenter G, Carson RT, Carvalho AR, Castrejón M, Caveen AJ, Chabi MN, Chan KMA, Chapin FS, Charles T, Cheung W, Christensen V, Chuku EO, Church T, Clark C, Clarke TM, Cojocaru AL, Copeland B, Crawford B, Crépin AS, Crowder LB, Cury P, Cutting AN, Daily GC, Da-Rocha JM, Das A, de la Puente S, de Zeeuw A, Deikumah SKS, Deith M, Dewitte B, Doubleday N, Duarte CM, Dulvy NK, Eddy T, Efford M, Ehrlich PR, Elsler LG, Fakoya KA, Falaye AE, Fanzo J, Fitzsimmons C, Flaaten O, Florko KRN, Aviles MF, Folke C, Forrest A, Freeman P, Freire KMF, Froese R, Frölicher TL, Gallagher A, Garcon V, Gasalla MA, Gephart JA, Gibbons M, Gillespie K, Giron-Nava A, Gjerde K, Glaser S, Golden C, Gordon L, Govan H, Gryba R, Halpern BS, Hanich Q, Hara M, Harley CDG, Harper S, Harte M, Helm R, Hendrix C, Hicks CC, Hood L, Hoover C, Hopewell K, Horta E Costa BB, Houghton JDR, Iitembu JA, Isaacs M, Isahaku S, Ishimura G, Islam M, Issifu I, Jackson J, Jacquet J, Jensen OP, Ramon JJ, Jin X, Jonah A, Jouffray JB, Juniper SK, Jusoh S, Kadagi I, Kaeriyama M, Kaiser MJ, Kaiser BA, Kakujaha-Matundu O, Karuaihe ST, Karumba M, Kemmerly JD, Khan AS, Kimani P, Kleisner K, Knowlton N, Kotowicz D, Kurien J, Kwong LE, Lade S, Laffoley D, Lam ME, Lam VWL, Lange GM, Latif MT, Le Billon P, Le Brenne V, Le Manach F, Levin SA, Levin L, Limburg KE, List J, Lombard AT, Lopes PFM, Lotze HK, Mallory TG, Mangar RS, Marszalec D, Mattah P, Mayorga J, McAusland C, McCauley DJ, McLean J, McMullen K, Meere F, Mejaes A, Melnychuk M, Mendo J, Micheli F, Millage K, Miller D, Mohamed KS, Mohammed E, Mokhtar M, Morgan L, Muawanah U, Munro GR, Murray G, Mustafa S, Nayak P, Newell D, Nguyen T, Noack F, Nor AM, Nunoo FKE, Obura D, Okey T, Okyere I, Onyango P, Oostdijk M, Orlov P, Österblom H, Owens D, Owens T, Oyinlola M, Pacoureau N, Pakhomov E, Abrantes JP, Pascual U, Paulmier A, Pauly D, Pèlèbè ROE, Peñalosa D, Pennino MG, Peterson G, Pham TTT, Pinkerton E, Polasky S, Polunin NVC, Prah E, Ramírez J, Relano V, Reygondeau G, Robadue D, Roberts C, Rogers A, Roumbedakis K, Sala E, Scheffer M, Segerson K, Seijo JC, Seto KC, Shogren JF, Silver JJ, Singh G, Soszynski A, Splichalova DV, Spring M, Stage J, Stephenson F, Stewart BD, Sultan R, Suttle C, Tagliabue A, Tall A, Talloni-Álvarez N, Tavoni A, Taylor DRF, Teh LSL, Teh LCL, Thiebot JB, Thiele T, Thilsted SH, Thumbadoo RV, Tigchelaar M, Tol RSJ, Tortell P, Troell M, Uzmanoğlu MS, van Putten I, van Santen G, Villaseñor-Derbez JC, Wabnitz CCC, Walsh M, Walsh JP, Wambiji N, Weber EU, Westley F, Williams S, Wisz MS, Worm B, Xiao L, Yagi N, Yamazaki S, Yang H, and Zeller D
- Published
- 2021
- Full Text
- View/download PDF
9. Hierarchical genetic structure and implications for conservation of the world's largest salmonid, Hucho taimen.
- Author
-
Galland LM, Simmons JB, Jahner JP, Luzuriaga-Neira AR, Sloat MR, Chandra S, Hogan Z, Jensen OP, and Parchman TL
- Subjects
- Animals, Biological Evolution, Conservation of Natural Resources, Mongolia, Phylogeography, Rivers, Russia, Animal Distribution, Endangered Species, Genetic Variation, Salmonidae genetics
- Abstract
Population genetic analyses can evaluate how evolutionary processes shape diversity and inform conservation and management of imperiled species. Taimen (Hucho taimen), the world's largest freshwater salmonid, is threatened, endangered, or extirpated across much of its range due to anthropogenic activity including overfishing and habitat degradation. We generated genetic data using high throughput sequencing of reduced representation libraries for taimen from multiple drainages in Mongolia and Russia. Nucleotide diversity estimates were within the range documented in other salmonids, suggesting moderate diversity despite widespread population declines. Similar to other recent studies, our analyses revealed pronounced differentiation among the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical isolation among these systems. However, we found evidence for finer-scale structure within the Pacific drainages, including unexpected differentiation between tributaries and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins together with coalescent-based demographic modeling suggests the ancestors of Tugur tributary taimen likely diverged in the eastern Amur basin, prior to eventual colonization of the Tugur basin. Our results suggest the potential for differentiation of taimen at different geographic scales, and suggest more thorough geographic and genomic sampling may be needed to inform conservation and management of this iconic salmonid., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
10. Evaluating impacts of forage fish abundance on marine predators.
- Author
-
Free CM, Jensen OP, and Hilborn R
- Subjects
- Animals, Conservation of Natural Resources, Fisheries, Fishes, Predatory Behavior, Ecosystem, Food Chain
- Abstract
Forage fish-small, low trophic level, pelagic fish such as herrings, sardines, and anchovies-are important prey species in marine ecosystems and also support large commercial fisheries. In many parts of the world, forage fish fisheries are managed using precautionary principles that target catch limits below the maximum sustainable yield. However, there are increasing calls to further limit forage fish catch to safeguard their fish, seabird, and marine mammal predators. The effectiveness of these extra-precautionary regulations, which assume that increasing prey abundance increases predator productivity, are under debate. In this study, we used prey-linked population models to measure the influence of forage fish abundance on the population growth rates of 45 marine predator populations representing 32 fish, seabird, and mammal species from 5 regions around the world. We used simulated data to confirm the ability of the statistical model to accurately detect prey influences under varying levels of influence strength and process variability. Our results indicate that predator productivity was rarely influenced by the abundance of their forage fish prey. Only 6 predator populations (13% of the total) were positively influenced by increasing prey abundance and the model exhibited high power to detect prey influences when they existed. These results suggest that additional limitation of forage fish harvest to levels well below sustainable yields would rarely result in detectable increases in marine predator populations., (© 2021 Society for Conservation Biology.)
- Published
- 2021
- Full Text
- View/download PDF
11. Global hotspots of coherent marine fishery catches.
- Author
-
Ong JJL, Walter JA, Jensen OP, and Pinsky ML
- Subjects
- Animals, Biomass, Conservation of Natural Resources, Humans, Indian Ocean, Ecosystem, Fisheries
- Abstract
Although different fisheries can be tightly linked to each other by human and ecosystem processes, they are often managed independently. Synchronous fluctuations among fish populations or fishery catches can destabilize ecosystems and economies, respectively, but the degree of synchrony around the world remains unclear. We analyzed 1,092 marine fisheries catch time series over 60 yr to test for the presence of coherence, a form of synchrony that allows for phase-lagged relationships. We found that nearly every fishery was coherent with at least one other fishery catch time series globally and that coherence was strongest in the northeast Atlantic, western central Pacific, and eastern Indian Ocean. Analysis of fish biomass and fishing mortality time series from these hotspots revealed that coherence in biomass or fishing mortality were both possible, though biomass coherence was more common. Most of these relationships were synchronous with no time lags, and across catches in all regions, synchrony was a better predictor of regional catch portfolio effects than catch diversity. Regions with higher synchrony had lower stability in aggregate fishery catches, which can have negative consequences for food security and economic wealth., (© 2021 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of Ecological Society of America.)
- Published
- 2021
- Full Text
- View/download PDF
12. Adaptation and resilience of commercial fishers in the Northeast United States during the early stages of the COVID-19 pandemic.
- Author
-
Smith SL, Golden AS, Ramenzoni V, Zemeckis DR, and Jensen OP
- Subjects
- COVID-19 epidemiology, Humans, New England, COVID-19 economics, Conservation of Natural Resources economics, Fisheries economics, Income, Pandemics economics, SARS-CoV-2
- Abstract
Commercial fisheries globally experienced numerous and significant perturbations during the early months of the COVID-19 pandemic, affecting the livelihoods of millions of fishers worldwide. In the Northeast United States, fishers grappled with low prices and disruptions to export and domestic markets, leaving many tied to the dock, while others found ways to adapt to the changing circumstances brought about by the pandemic. This paper investigates the short-term impacts of the early months of the COVID-19 pandemic (March-June 2020) on commercial fishers in the Northeast U.S. to understand the effects of the pandemic on participation in the fishery and fishers' economic outcomes, using data collected from an online survey of 258 Northeast U.S. commercial fishers. This research also assesses characteristics of those fishers who continued fishing and their adaptive strategies to the changing circumstances. Analysis of survey responses found the majority of fishers continued fishing during the early months of the pandemic, while a significant number had stopped fishing. Nearly all reported a loss of income, largely driven by disruptions of export markets, the loss of restaurant sales, and a resulting decline in seafood prices. Landings data demonstrate that while fishing pressure in 2020 was reduced for some species, it remained on track with previous years for others. Fishers reported engaging in a number of adaptation strategies, including direct sales of seafood, switching species, and supplementing their income with government payments or other sources of income. Many fishers who had stopped fishing indicated plans to return, suggesting refraining from fishing as a short-term adaptation strategy, rather than a plan to permanently stop fishing. Despite economic losses, fishers in the Northeast U.S. demonstrated resilience in the face of the pandemic by continuing to fish and implementing other adaptation strategies rather than switching to other livelihoods., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
13. Effective fisheries management instrumental in improving fish stock status.
- Author
-
Hilborn R, Amoroso RO, Anderson CM, Baum JK, Branch TA, Costello C, de Moor CL, Faraj A, Hively D, Jensen OP, Kurota H, Little LR, Mace P, McClanahan T, Melnychuk MC, Minto C, Osio GC, Parma AM, Pons M, Segurado S, Szuwalski CS, Wilson JR, and Ye Y
- Subjects
- Animals, Biomass, Food Supply, Humans, Conservation of Natural Resources, Fisheries, Fishes growth & development
- Abstract
Marine fish stocks are an important part of the world food system and are particularly important for many of the poorest people of the world. Most existing analyses suggest overfishing is increasing, and there is widespread concern that fish stocks are decreasing throughout most of the world. We assembled trends in abundance and harvest rate of stocks that are scientifically assessed, constituting half of the reported global marine fish catch. For these stocks, on average, abundance is increasing and is at proposed target levels. Compared with regions that are intensively managed, regions with less-developed fisheries management have, on average, 3-fold greater harvest rates and half the abundance as assessed stocks. Available evidence suggests that the regions without assessments of abundance have little fisheries management, and stocks are in poor shape. Increased application of area-appropriate fisheries science recommendations and management tools are still needed for sustaining fisheries in places where they are lacking., Competing Interests: Competing interest statement: All authors are involved in fisheries management or provide fisheries advice in ways that can be viewed as competing interests. Many are employed by national fisheries agencies or nongovernmental organizations that advocate for specific fisheries policies. The academic scientists have received funding from sources that include government fisheries agencies, fishing companies, and environmental nongovernmental organizations., (Copyright © 2020 the Author(s). Published by PNAS.)
- Published
- 2020
- Full Text
- View/download PDF
14. Pesticide impacts through aquatic food webs.
- Author
-
Jensen OP
- Subjects
- Fisheries, Neonicotinoids, Rivers, Food Chain, Pesticides
- Published
- 2019
- Full Text
- View/download PDF
15. Response to Comment on "Impacts of historical warming on marine fisheries production".
- Author
-
Free CM, Thorson JT, Pinsky ML, Oken KL, Wiedenmann J, and Jensen OP
- Subjects
- Population Dynamics, Temperature, Fisheries
- Abstract
Szuwalski argues that varying age structure can affect surplus production and that recruitment is a better metric of productivity. We explain how our null model controlled for age structure and other processes as explanations for the temperature-production relationship. Surplus production includes growth, recruitment, and other processes and provides a more complete description of food production impacts than does recruitment alone., (Copyright © 2019, American Association for the Advancement of Science.)
- Published
- 2019
- Full Text
- View/download PDF
16. Can drones be used to conduct water sampling in aquatic environments? A review.
- Author
-
Lally HT, O'Connor I, Jensen OP, and Graham CT
- Abstract
Advancements in drone technology have seen the development of drone-assisted water sampling payloads resulting in the ability of drones to retrieve water samples and physico-chemical data from aquatic ecosystems. The application of drones for water sampling provides the potential to fulfil many aspects of the biological and physico-chemical sampling required to meet large-scale water sampling programmes. This paper reviews the achievements made in the development of drone platforms; advances in specially designed water sampling payloads; advances in incorporating off-the-shelf probes and the ability of drone-assisted water sampling payloads to capture water and physico-chemical data from freshwater environments. However, drone-assisted water sampling is still in its infancy and several key limitations include the small volume of water captured via drones to date, the low rate of successful sample capture and the legislative restrictions limiting the distance drones can be flown from the operator. Of critical importance, however, are the clear inconsistencies observed between water chemical parameters obtained using drone-assisted and traditional water sampling methods. Consequently, water samples and physico-chemical data obtained using drones may not provide the level of reliability and accuracy needed to meet the needs of large-scale water sampling programmes. Solutions aimed at addressing these limitations and developing the potential of drones to conduct water samples include: modifying larger drones with greater payload capacity, facilitating the capture of greater volumes of water; technological developments to increase success rates of water capture; planning fieldwork for operation beyond visual line of sight (BVLOS); employing real-time physico-chemical probes; and integrating robust statistical experimental designs. In addition, detailed cost benefit analyses are required to investigate if drones would result in a meaningful financial saving to water sampling programmes. However, it is envisaged that drone-assisted water sampling will act as a pivotal supporting tool if such current limitations can be addressed by future research., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
17. Opinion: Governing the recreational dimension of global fisheries.
- Author
-
Arlinghaus R, Abbott JK, Fenichel EP, Carpenter SR, Hunt LM, Alós J, Klefoth T, Cooke SJ, Hilborn R, Jensen OP, Wilberg MJ, Post JR, and Manfredo MJ
- Subjects
- Animals, Fishes, Recreation, Seafood, Fisheries ethics
- Abstract
Competing Interests: The authors declare no conflict of interest.
- Published
- 2019
- Full Text
- View/download PDF
18. Impacts of historical warming on marine fisheries production.
- Author
-
Free CM, Thorson JT, Pinsky ML, Oken KL, Wiedenmann J, and Jensen OP
- Subjects
- Animals, Ecosystem, Fishes, Models, Theoretical, Population Dynamics, Temperature, Climate Change, Fisheries
- Abstract
Climate change is altering habitats for marine fishes and invertebrates, but the net effect of these changes on potential food production is unknown. We used temperature-dependent population models to measure the influence of warming on the productivity of 235 populations of 124 species in 38 ecoregions. Some populations responded significantly positively ( n = 9 populations) and others responded significantly negatively ( n = 19 populations) to warming, with the direction and magnitude of the response explained by ecoregion, taxonomy, life history, and exploitation history. Hindcasts indicate that the maximum sustainable yield of the evaluated populations decreased by 4.1% from 1930 to 2010, with five ecoregions experiencing losses of 15 to 35%. Outcomes of fisheries management-including long-term food provisioning-will be improved by accounting for changing productivity in a warmer ocean., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
19. A novel framework for analyzing conservation impacts: evaluation, theory, and marine protected areas.
- Author
-
Mascia MB, Fox HE, Glew L, Ahmadia GN, Agrawal A, Barnes M, Basurto X, Craigie I, Darling E, Geldmann J, Gill D, Holst Rice S, Jensen OP, Lester SE, McConney P, Mumby PJ, Nenadovic M, Parks JE, Pomeroy RS, and White AT
- Subjects
- Animals, Aquatic Organisms classification, Aquatic Organisms physiology, Conservation of Natural Resources economics, Conservation of Natural Resources legislation & jurisprudence, Environmental Policy economics, Environmental Policy legislation & jurisprudence, Humans, Marine Biology economics, Marine Biology legislation & jurisprudence, Models, Theoretical, Socioeconomic Factors, Biodiversity, Conservation of Natural Resources methods, Ecosystem, Marine Biology methods
- Abstract
Environmental conservation initiatives, including marine protected areas (MPAs), have proliferated in recent decades. Designed to conserve marine biodiversity, many MPAs also seek to foster sustainable development. As is the case for many other environmental policies and programs, the impacts of MPAs are poorly understood. Social-ecological systems, impact evaluation, and common-pool resource governance are three complementary scientific frameworks for documenting and explaining the ecological and social impacts of conservation interventions. We review key components of these three frameworks and their implications for the study of conservation policy, program, and project outcomes. Using MPAs as an illustrative example, we then draw upon these three frameworks to describe an integrated approach for rigorous empirical documentation and causal explanation of conservation impacts. This integrated three-framework approach for impact evaluation of governance in social-ecological systems (3FIGS) accounts for alternative explanations, builds upon and advances social theory, and provides novel policy insights in ways that no single approach affords. Despite the inherent complexity of social-ecological systems and the difficulty of causal inference, the 3FIGS approach can dramatically advance our understanding of, and the evidentiary basis for, effective MPAs and other conservation initiatives., (© 2017 New York Academy of Sciences.)
- Published
- 2017
- Full Text
- View/download PDF
20. Capacity shortfalls hinder the performance of marine protected areas globally.
- Author
-
Gill DA, Mascia MB, Ahmadia GN, Glew L, Lester SE, Barnes M, Craigie I, Darling ES, Free CM, Geldmann J, Holst S, Jensen OP, White AT, Basurto X, Coad L, Gates RD, Guannel G, Mumby PJ, Thomas H, Whitmee S, Woodley S, and Fox HE
- Subjects
- Animals, Aquatic Organisms, Biomass, Conservation of Natural Resources economics, Conservation of Natural Resources trends, Ecology economics, Fishes, Goals, Internationality, Population Dynamics, Workforce, Conservation of Natural Resources methods, Conservation of Natural Resources statistics & numerical data, Ecology organization & administration
- Abstract
Marine protected areas (MPAs) are increasingly being used globally to conserve marine resources. However, whether many MPAs are being effectively and equitably managed, and how MPA management influences substantive outcomes remain unknown. We developed a global database of management and fish population data (433 and 218 MPAs, respectively) to assess: MPA management processes; the effects of MPAs on fish populations; and relationships between management processes and ecological effects. Here we report that many MPAs failed to meet thresholds for effective and equitable management processes, with widespread shortfalls in staff and financial resources. Although 71% of MPAs positively influenced fish populations, these conservation impacts were highly variable. Staff and budget capacity were the strongest predictors of conservation impact: MPAs with adequate staff capacity had ecological effects 2.9 times greater than MPAs with inadequate capacity. Thus, continued global expansion of MPAs without adequate investment in human and financial capacity is likely to lead to sub-optimal conservation outcomes.
- Published
- 2017
- Full Text
- View/download PDF
21. Is Exposure to Macondo Oil Reflected in the Otolith Chemistry of Marsh-Resident Fish?
- Author
-
López-Duarte PC, Fodrie FJ, Jensen OP, Whitehead A, Galvez F, Dubansky B, and Able KW
- Subjects
- Animals, Nickel analysis, Otolithic Membrane chemistry, Otolithic Membrane metabolism, Petroleum Pollution, Salinity, Seasons, Temperature, Trace Elements analysis, Vanadium analysis, Fundulidae metabolism, Otolithic Membrane drug effects, Petroleum toxicity
- Abstract
Genomic and physiological responses in Gulf killifish (Fundulus grandis) in the northern Gulf of Mexico have confirmed oil exposure of resident marsh fish following the Macondo blowout in 2010. Using these same fish, we evaluated otolith microchemistry as a method for assessing oil exposure history. Laser-ablation inductively-coupled-plasma mass spectrometry was used to analyze the chemical composition of sagittal otoliths to assess whether a trace metal signature could be detected in the otoliths of F. grandis collected from a Macondo-oil impacted site in 2010, post-spill relative to pre-spill, as well as versus fish from areas not impacted by the spill. We found no evidence of increased concentrations of two elements associated with oil contamination (nickel and vanadium) in F. grandis otoliths regardless of Macondo oil exposure history. One potential explanation for this is that Macondo oil is relatively depleted of those metals compared to other crude oils globally. During and after the spill, however, elevated levels of barium, lead, and to a lesser degree, copper were detected in killifish otoliths at the oil-impacted collection site in coastal Louisiana. This may reflect oil contact or other environmental perturbations that occurred concomitant with oiling. For example, increases in barium in otoliths from oil-exposed fish followed (temporally) freshwater diversions in Louisiana in 2010. This implicates (but does not conclusively demonstrate) freshwater diversions from the Mississippi River (with previously recorded higher concentrations of lead and copper), designed to halt the ingress of oil, as a mechanism for elevated elemental uptake in otoliths of Louisiana marsh fishes. These results highlight the potentially complex and indirect effects of the Macondo oil spill and human responses to it on Gulf of Mexico ecosystems, and emphasize the need to consider the multiple stressors acting simultaneously on inshore fish communities., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2016
- Full Text
- View/download PDF
22. Hierarchical analysis of taxonomic variation in intraspecific competition across fish species.
- Author
-
Foss-Grant AP, Zipkin EF, Thorson JT, Jensen OP, and Fagan WF
- Subjects
- Animals, Classification, Population Density, Population Dynamics, Biodiversity, Fishes physiology
- Abstract
The nature and intensity of intraspecific competition can vary greatly among taxa, yet similarities in these interactions can lead to similar population dynamics among related organisms. Variation along the spectrum of intraspecific competition, with contest and scramble competition as endpoints, leads to vastly different responses to population density. Here we investigated the diversity of intraspecific competition among fish species, predicting that functional forms of density-dependent reproduction would be conserved in related taxa. Using a hierarchical model that links stock-recruitment parameters among populations, species, and orders, we found that the strength of overcompensation, and therefore the type of intraspecific competition, is tightly clustered within taxonomic groupings, as species within an order share similar degrees of compensation. Specifically, species within the orders Salmoniformes and Pleuronectiformes exhibited density dependence indicative of scramble competition (overcompensation) while the orders Clupeiformes, Gadiformes, Perciformes, and Scorpaeniformes exhibited dynamics consistent with contest competition (compensation). Maximum potential recruitment also varied among orders, but with less clustering across species. We also tested whether stock-recruitment parameters correlated with maximum body length among species, but found no strong relationship. Our results suggest that much of the variation in the form of density-dependent reproduction among fish species may be predicted taxonomically due to evolved life history traits and reproductive behaviors., (© 2016 by the Ecological Society of America.)
- Published
- 2016
- Full Text
- View/download PDF
23. Correction: A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species.
- Author
-
Free CM, Jensen OP, and Mendsaikhan B
- Published
- 2016
- Full Text
- View/download PDF
24. Differences in Energy Expenditures and Growth Dilution Explain Higher PCB Concentrations in Male Summer Flounder.
- Author
-
Madenjian CP, Jensen OP, Rediske RR, O'Keefe JP, Vastano AR, and Pothoven SA
- Subjects
- Animals, Female, Flounder growth & development, Male, Sex Factors, Energy Metabolism, Environmental Monitoring, Flounder metabolism, Indicator Dilution Techniques, Polychlorinated Biphenyls metabolism, Seasons, Water Pollutants, Chemical metabolism
- Abstract
Comparison of polychlorinated biphenyl (PCB) concentrations between the sexes of mature fish may reveal important behavioral and physiological differences between the sexes. We determined whole-fish PCB concentrations in 23 female summer flounder Paralichthys dentatus and 27 male summer flounder from New Jersey coastal waters. To investigate the potential for differences in diet or habitat utilization between the sexes, carbon and nitrogen stable isotope ratios were also determined. In 5 of the 23 female summer flounder, PCB concentrations in the somatic tissue and ovaries were determined. In addition, we used bioenergetics modeling to assess the contribution of the growth dilution effect to the observed difference in PCB concentrations between the sexes. Whole-fish PCB concentrations for females and males averaged 87 and 124 ng/g, respectively; thus males were 43% higher in PCB concentration compared with females. Carbon and nitrogen stable isotope ratios did not significantly differ between the sexes, suggesting that diet composition and habitat utilization did not vary between the sexes. Based on PCB determinations in the somatic tissue and ovaries, we predicted that PCB concentration of females would increase by 0.6%, on average, immediately after spawning due to release of eggs. Thus, the change in PCB concentration due to release of eggs did not explain the higher PCB concentrations observed in males. Bioenergetics modeling results indicated that the growth dilution effect could account for males being 19% higher in PCB concentration compared with females. Thus, the bulk of the observed difference in PCB concentrations between the sexes was not explained by growth dilution. We concluded that a higher rate of energy expenditure in males, stemming from greater activity and a greater resting metabolic rate, was most likely the primary driver for the observed difference in PCB concentrations between the sexes.
- Published
- 2016
- Full Text
- View/download PDF
25. Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders.
- Author
-
Vasslides JM and Jensen OP
- Subjects
- Environmental Monitoring, Fuzzy Logic, Humans, Models, Theoretical, New Jersey, Comprehension, Conservation of Natural Resources, Ecosystem, Water Resources
- Abstract
Ecosystem-based approaches, including integrated ecosystem assessments, are a popular methodology being used to holistically address management issues in social-ecological systems worldwide. In this study we utilized fuzzy logic cognitive mapping to develop conceptual models of a complex estuarine system among four stakeholder groups. The average number of categories in an individual map was not significantly different among groups, and there were no significant differences between the groups in the average complexity or density indices of the individual maps. When ordered by their complexity scores, eight categories contributed to the top four rankings of the stakeholder groups, with six of the categories shared by at least half of the groups. While non-metric multidimensional scaling (nMDS) analysis displayed a high degree of overlap between the individual models across groups, there was also diversity within each stakeholder group. These findings suggest that while all of the stakeholders interviewed perceive the subject ecosystem as a complex series of social and ecological interconnections, there are a core set of components that are present in most of the groups' models that are crucial in managing the system towards some desired outcome. However, the variability in the connections between these core components and the rest of the categories influences the exact nature of these outcomes. Understanding the reasons behind these differences will be critical to developing a shared conceptual model that will be acceptable to all stakeholder groups and can serve as the basis for an integrated ecosystem assessment., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
26. A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species.
- Author
-
Free CM, Jensen OP, and Mendsaikhan B
- Subjects
- Animals, Ecosystem, Endangered Species, Mongolia, Population Density, Seasons, Conservation of Natural Resources methods, Fisheries methods, Fishes physiology
- Abstract
Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake's fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3-4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009-2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11-15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.
- Published
- 2015
- Full Text
- View/download PDF
27. Bayesian estimation of predator diet composition from fatty acids and stable isotopes.
- Author
-
Neubauer P and Jensen OP
- Abstract
Quantitative analysis of stable isotopes (SI) and, more recently, fatty acid profiles (FAP) are useful and complementary tools for estimating the relative contribution of different prey items in the diet of a predator. The combination of these two approaches, however, has thus far been limited and qualitative. We propose a mixing model for FAP that follows the Bayesian machinery employed in state-of-the-art mixing models for SI. This framework provides both point estimates and probability distributions for individual and population level diet proportions. Where fat content and conversion coefficients are available, they can be used to improve diet estimates. This model can be explicitly integrated with analogous models for SI to increase resolution and clarify predator-prey relationships. We apply our model to simulated data and an experimental dataset that allows us to illustrate modeling strategies and demonstrate model performance. Our methods are provided as an open source software package for the statistical computing environment R.
- Published
- 2015
- Full Text
- View/download PDF
28. High-levels of microplastic pollution in a large, remote, mountain lake.
- Author
-
Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, and Boldgiv B
- Subjects
- Conservation of Natural Resources, Ecosystem, Geography, Lakes, Mongolia, Refuse Disposal, Wind, Environmental Monitoring methods, Environmental Pollution analysis, Plastics analysis, Waste Products analysis, Water Pollutants, Chemical analysis
- Abstract
Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km(-2), Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
29. Resilience and recovery of overexploited marine populations.
- Author
-
Neubauer P, Jensen OP, Hutchings JA, and Baum JK
- Subjects
- Animals, Biomass, Fishes physiology, Population Density, Conservation of Natural Resources, Fisheries, Fishes growth & development
- Abstract
Recovery of overexploited marine populations has been slow, and most remain below target biomass levels. A key question is whether this is due to insufficient reductions in harvest rates or the erosion of population resilience. Using a global meta-analysis of overfished stocks, we find that resilience of those stocks subjected to moderate levels of overfishing is enhanced, not compromised, offering the possibility of swift recovery. However, prolonged intense overexploitation, especially for collapsed stocks, not only delays rebuilding but also substantially increases the uncertainty in recovery times, despite predictable influences of fishing and life history. Timely and decisive reductions in harvest rates could mitigate this uncertainty. Instead, current harvest and low biomass levels render recovery improbable for the majority of the world's depleted stocks.
- Published
- 2013
- Full Text
- View/download PDF
30. Reply to Szuwalski: Policies robust to uncertainty in causes of productivity changes are needed.
- Author
-
Vert-pre KA, Amoroso RO, Jensen OP, and Hilborn R
- Subjects
- Animals, Algorithms, Biomass, Fishes growth & development, Models, Biological
- Published
- 2013
- Full Text
- View/download PDF
31. Frequency and intensity of productivity regime shifts in marine fish stocks.
- Author
-
Vert-pre KA, Amoroso RO, Jensen OP, and Hilborn R
- Subjects
- Animals, Conservation of Natural Resources methods, Conservation of Natural Resources statistics & numerical data, Ecosystem, Fisheries methods, Fisheries statistics & numerical data, Population Density, Population Dynamics, Seawater, Algorithms, Biomass, Fishes growth & development, Models, Biological
- Abstract
Fish stocks fluctuate both in abundance and productivity (net population increase), and there are many examples demonstrating that productivity increased or decreased due to changes in abundance caused by fishing and, alternatively, where productivity shifted between low and high regimes, entirely unrelated to abundance. Although shifts in productivity regimes have been described, their frequency and intensity have not previously been assessed. We use a database of trends in harvest and abundance of 230 fish stocks to evaluate the proportion of fish stocks in which productivity is primarily related to abundance vs. those that appear to manifest regimes of high or low productivity. We evaluated the statistical support for four hypotheses: (i) the abundance hypothesis, where production is always related to population abundance; (ii) the regimes hypothesis, where production shifts irregularly between regimes that are unrelated to abundance; (iii) the mixed hypothesis, where even though production is related to population abundance, there are irregular changes in this relationship; and (iv) the random hypothesis, where production is random from year to year. We found that the abundance hypothesis best explains 18.3% of stocks, the regimes hypothesis 38.6%, the mixed hypothesis 30.5%, and the random hypothesis 12.6%. Fisheries management agencies need to recognize that irregular changes in productivity are common and that harvest regulation and management targets may need to be adjusted whenever productivity changes.
- Published
- 2013
- Full Text
- View/download PDF
32. Defining trade-offs among conservation, profitability, and food security in the California current bottom-trawl fishery.
- Author
-
Hilborn R, Stewart IJ, Branch TA, and Jensen OP
- Subjects
- Animals, California, Fishes, Conservation of Natural Resources, Fisheries, Food Supply, Income
- Abstract
Although it is recognized that marine wild-capture fisheries are an important source of food for much of the world, the cost of sustainable capture fisheries to species diversity is uncertain, and it is often questioned whether industrial fisheries can be managed sustainably. We evaluated the trade-off among sustainable food production, profitability, and conservation objectives in the groundfish bottom-trawl fishery off the U.S. West Coast, where depletion (i.e., reduction in abundance) of six rockfish species (Sebastes) is of particular concern. Trade-offs are inherent in this multispecies fishery because there is limited capacity to target species individually. From population models and catch of 34 stocks of bottom fish, we calculated the relation between harvest rate, long-term yield (i.e., total weight of fish caught), profit, and depletion of each species. In our models, annual ecosystem-wide yield from all 34 stocks was maximized with an overall 5.4% harvest rate, but profit was maximized at a 2.8% harvest rate. When we reduced harvest rates to the level (2.2% harvest rate) at which no stocks collapsed (<10% of unfished levels), biomass harvested was 76% of the maximum sustainable yield and profit 89% of maximum. A harvest rate under which no stocks fell below the biomass that produced maximum sustainable yield (1% harvest rate), resulted in 45% of potential yield and 67% of potential profit. Major reductions in catch in the late 1990s led to increase in the biomass of the most depleted stocks, but this rebuilding resulted in the loss of >30% of total sustainable yield, whereas yield lost from stock depletion was 3% of total sustainable yield. There are clear conservation benefits to lower harvest rates, but avoiding overfishing of all stocks in a multispecies fishery carries a substantial cost in terms of lost yield and profit., (©2011 Society for Conservation Biology.)
- Published
- 2012
- Full Text
- View/download PDF
33. Contrasting global trends in marine fishery status obtained from catches and from stock assessments.
- Author
-
Branch TA, Jensen OP, Ricard D, Ye Y, and Hilborn R
- Subjects
- Biomass, Species Specificity, Fisheries, Marine Biology
- Abstract
There are differences in perception of the status of fisheries around the world that may partly stem from how data on trends in catches over time have been used. On the basis of catch trends, it has been suggested that about 70% of all stocks are overexploited due to unsustainable harvesting and 30% of all stocks have collapsed to <10% of unfished levels. Catch trends also suggest that over time an increasing number of stocks will be overexploited and collapsed. We evaluated how use of catch data affects assessment of fisheries stock status. We analyzed simulated random catch data with no trend. We examined well-studied stocks classified as collapsed on the basis of catch data to determine whether these stocks actually were collapsed. We also used stock assessments to compare stock status derived from catch data with status derived from biomass data. Status of stocks derived from catch trends was almost identical to what one would expect if catches were randomly generated with no trend. Most classifications of collapse assigned on the basis of catch data were due to taxonomic reclassification, regulatory changes in fisheries, and market changes. In our comparison of biomass data with catch trends, catch trends overestimated the percentage of overexploited and collapsed stocks. Although our biomass data were primarily from industrial fisheries in developed countries, the status of these stocks estimated from catch data was similar to the status of stocks in the rest of the world estimated from catch data. We conclude that at present 28-33% of all stocks are overexploited and 7-13% of all stocks are collapsed. Additionally, the proportion of fished stocks that are overexploited or collapsed has been fairly stable in recent years., (© 2011 Society for Conservation Biology.)
- Published
- 2011
- Full Text
- View/download PDF
34. Unexpected patterns of fisheries collapse in the world's oceans.
- Author
-
Pinsky ML, Jensen OP, Ricard D, and Palumbi SR
- Subjects
- Animals, Body Size, Fishes, Food Chain, Oceans and Seas, Ecosystem, Endangered Species, Fisheries methods
- Abstract
Understanding which species are most vulnerable to human impacts is a prerequisite for designing effective conservation strategies. Surveys of terrestrial species have suggested that large-bodied species and top predators are the most at risk, and it is commonly assumed that such patterns also apply in the ocean. However, there has been no global test of this hypothesis in the sea. We analyzed two fisheries datasets (stock assessments and landings) to determine the life-history traits of species that have suffered dramatic population collapses. Contrary to expectations, our data suggest that up to twice as many fisheries for small, low trophic-level species have collapsed compared with those for large predators. These patterns contrast with those on land, suggesting fundamental differences in the ways that industrial fisheries and land conversion affect natural communities. Even temporary collapses of small, low trophic-level fishes can have ecosystem-wide impacts by reducing food supply to larger fish, seabirds, and marine mammals.
- Published
- 2011
- Full Text
- View/download PDF
35. Foraging, bioenergetic and predation constraints on diel vertical migration: field observations and modelling of reverse migration by young-of-the-year herring Clupea harengus.
- Author
-
Jensen OP, Hansson S, Didrikas T, Stockwell JD, Hrabik TR, Axenrot T, and Kitchell JF
- Subjects
- Acoustics, Animals, Periodicity, Predatory Behavior, Seawater analysis, Animal Migration, Appetitive Behavior, Energy Metabolism, Fishes physiology
- Abstract
Diel vertical migration (DVM) of young-of-the-year (YOY) herring Clupea harengus and one of their major predators, pikeperch Sander lucioperca, was examined using bottom-mounted hydroacoustics in Himmerfjärden, a brackish bay of the Baltic Sea, in summer. In contrast to previous studies on DVM of C. harengus aggregated across size and age classes, YOY C. harengus showed a reverse DVM trajectory, deeper at night and, on average, shallower during the day. This pattern was observed consistently on five acoustic sampling occasions in 3 years and was corroborated by two out of three trawl surveys. Large acoustic targets (target strength >-33 dB, probably piscivorous S. lucioperca >45 cm) showed a classic DVM trajectory, shallow at night and deeper during the day. Variability in YOY C. harengus vertical distribution peaked at dawn and dusk, and their vertical distribution at midday was distinctly bimodal. This reverse DVM pattern was consistent with bioenergetic model predictions for YOY C. harengus which have rapid gut evacuation rates and do not feed at night. Reverse DVM also resulted in low spatial overlap with predators., (© 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.)
- Published
- 2011
- Full Text
- View/download PDF
36. Rebuilding global fisheries.
- Author
-
Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, and Zeller D
- Subjects
- Animals, Biodiversity, Biomass, Internationality, Marine Biology, Models, Biological, Oceans and Seas, Population Dynamics, Conservation of Natural Resources, Ecosystem, Fisheries methods, Fishes anatomy & histology
- Abstract
After a long history of overexploitation, increasing efforts to restore marine ecosystems and rebuild fisheries are under way. Here, we analyze current trends from a fisheries and conservation perspective. In 5 of 10 well-studied ecosystems, the average exploitation rate has recently declined and is now at or below the rate predicted to achieve maximum sustainable yield for seven systems. Yet 63% of assessed fish stocks worldwide still require rebuilding, and even lower exploitation rates are needed to reverse the collapse of vulnerable species. Combined fisheries and conservation objectives can be achieved by merging diverse management actions, including catch restrictions, gear modification, and closed areas, depending on local context. Impacts of international fleets and the lack of alternatives to fishing complicate prospects for rebuilding fisheries in many poorer regions, highlighting the need for a global perspective on rebuilding marine resources.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.