8 results on '"Jeroen Franse"'
Search Results
2. Evolution of the red sequence giant to dwarf ratio in galaxy clusters out toz∼ 0.5
- Author
-
A. Babul, Jeroen Franse, D. J. Sand, Chris Bildfell, Jon Willis, Henk Hoekstra, P. Langelaan, S. Urquahart, Matthew J. Graham, C. J. Pritchet, Dennis Zaritsky, and Andisheh Mahdavi
- Subjects
Physics ,Sequence ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Galaxy ,Redshift ,Space and Planetary Science ,0103 physical sciences ,Cluster (physics) ,010303 astronomy & astrophysics ,Galaxy cluster ,Weak gravitational lensing - Abstract
We analyze deep g' and r' band data of 97 galaxy clusters imaged with MegaCam on the Canada-France-Hawaii telescope. We compute the number of luminous (giant) and faint (dwarf) galaxies using criteria based on the definitions of de Lucia et al. (2007). Due to excellent image quality and uniformity of the data and analysis, we probe the giant-to-dwarf ratio (GDR) out to z ~ 0.55. With X-ray temperature (Tx) information for the majority of our clusters, we constrain, for the first time, the Tx-corrected giant and dwarf evolution separately. Our measurements support an evolving GDR over the redshift range 0.05 < z < 0.55. We show that modifying the (g'-r'), m_r' and K-correction used to define dwarf and giant selection do not alter the conclusion regarding the presence of evolution. We parameterize the GDR evolution using a linear function of redshift (GDR = alpha * z + beta) with a best fit slope of alpha = 0.88 +/- 0.15 and normalization beta = 0.44 +/- 0.03. Contrary to claims of a large intrinsic scatter, we find that the GDR data can be fully accounted for using observational errors alone. Consistently, we find no evidence for a correlation between GDR and cluster mass (via Tx or weak lensing). Lastly, the data suggest that the evolution of the GDR at z < 0.2 is driven primarily by dry merging of the massive giant galaxies, which when considered with previous results at higher redshift, suggests a change in the dominant mechanism that mediates the GDR.
- Published
- 2012
- Full Text
- View/download PDF
3. Radial Profile of the 3.5 keV Line Out to R200 in the Perseus Cluster
- Author
-
Michael McDonald, Oleg Ruchayskiy, Esra Bulbul, Eric J. Miller, Mark W. Bautz, Adam R. Foster, Randall K. Smith, Maxim Markevitch, Dmytro Iakubovskyi, Jeroen Franse, Alexey Boyarsky, M. Loewenstein, and Scott W. Randall
- Subjects
Physics ,Brightness ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Galaxy ,Galaxy groups and clusters ,Space and Planetary Science ,0103 physical sciences ,Cluster (physics) ,Emission spectrum ,Surface brightness ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) - Abstract
The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not reveal such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line.
- Published
- 2016
4. Searching for decaying dark matter in deep XMM-Newton observation of the Draco dwarf spheroidal
- Author
-
Esra Bulbul, Oleg Ruchayskiy, Andrii Neronov, Alexey Boyarsky, Jeroen Franse, Dominique Eckert, Maxim Markevitch, Dmytro Iakubovskyi, and Denys Malyshev
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Dwarf galaxy problem ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,X-rays: general ,01 natural sciences ,dark matter ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,010303 astronomy & astrophysics ,Galaxy rotation curve ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,Hot dark matter ,Astronomy ,Astronomy and Astrophysics ,galaxies: dwarf ,Galaxy ,Dwarf spheroidal galaxy ,Dark matter halo ,High Energy Physics - Phenomenology ,Space and Planetary Science ,Dark galaxy ,Astrophysics - High Energy Astrophysical Phenomena ,line: identification - Abstract
We present results of a search for the 3.5 keV emission line in our recent very long (~ 1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau > (7-9) x 10^27 s at 95% CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modeled continuum) at E = 3.54 +/- 0.06 keV with a 2.3 sigma significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1 sigma with PN. Our Draco limit on tau is consistent with previous detections in the stacked galaxy clusters, M31 and the Galactic Center within their 1-2 sigma uncertainties, but is inconsistent with the high signal from the core of the Perseus cluster (which has itself been inconsistent with the rest of the detections). We conclude that this Draco observation does not exclude the dark matter interpretation of the 3.5 keV line in those objects., 10 pages, 5 figures. Accepted by MNRAS
- Published
- 2015
5. Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster
- Author
-
Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, and Jeroen Franse
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Andromeda Galaxy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,General Physics and Astronomy ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Galaxy merger ,01 natural sciences ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Satellite galaxy ,Interacting galaxy ,Brightest cluster galaxy ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,High Energy Physics - Phenomenology ,Astrophysics of Galaxies (astro-ph.GA) ,Dark galaxy ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report a weak line at 3.52+/-0.02 keV in X-ray spectra of M31 galaxy and the Perseus galaxy cluster observed by MOS and PN cameras of XMM-Newton telescope. This line is not known as an atomic line in the spectra of galaxies or clusters. It becomes stronger towards the centers of the objects; is stronger for Perseus than for M31; is absent in the spectrum of a deep "blank sky'' dataset. Although for each object it is hard to exclude that the feature is due to an instrumental effect or an atomic line, it is consistent with the behavior of a dark matter decay line. Future (non-)detections of this line in multiple objects may help to reveal its nature., Comment: 11 pages, 8 figures
- Published
- 2014
6. Checking the dark matter origin of 3.53 keV line with the Milky Way center
- Author
-
Dmytro Iakubovskyi, Oleg Ruchayskiy, Alexey Boyarsky, and Jeroen Franse
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Andromeda Galaxy ,Milky Way ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Galactic Center ,General Physics and Astronomy ,Astronomy ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Galactic plane ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Dark matter halo ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics - High Energy Astrophysical Phenomena ,Galaxy cluster ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We detect a line at 3.539 +/- 0.011 keV in the deep exposure dataset of the Galactic Center region, observed with the XMM-Newton. The dark matter interpretation of the signal observed in the Perseus galaxy cluster, the Andromeda galaxy [1402.4119] and in the stacked spectra of galaxy clusters [1402.2301], together with non-observation of the line in blank sky data, put both lower and upper limits on the possible intensity of the line in the Galactic Center data. Our result is consistent with these constraints for a class of Milky Way mass models, presented previously by observers, and would correspond to radiative decay dark matter lifetime tau_dm ~ (6-8) x 10^{27} sec. Although it is hard to exclude an astrophysical origin of this line based the Galactic Center data alone, this is an important consistency check of the hypothesis that encourages to check it with more observational data that are expected by the end of 2015., Comment: 12 pages, 3 figures. Accepted by Phys. Rev. Lett
- Published
- 2014
- Full Text
- View/download PDF
7. A White Paper on keV sterile neutrino Dark Matter
- Author
-
Marco Drewes, P. Di Bari, Michele Maltoni, N. Anh Ky, B. Suerfu, H. Dorrer, Benjamin Monreal, Ernst W. Otten, Klaus Eberhardt, S. Scholl, P. S. Bhupal Dev, Aldo Ianni, Gianpiero Mangano, F. Hofmann, Joseph A. Formaggio, Volker Hannen, Ch. E. Düllmann, Z. Xing, N. Steinbrink, L. Oberauer, Debasish Borah, Klaus Wendt, Jeroen Franse, V. N. Kornoukhov, O. Dragoun, C. Hassel, Sebastian Kempf, Nick Evans, Sergio Pastor, P. S. Rodrigues da Silva, S. Schönert, L. Gastaldo, M. C. Gonzalez-Garcia, Tobias Lachenmaier, Tesla E. Jeltema, A. Faessler, Nick E. Mavromatos, Kai Zuber, George M. Fuller, José W. F. Valle, A.W. Long, F. Schneider, C. A. de S. Pires, N. Thi Hong Van, Manami Sasaki, Apostolos Pilaftsis, Sergey Eliseev, T. Schwetz, Matteo Agostini, Rathin Adhikari, Maria Archidiacono, F. Suekane, Shun Zhou, A. A. Nozik, M. Bahr, Francesco Shankar, V. Niro, J. Baur, Silvia Pascoli, P. C.-O. Ranitzsch, Dmytro Iakubovskyi, Alexander Merle, Christopher George Tully, Ch. Weinheimer, V. S. Pantuev, Ninetta Saviano, Marco Pallavicini, Carlos S. Frenk, D. Vénos, Alejandro Ibarra, H. J. de Vega, Louis E. Strigari, Robert Shrock, Josef Jochum, Andrii Neronov, Lindley Winslow, Nathalie Palanque-Delabrouille, D. Lhuillier, T. Houdy, T. Araki, Aurel Schneider, T. Kieck, Antonella Garzilli, Yu. N. Novikov, W. Liao, Mei-Yu Wang, Carlo Giunti, Yufeng Li, Ferenc Glück, Steen Hannestad, Alexey Boyarsky, V. Fischer, Fedor Bezrukov, F.M. Fraenkle, Andreas Fleischmann, Maury Goodman, Emmanouil Papastergis, Y. Tsai, M. Durero, Kai Dolde, D. C. Radford, O. Rest, Alex G. Dias, Kathrin Valerius, A. Huber, Igor Tkachev, Julian Heeck, A. de Gouvea, Richard Jacobsson, M. Korzeczek, J. Lesgourgues, Susanne Mertens, Matteo Viel, Norma G. Sanchez, Amol V. Patwardhan, Dean J. Robinson, Mikko Laine, Christian Enss, Stephen J. Parke, Alessandro Mirizzi, Pavel Filianin, Paul Langacker, Jan Hamann, J. Behrens, R. Takahashi, Maximilian Totzauer, Dmitry Gorbunov, M. Vivier, Michael Wurm, Z. Djurcic, Steen Honoré Hansen, Thierry Lasserre, Guido Drexlin, Oleg Ruchayskiy, Nicola Menci, Joachim Wolf, Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Astronomy, Adhikari, R., Agostini, M., Ky, N. Anh, Araki, T., Archidiacono, M., Bahr, M., Baur, J., Behrens, J., Bezrukov, F., Dev, P. S. Bhupal, Borah, D., Boyarsky, A., de Gouvea, A., Pires, C. A. de S., de Vega, H. J., Dias, A. G., Bari, P. Di, Djurcic, Z., Dolde, K., Dorrer, H., Durero, M., Dragoun, O., Drewes, M., Drexlin, G., Düllmann, C.h. E., Eberhardt, K., Eliseev, S., Enss, C., Evans, N. W., Faessler, A., Filianin, P., Fischer, V., Fleischmann, A., Formaggio, J. A., Franse, J., Fraenkle, F. M., Frenk, C. S., Fuller, G., Gastaldo, L., Garzilli, A., Giunti, C., Glück, F., Goodman, M. C., Gonzalez Garcia, M. C., Gorbunov, D., Hamann, J., Hannen, V., Hannestad, S., Hansen, S. H., Hassel, C., Heeck, J., Hofmann, F., Houdy, T., Huber, A., Iakubovskyi, D., Ianni, A., Ibarra, A., Jacobsson, R., Jeltema, T., Jochum, J., Kempf, S., Kieck, T., Korzeczek, M., Kornoukhov, V., Lachenmaier, T., Laine, M., Langacker, P., Lasserre, T., Lesgourgues, J., Lhuillier, D., Li, Y. F., Liao, W., Long, A. W., Maltoni, M., Mangano, G., Mavromatos, N. E., Menci, N., Merle, A., Mertens, S., Mirizzi, A., Monreal, B., Nozik, A., Neronov, A., Niro, V., Novikov, Y., Oberauer, L., Otten, E., Palanque Delabrouille, N., Pallavicini, M., Pantuev, V. S., Papastergis, E., Parke, S., Pascoli, Silvia, Pastor, S., Patwardhan, A., Pilaftsis, A., Radford, D. C., Ranitzsch, P. C. O., Rest, O., Robinson, D. J., Silva, P. S. Rodrigues da, Ruchayskiy, O., Sanchez, N. G., Sasaki, M., Saviano, N., Schneider, A., Schneider, F., Schwetz, Thoma, Schönert, S., Scholl, S., Shankar, F., Shrock, R., Steinbrink, N., Strigari, L., Suekane, F., Suerfu, B., Takahashi, R., Van, N. Thi Hong, Tkachev, I., Totzauer, M., Tsai, Y., Tully, C. G., Valerius, K., Valle, J. W. F., Venos, D., Viel, Matteo, Vivier, M., Wang, M. Y., Weinheimer, C., Wendt, K., Winslow, L., Wolf, J., Wurm, M., Xing, Z., Zhou, Shuangyong, Zuber, K., Massachusetts Institute of Technology. Department of Physics, Laboratoire de Physique Théorique et Hautes Energies ( LPTHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique ( LERMA ), École normale supérieure - Paris ( ENS Paris ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université de Cergy Pontoise ( UCP ), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique ( CNRS ), USA, GBR, FRA, DEU, Anh Ky, N., Bhupal Dev, P. S., De Gouvea, A., Pires, C. A. D. S., De Vega, H. J., Di Bari, P., Dullmann, Ch. E., Gluck, F., Gonzalez-Garcia, M. C., Palanque-Delabrouille, N., Pascoli, S., Ranitzsch, P. C. -O., Rodrigues Da Silva, P. S., Schwetz, T., Schonert, S., Thi Hong Van, N., Viel, M., Zhou, S., Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Astrofísica ,Sterile neutrino ,cosmological model ,Cold dark matter ,cosmological neutrinos ,Physics beyond the Standard Model ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Dark matter theory ,01 natural sciences ,Cosmology ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,White paper ,High Energy Physics - Phenomenology (hep-ph) ,X-RAY-EMISSION ,METALLIC MAGNETIC CALORIMETERS ,QUANTUM-FIELD THEORY ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,neutrino: dark matter ,Cosmological neutrinos ,Dark matter experiments ,Particle physics - cosmology connection ,010303 astronomy & astrophysics ,Physics ,dark matter theory ,new physics ,DOUBLE-BETA-DECAY ,hep-ph ,neutrino: sterile ,Astronomy and Astrophysics ,Nuclear & Particles Physics ,High Energy Physics - Phenomenology ,neutrino: detector ,particle physics - cosmology connection ,astro-ph.CO ,MILKY-WAY SATELLITES ,3.5 KEV LINE ,Neutrino ,Particle Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Particle physics ,Astrophysics and Astronomy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,astro-ph.GA ,Dark matter ,LY-ALPHA FOREST ,review ,FOS: Physical sciences ,Context (language use) ,neutrino: production ,X-ray ,Settore FIS/05 - Astronomia e Astrofisica ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,RIGHT-HANDED NEUTRINOS ,0103 physical sciences ,Astronomical And Space Sciences ,numerical calculations ,Dark matter experiment ,XMM-NEWTON OBSERVATIONS ,neutrino: model ,Particle Physics - Phenomenology ,DWARF SPHEROIDAL GALAXY ,Cosmologia ,010308 nuclear & particles physics ,hep-ex ,dark matter experiments ,High Energy Physics::Phenomenology ,Atomic, Molecular, Nuclear, Particle And Plasma Physics ,Cosmological neutrino ,Astrophysics - Astrophysics of Galaxies ,13. Climate action ,Astrophysics of Galaxies (astro-ph.GA) ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,High Energy Physics::Experiment ,neutrino: oscillation ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos., v2: 257 pages, 57 figures, content matches published version [JCAP01(2017)025]; over 100 authors from several different communities
- Full Text
- View/download PDF
8. RADIAL PROFILE OF THE 3.5 keV LINE OUT TO R 200 IN THE PERSEUS CLUSTER.
- Author
-
Jeroen Franse, Esra Bulbul, Adam Foster, Alexey Boyarsky, Maxim Markevitch, Mark Bautz, Dmytro Iakubovskyi, Mike Loewenstein, Michael McDonald, Eric Miller, Scott W. Randall, Oleg Ruchayskiy, and Randall K. Smith
- Subjects
- *
DARK matter , *GALAXY clusters , *GALACTIC evolution , *ASTRONOMICAL observations , *GALACTIC magnitudes - Abstract
The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not reveal such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.