1. An interpretable survival model for diffuse large B-cell lymphoma patients using a biologically informed visible neural network
- Author
-
Jie Tan, Jiancong Xie, Jiarong Huang, Weizhen Deng, Hua Chai, and Yuedong Yang
- Subjects
DLBCL ,VNN ,Survival model ,Prognosis ,Interpretable ,Subtype ,Biotechnology ,TP248.13-248.65 - Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL) and is characterized by high heterogeneity. Assessment of its prognosis and genetic subtyping hold significant clinical implications. However, existing DLBCL prognostic models are mainly based on transcriptomic profiles, while genetic variation detection is more commonly used in clinical practice. In addition, current clustering-based subtyping methods mostly focus on genes with high mutation frequencies, providing insufficient explanations for the heterogeneity of DLBCL. Here, we proposed VNNSurv (https://bio-web1.nscc-gz.cn/app/VNNSurv), a survival model for DLBCL patients based on a biologically informed visible neural network (VNN). VNNSurv achieved an average C-index of 0.72 on the cross-validation set (HMRN cohort, n = 928), outperforming the baseline methods. The remarkable interpretability of VNNSurv facilitated the identification of the most impactful genes and the underlying pathways through which they act on patient outcomes. When only the 30 highest-impact genes were used as genetic input, the overall performance of VNNSurv improved, and a C-index of 0.70 was achieved on the external TCGA cohort (n = 48). Leveraging these high-impact genes, including 16 genes with low (
- Published
- 2024
- Full Text
- View/download PDF