1. Apparent diffusion coefficients for evaluation of the response of brain tumors treated by Gamma Knife surgery
- Author
-
Shyh-Ying Chiou, Jim-Chao Chuang, Wen-Shan Liu, Ming-Fang Wu, Chuan-Fu Huang, and Hsien-Tang Tu
- Subjects
Gamma-knife surgery ,medicine.diagnostic_test ,business.industry ,medicine.medical_treatment ,Brain tumor ,Magnetic resonance imaging ,General Medicine ,medicine.disease ,Radiosurgery ,Central nervous system disease ,medicine ,Effective diffusion coefficient ,Nuclear medicine ,business ,Diffusion MRI ,Calcification - Abstract
Object Cellular density is a major factor for change in the apparent diffusion coefficient (ADC). The authors hypothesized that loss of tumor cells after Gamma Knife surgery (GKS) may alter the ADC value and used diffusion weighted MR imaging (DW imaging) to evaluate cellular changes in brain tumors to detect their treatment response and the efficacy of GKS. Methods In this paper the authors describe a prospective trial involving 86 patients harboring 38 solid or predominantly solid brain metastases, 30 meningiomas, and 24 acoustic neuromas that were treated by GKS. The patients underwent serial MR imaging examinations, including DW imaging, before treatment and at multiple intervals following GKS. Follow-up MR images and clinical outcomes were reviewed at 3-month intervals for metastatic lesions and at 6-month intervals for benign tumors. Apparent diffusion coefficients were calculated from echoplanar DW images, and mean ADC values were compared at each follow-up. Results The mean ADC value for all meningiomas was 0.82 ± 0.15 × 10−3 mm2/sec before GKS. The mean ADC value as of the last mean follow-up of 42 months was 1.36 ± 0.19 × 10−3 mm2/sec, a significant increase compared to that before treatment (p < 0.0001). Calcification (p = 0.006) and tumor recurrence (p = 0.025) significantly prevented a rise in the ADC level. The mean ADC value for all solid acoustic neuromas was 1.06 ± 0.17 × 10−3 mm2/sec before GKS. The mean ADC value as of the last mean follow-up of 36 months was 1.72 ± 0.26 × 10−3 mm2/sec, a significant increase (p = 0.0002) compared with values before GKS. At the last mean MR imaging follow-up there appeared to be tumor enlargement in 3 patients (12.5%); however, since the ADC values in these patients were significantly higher than the preradiosurgery values, the finding was considered to be a sign of radiation necrosis rather than tumor recurrence. The mean ADC value of metastatic tumors was 1.05 ± 0.12 × 10−3 mm2/sec before GKS. This value rose significantly (p < 0.0001) to 1.64 ± 0.18 × 10−3 mm2/sec after GKS at a mean follow-up of 9.4 months. Magnetic resonance imaging showed that 89% of these tumors had been controlled by GKS. In 2 patients there were enlarged lesions, but the ADC values were the same as pre-GKS levels, and therefore, the lesions were deemed recurrent. Conclusions Apparent diffusion coefficient values may be useful in evaluating treatment results before a definitive change in volume is evident on imaging studies. In some patients in whom imaging findings are equivocal, ADC values may also be used to distinguish radiation-induced necrosis from tumor recurrence.
- Published
- 2010
- Full Text
- View/download PDF