33 results on '"Josep Àlvarez Montaner"'
Search Results
2. Poincaré series of multiplier and test ideals
- Author
-
Josep Àlvarez Montaner, Luis Núñez-Betancourt, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Geometry, Algebraic ,Geometria algebraica ,14 Algebraic geometry::14F (Co)homology theory [Classificació AMS] ,14 Algebraic geometry::14D Families, fibrations [Classificació AMS] ,General Mathematics ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS] ,13 Commutative rings and algebras::13D Homological methods [Classificació AMS] - Abstract
We prove the rationality of the Poincaré series of multiplier ideals in any dimension thus extending the main results for surfaces of Galindo and Monserrat and Alberich-Carramiñana et al. Our results also hold for Poincaré series of test ideals. In order to do so, we introduce a theory of Hilbert functions indexed over R which gives a unified treatment of both cases.
- Published
- 2022
- Full Text
- View/download PDF
3. A note on Bernstein–Sato ideals
- Author
-
Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Geometry, Algebraic ,Homology theory ,Geometria algebraica ,General Mathematics ,Homologia ,Matemàtiques i estadística [Àrees temàtiques de la UPC] - Abstract
We define the Bernstein–Sato ideal associated to a tuple of ideals and we relate it to the jumping points of the corresponding mixed multiplier ideals.
- Published
- 2022
4. Bernstein-Sato polynomials in commutative algebra
- Author
-
Josep Àlvarez Montaner, Jack Jeffries, Luis Núñez-Betancourt, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Multiplier ideals ,13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS] ,Commutative algebra ,Bernstein–Sato polynomial ,D-module ,Singularities ,13 Commutative rings and algebras::13N Differential algebra [Classificació AMS] ,Àlgebra commutativa - Abstract
This is an expository survey on the theory of Bernstein-Sato polynomials with special emphasis in its recent developments and its importance in commutative algebra
- Published
- 2022
5. Computing the support of local cohomology modules.
- Author
-
Josep àlvarez Montaner and Anton Leykin
- Published
- 2006
- Full Text
- View/download PDF
6. Operations with regular holonomic D-modules with support a normal crossing.
- Author
-
Josep àlvarez Montaner
- Published
- 2005
- Full Text
- View/download PDF
7. Pruned cellular free resolutions of monomial ideals
- Author
-
Oscar Fernández-Ramos, Josep Àlvarez Montaner, Philippe Gimenez, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Monomial ,Àlgebra homològica ,Discrete Morse theory ,Commutative Algebra (math.AC) ,01 natural sciences ,Morse, Teoria de ,Combinatorics ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,0103 physical sciences ,FOS: Mathematics ,Mathematics - Combinatorics ,Morse theory ,0101 mathematics ,Computer Science::Databases ,Mathematics ,Algebra and Number Theory ,Mathematics::Commutative Algebra ,Homological algebra ,Free resolution ,Betti splitting ,010102 general mathematics ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Order (ring theory) ,Monomial ideal ,Mathematics - Commutative Algebra ,13 Commutative rings and algebras::13N Differential algebra [Classificació AMS] ,Combinatorics (math.CO) ,010307 mathematical physics ,Enhanced Data Rates for GSM Evolution ,13 Commutative rings and algebras::13D Homological methods [Classificació AMS] ,Pruning (morphology) ,Resolution (algebra) - Abstract
Using discrete Morse theory, we give an algorithm that prunes the excess of information in the Taylor resolution and constructs a new cellular free resolution for an arbitrary monomial ideal. The pruned resolution is not simplicial in general, but we can slightly modify our algorithm in order to obtain a simplicial resolution. We also show that the Lyubeznik resolution fits into our pruning strategy. We finally use our methods to give a different approach to the theory of splitting of monomial ideals., 16 pages. Final version, to appear in Journal of Algebra
- Published
- 2020
- Full Text
- View/download PDF
8. Generating functions associated to Frobenius algebras
- Author
-
Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Differential equations ,Pure mathematics ,Endomorphism ,Equacions diferencials ,010103 numerical & computational mathematics ,Rational function ,Commutative Algebra (math.AC) ,01 natural sciences ,Àlgebra commutativa ,symbols.namesake ,Linear recurrence ,Complexity sequence ,Frobenius algebra ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS] ,Finitely-generated abelian group ,0101 mathematics ,Algebra over a field ,Mathematics ,Numerical Analysis ,Algebra and Number Theory ,010102 general mathematics ,Graded ring ,Generating function ,39 Difference and functional equations::39A Difference equations [Classificació AMS] ,Matemàtiques i estadística::Àlgebra [Àrees temàtiques de la UPC] ,Mathematics - Commutative Algebra ,Homogeneous ,symbols ,Geometry and Topology ,Commutative algebra - Abstract
We introduce a generating function associated to the homogeneous generators of a graded algebra that measures how far is this algebra from being finitely generated. For the case of some algebras of Frobenius endomorphisms we describe this generating function explicitly as a rational function., Comment: 15 pages. Published in Linear Algebra Appl
- Published
- 2019
- Full Text
- View/download PDF
9. Local cohomology of binomial edge ideals and their generic initial ideals
- Author
-
Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Pure mathematics ,Conjecture ,Mathematics::Commutative Algebra ,Binomial (polynomial) ,Applied Mathematics ,General Mathematics ,Homologia ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Edge (geometry) ,Local cohomology ,Type (model theory) ,Algebraic geometry ,Homology theory ,symbols.namesake ,Geometria algebraica ,Simple (abstract algebra) ,symbols ,Algebra over a field ,Mathematics ,Hilbert–Poincaré series - Abstract
We provide a Hochster type formula for the local cohomology modules of binomial edge ideals. As a consequence we obtain a simple criterion for the Cohen–Macaulayness and Buchsbaumness of these ideals and we describe their Castelnuovo–Mumford regularity and their Hilbert series. Conca and Varbaro (Square-free Groebner degenerations, 2018) have recently proved a conjecture of Conca, De Negri and Gorla (J Comb Algebra 2:231–257, 2018) relating the graded components of the local cohomology modules of Cartwright–Sturmfels ideals and their generic initial ideals. We provide an alternative proof for the case of binomial edge ideals
- Published
- 2019
- Full Text
- View/download PDF
10. $$\mathbb {Q}$$-Hilbert Functions of Multiplier and Test Ideals
- Author
-
Josep Àlvarez Montaner and Luis Núñez-Betancourt
- Published
- 2021
- Full Text
- View/download PDF
11. Divisors of expected Jacobian type
- Author
-
Josep Àlvarez Montaner, Francesc Planas-Vilanova, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Pure mathematics ,Reduction (recursion theory) ,Ideal (set theory) ,Mathematics::Commutative Algebra ,General Mathematics ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Order (ring theory) ,Type (model theory) ,Commutative Algebra (math.AC) ,Mathematics - Commutative Algebra ,Àlgebra commutativa ,symbols.namesake ,Operator (computer programming) ,Mathematics::Algebraic Geometry ,Jacobian matrix and determinant ,symbols ,FOS: Mathematics ,Commutative algebra ,Rees algebra ,Invariant (mathematics) ,Mathematics - Abstract
Divisors whose Jacobian ideal is of linear type have received a lot of attention recently because of its connections with the theory of D-modules. In this work we are interested on divisors of expected Jacobian type, that is, divisors whose gradient ideal is of linear type and the relation type of its Jacobian ideal coincides with the reduction number with respect to the gradient ideal plus one. We provide conditions in order to be able to describe precisely the equations of the Rees algebra of the Jacobian ideal. We also relate the relation type of the Jacobian ideal to some D-module theoretic invariant given by the degree of the Kashiwara operator., 18 pages. Typos fixed. To appear in Math. Scand
- Published
- 2020
12. Bass numbers of local cohomology of cover ideals of graphs
- Author
-
Josep Àlvarez Montaner, Fatemeh Sohrabi, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Àlgebra homològica ,0102 computer and information sciences ,Injective resolution ,Local cohomology ,Commutative Algebra (math.AC) ,01 natural sciences ,Combinatorics ,FOS: Mathematics ,Mathematics - Combinatorics ,Discrete Mathematics and Combinatorics ,0101 mathematics ,Mathematics ,Connected component ,Connectivity ,Algebra and Number Theory ,13 Commutative rings and algebras::13C Theory of modules and ideals [Classificació AMS] ,Grafs, Teoria de ,Homological algebra ,010102 general mathematics ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Mathematics - Commutative Algebra ,Injective function ,Graph theory ,Bass (sound) ,010201 computation theory & mathematics ,Combinatorics (math.CO) ,13 Commutative rings and algebras::13D Homological methods [Classificació AMS] ,05 Combinatorics::05C Graph theory [Classificació AMS] ,Graphs - Abstract
We develop splitting techniques to study Lyubeznik numbers of cover ideals of graphs which allow us to describe them for large families of graphs including forests, cycles, wheels and cactus graphs. More generally we are able to compute all the Bass numbers and the shape of the injective resolution of local cohomology modules by considering the connected components of the corresponding subgraphs. Indeed our method gives us a very simple criterion for the vanishing of these local cohomology modules in terms of the connected components., 31 pages
- Published
- 2020
13. Bernstein-Sato functional equations, $V$-filtrations, and multiplier ideals of direct summands
- Author
-
Daniel J. Hernández, Emily E. Witt, Pedro Teixeira, Luis Núñez-Betancourt, Josep Àlvarez Montaner, Jack Jeffries, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Pure mathematics ,16 Associative rings and algebras::16S Rings and algebras arising under various constructions [Classificació AMS] ,Rings (Algebra) ,General Mathematics ,Commutative rings ,Bernstein–Sato polynomial ,Multiplier ideal ,Anells commutatius ,Commutative Algebra (math.AC) ,Multiplier (Fourier analysis) ,Mathematics - Algebraic Geometry ,Functional equation ,FOS: Mathematics ,13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS] ,D-module ,Ring of invariants ,Algebraic Geometry (math.AG) ,Mathematics ,V -filtrations ,14 Algebraic geometry::14F (Co)homology theory [Classificació AMS] ,Direct summand ,Mathematics::Commutative Algebra ,Applied Mathematics ,Construct (python library) ,Matemàtiques i estadística::Àlgebra [Àrees temàtiques de la UPC] ,Mathematics - Commutative Algebra ,13 Commutative rings and algebras::13N Differential algebra [Classificació AMS] ,Anells (Àlgebra) - Abstract
This paper investigates the existence and properties of a Bernstein-Sato functional equation in nonregular settings. In particular, we construct $D$-modules in which such formal equations can be studied. The existence of the Bernstein-Sato polynomial for a direct summand of a polynomial over a field is proved in this context. It is observed that this polynomial can have zero as a root, or even positive roots. Moreover, a theory of $V$-filtrations is introduced for nonregular rings, and the existence of these objects is established for what we call differentially extensible summands. This family of rings includes toric, determinantal, and other invariant rings. This new theory is applied to the study of multiplier ideals and Hodge ideals of singular varieties. Finally, we extend known relations among the objects of interest in the smooth case to the setting of singular direct summands of polynomial rings., 42 pages. A new section on Hodge ideals is included. Comments welcome
- Published
- 2019
14. On some local cohomology spectral sequences
- Author
-
Josep Àlvarez Montaner, Alberto F Boix, Santiago Zarzuela, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
General Mathematics ,Commutative rings ,Àlgebra homològica ,0102 computer and information sciences ,Anells commutatius ,Commutative Algebra (math.AC) ,Mathematics::Algebraic Topology ,01 natural sciences ,Àlgebra commutativa ,Mathematics - Algebraic Geometry ,Mathematics::K-Theory and Homology ,Mathematics::Category Theory ,FOS: Mathematics ,0101 mathematics ,Algebraic Geometry (math.AG) ,13D45 (Primary), 13A35, 13F55, 14N20, 18G40 (Secondary) ,Homological algebra ,010102 general mathematics ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Topologia algebraica ,Mathematics - Commutative Algebra ,Seqüències espectrals ,Successions espectrals (Matemàtica) ,Spectral sequences (Mathematics) ,010201 computation theory & mathematics ,Commutative algebra ,Algebraic topology - Abstract
We introduce a formalism to produce several families of spectral sequences involving the derived functors of the limit and colimit functors over a finite partially ordered set. The first type of spectral sequences involves the left derived functors of the colimit of the direct system that we obtain applying a family of functors to a single module. For the second type we follow a completely different strategy as we start with the inverse system that we obtain by applying a covariant functor to an inverse system. The spectral sequences involve the right derived functors of the corresponding limit. We also have a version for contravariant functors. In all the introduced spectral sequences we provide sufficient conditions to ensure their degeneration at their second page. As a consequence we obtain some decomposition theorems that greatly generalize the well-known decomposition formula for local cohomology modules given by Hochster., Comment: 63 pages, comments are welcome. To appear in International Mathematics Research Notices
- Published
- 2018
15. Constancy regions of mixed multiplier ideals in two-dimensional local rings with rational singularities
- Author
-
Ferran Dachs-Cadefau, Maria Alberich-Carramiñana, Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Pure mathematics ,rational singularities ,General Mathematics ,Mixed multiplier ideals ,Commutative Algebra (math.AC) ,01 natural sciences ,Mathematics - Algebraic Geometry ,14 Algebraic geometry::14H Curves [Classificació AMS] ,0103 physical sciences ,FOS: Mathematics ,Partition (number theory) ,0101 mathematics ,Hardware_ARITHMETICANDLOGICSTRUCTURES ,Algebraic Geometry (math.AG) ,Mathematics ,14 Algebraic geometry::14F (Co)homology theory [Classificació AMS] ,Mathematics::Commutative Algebra ,010102 general mathematics ,Local ring ,Rational singularity ,Matemàtiques i estadística::Àlgebra [Àrees temàtiques de la UPC] ,Mathematics - Commutative Algebra ,Multiplier ideal ,Orthant ,jumping walls ,Geometry, Algebraic ,Algebra ,Geometria algebraica ,Gravitational singularity ,010307 mathematical physics ,Tuple - Abstract
The aim of this paper is to study mixed multiplier ideals associated to a tuple of ideals in a two-dimensional local ring with a rational singularity. We are interested in the partition of the real positive orthant given by the regions where the mixed multiplier ideals are constant. In particular we reveal which information encoded in a mixed multiplier ideal determines its corresponding jumping wall and we provide an algorithm to compute all the constancy regions, and their corresponding mixed multiplier ideals, in any desired range., 26 pages
- Published
- 2018
- Full Text
- View/download PDF
16. Multiplicities of jumping points for mixed multiplier ideals
- Author
-
Víctor González Alonso, Josep Àlvarez Montaner, Ferran Dachs Cadefau, Maria Alberich Carramiñana, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, Ministerio de Economía y Competitividad (España), European Commission, Generalitat de Catalunya, and Barcelona Graduate School of Economics
- Subjects
Pure mathematics ,General Mathematics ,Mixed multiplier ideals ,Poincaré series ,Rationality ,medicine.disease_cause ,01 natural sciences ,Poincaré series ,Mathematics - Algebraic Geometry ,Jumping ,medicine ,FOS: Mathematics ,0101 mathematics ,Algebraic Geometry (math.AG) ,Mathematics ,010102 general mathematics ,Poincaré, Sèries de ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Multiplicity (mathematics) ,16. Peace & justice ,Multiplicity Poincaré series ,Jumping points ,010101 applied mathematics ,Multiplicity ,Gravitational singularity - Abstract
In this paper we make a systematic study of the multiplicity of the jumping points associated to the mixed multiplier ideals of a family of ideals in a complex surface with rational singularities. In particular we study the behaviour of the multiplicity by small perturbations of the jumping points. We also introduce a Poincar\'e series for mixed multiplier ideals and prove its rationality. Finally, we study the set of divisors that contribute to the log-canonical wall., Comment: 21 pages
- Published
- 2018
- Full Text
- View/download PDF
17. D-modules, Bernstein-Sato polynomials and F-invariants of direct summands
- Author
-
Luis Núñez-Betancourt, Josep Àlvarez Montaner, Craig Huneke, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Power series ,Polynomial ,Pure mathematics ,Rational number ,16 Associative rings and algebras::16S Rings and algebras arising under various constructions [Classificació AMS] ,Rings (Algebra) ,General Mathematics ,Field (mathematics) ,Local cohomology ,D-modules ,Bernstein–Sato polynomial ,Commutative Algebra (math.AC) ,01 natural sciences ,Àlgebra commutativa ,Mathematics - Algebraic Geometry ,0103 physical sciences ,14F10, 13N10, 13A35, 16S32 ,FOS: Mathematics ,13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS] ,Ideal (ring theory) ,0101 mathematics ,Algebraic Geometry (math.AG) ,Mathematics ,Discrete mathematics ,Ring (mathematics) ,F-jumping numbers ,14 Algebraic geometry::14F (Co)homology theory [Classificació AMS] ,010102 general mathematics ,Test ideals ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Mathematics - Commutative Algebra ,13 Commutative rings and algebras::13N Differential algebra [Classificació AMS] ,Algebraic geometry ,Anells (Àlgebra) ,Geometria algebraica ,010307 mathematical physics ,Commutative algebra ,Direct summands - Abstract
We study the structure of $D$-modules over a ring $R$ which is a direct summand of a polynomial or a power series ring $S$ with coefficients over a field. We relate properties of $D$-modules over $R$ to $D$-modules over $S$. We show that the localization $R_f$ and the local cohomology module $H^i_I(R)$ have finite length as $D$-modules over $R$. Furthermore, we show the existence of the Bernstein-Sato polynomial for elements in $R$. In positive characteristic, we use this relation between $D$-modules over $R$ and $S$ to show that the set of $F$-jumping numbers of an ideal $I\subseteq R$ is contained in the set of $F$-jumping numbers of its extension in $S$. As a consequence, the $F$-jumping numbers of $I$ in $R$ form a discrete set of rational numbers. We also relate the Bernstein-Sato polynomial in $R$ with the $F$-thresholds and the $F$-jumping numbers in $R$., 24 pages. Comments welcome!
- Published
- 2017
18. Addendum to 'Frobenius and Cartier algebras of Stanley–Reisner rings' [J. Algebra 358 (2012) 162–177]
- Author
-
Josep Àlvarez Montaner, Kohji Yanagawa, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, and Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
- Subjects
Stanley–Reisner rings ,Pure mathematics ,Algebra and Number Theory ,Mathematics::Commutative Algebra ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Cartier algebras ,Addendum ,Characterization (mathematics) ,Algebra ,13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS] ,Àlgebra ,Finitely-generated abelian group ,Algebra over a field ,Mathematics - Abstract
We give a purely combinatorial characterization of complete Stanley–Reisner rings having a principally generated (equivalently, finitely generated) Cartier algebra.
- Published
- 2014
- Full Text
- View/download PDF
19. Monomial generators of complete planar ideals
- Author
-
Guillem Blanco, Maria Alberich-Carramiñana, Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Surface (mathematics) ,Complete ideals ,Pure mathematics ,Monomial ,SINGULARITIES ,EQUISINGULARITY ,JUMPING NUMBERS ,Mathematics, Applied ,Multiplier ideals ,Commutative Algebra (math.AC) ,Àlgebra commutativa ,Set (abstract data type) ,Mathematics - Algebraic Geometry ,Planar ,aximal contact curves ,FOS: Mathematics ,maximal contact curves ,LOCAL-RINGS ,Algebraic Geometry (math.AG) ,Mathematics ,Science & Technology ,Algebra and Number Theory ,Ideal (set theory) ,Mathematics::Commutative Algebra ,Applied Mathematics ,Matemàtiques i estadística::Àlgebra [Àrees temàtiques de la UPC] ,Mathematics - Commutative Algebra ,Algebraic geometry ,Geometria algebraica ,Physical Sciences ,Commutative algebra - Abstract
We provide an algorithm that computes a set of generators for any complete ideal in a smooth complex surface. More interestingly, these generators admit a presentation as monomials in a set of maximal contact elements associated to the minimal log-resolution of the ideal. Furthermore, the monomial expression given by our method is an equisingularity invariant of the ideal. As an outcome, we provide a geometric method to compute the integral closure of a planar ideal and we apply our algorithm to some families of complete ideals., Comment: 22 pages. Title change and major revision of the previous version. Applications to families of complete ideals included
- Published
- 2017
- Full Text
- View/download PDF
20. Multiplier ideals in two-dimensional local rings with rational singularities
- Author
-
Maria Alberich-Carramiñana, Ferran Dachs-Cadefau, Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, University of Leuven, Generalitat de Catalunya, European Commission, and Ministerio de Economía y Competitividad (España)
- Subjects
jumping numbers ,General Mathematics ,Multiplier ideals ,14 Algebraic geometry::14J Surfaces and higher-dimensional varieties [Classificació AMS] ,Commutative Algebra (math.AC) ,01 natural sciences ,Multiplier (Fourier analysis) ,Mathematics - Algebraic Geometry ,0103 physical sciences ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,FOS: Mathematics ,0101 mathematics ,Algebra over a field ,Algebraic Geometry (math.AG) ,Mathematics ,14 Algebraic geometry::14F (Co)homology theory [Classificació AMS] ,Mathematics::Commutative Algebra ,010102 general mathematics ,Local ring ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Mathematics - Commutative Algebra ,Geometry, Algebraic ,Geometria algebraica ,Local rings ,Anells locals ,14F18 ,010307 mathematical physics ,Humanities ,14J17 ,rational surface singularity - Abstract
arXiv:1412.3605v2, The aim of this paper is to study jumping numbers and multiplier ideals of any ideal in a two-dimensional local ring with a rational singularity. In particular we reveal which information encoded in a multiplier ideal determines the next jumping number. This leads to an algorithm to compute sequentially the jumping numbers and the whole chain of multiplier ideals in any desired range. As a consequence of our method we develop the notion of jumping divisor that allows to describe the jump between two consecutive multiplier ideals. In particular we find a unique minimal jumping divisor that is studied extensively., All three authors were partially supported by Generalitat de Catalunya 2014 SGR-634 project and Spanish Ministerio de Economía y Competitividad MTM2012-38122-03-01/FEDER. FDC is also supported by the KU Leuven grant OT/11/069.
- Published
- 2016
21. Effective computation of base points of ideals in two-dimensional local rings
- Author
-
Guillem Blanco, Maria Alberich-Carramiñana, Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Surface (mathematics) ,Pure mathematics ,Computation ,Minimal log-resolution ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,0102 computer and information sciences ,Commutative Algebra (math.AC) ,01 natural sciences ,Mathematics - Algebraic Geometry ,Newton-Puiseux algorithm ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,FOS: Mathematics ,0101 mathematics ,Algebraic Geometry (math.AG) ,Eigenvalues and eigenvectors ,Mathematics ,ComputingMethodologies_COMPUTERGRAPHICS ,Algebra and Number Theory ,Ideal (set theory) ,010102 general mathematics ,Local ring ,Order (ring theory) ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Base (topology) ,Mathematics - Commutative Algebra ,Algebraic geometry ,Computational Mathematics ,Geometria algebraica ,010201 computation theory & mathematics ,Product (mathematics) ,weighted clusters ,MathematicsofComputing_DISCRETEMATHEMATICS - Abstract
In this work we describe a minimal log-resolution of an ideal in a smooth complex surface from the minimal log-resolution of its generators., 21 pages. Exposition is improved. Examples added
- Published
- 2016
22. Computing the support of local cohomology modules
- Author
-
Anton Leykin and Josep Àlvarez Montaner
- Subjects
Discrete mathematics ,Local cohomology ,Polynomial ,Ideal (set theory) ,Algebra and Number Theory ,Mathematics::Commutative Algebra ,Computation ,Polynomial ring ,Group cohomology ,D-modules ,Mathematics - Commutative Algebra ,Commutative Algebra (math.AC) ,Direct computation ,Mathematics - Algebraic Geometry ,Computational Mathematics ,Characteristic cycle ,FOS: Mathematics ,Equivariant cohomology ,13D45, 13N10 ,Algebraic Geometry (math.AG) ,Mathematics - Abstract
For a polynomial ring $R=k[x_1,...,x_n]$, we present a method to compute the characteristic cycle of the localization $R_f$ for any nonzero polynomial $f\in R$ that avoids a direct computation of $R_f$ as a $D$-module. Based on this approach, we develop an algorithm for computing the characteristic cycle of the local cohomology modules $H^r_I(R)$ for any ideal $I\subseteq R$ using the \v{C}ech complex. The algorithm, in particular, is useful for answering questions regarding vanishing of local cohomology modules and computing Lyubeznik numbers. These applications are illustrated by examples of computations using our implementation of the algorithm in Macaulay~2., Comment: 15 pages
- Published
- 2006
- Full Text
- View/download PDF
23. Local cohomology, arrangements of subspaces and monomial ideals
- Author
-
Josep Àlvarez Montaner, Santiago Zarzuela Armengou, and Ricardo Garcia Lopez
- Subjects
Discrete mathematics ,Pure mathematics ,Mathematics(all) ,Cup product ,General Mathematics ,Group cohomology ,De Rham cohomology ,Étale cohomology ,Equivariant cohomology ,Local cohomology ,Cohomology ,Čech cohomology ,Mathematics - Abstract
Let Ank denote the affine space of dimension n over a field k; let XCA n k be an arrangement of linear subvarieties. Set R 1⁄4 k1⁄2x1;y; xn and let ICR denote an ideal which defines X : In this paper we study the local cohomology modules H IðRÞ :1⁄4 indlimj Ext i RðR=I ;RÞ; with special regard of the case where the ideal I is generated by monomials. If k is the field of complex numbers (or, more generally, a field of characteristic zero), the module H I ðRÞ is known to have a module structure over the Weyl algebra AnðkÞ; and one can therefore consider its characteristic cycle, denoted CCðH I ðRÞÞ in this paper (see e.g. [3, I.1.8.5]). On the other hand, the arrangement X defines a partially ordered set PðX Þ whose elements correspond to the intersections of irreducible components of X and where the order is given by inclusion. Our first result is the determination of the characteristic cycles CCðH I ðRÞÞ in terms of the cohomology of some simplicial complexes attached to the poset PðXÞ: It follows from the formulas obtained that, in either the complex or the real case, these characteristic cycles determine the Betti numbers of the complement of the arrangement in Ank: In fact, it was proved by Goresky and MacPherson that the
- Published
- 2003
- Full Text
- View/download PDF
24. Linearization of local cohomology modules
- Author
-
Josep Àlvarez Montaner and Santiago Zarzuela
- Published
- 2003
- Full Text
- View/download PDF
25. Lyubeznik table of sequentially Cohen-Macaulay rings
- Author
-
Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Discrete mathematics ,Pure mathematics ,Ring (mathematics) ,Algebra and Number Theory ,Mathematics::Commutative Algebra ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Sequentially Cohen-Macaulay rings ,Anells commutatius ,Table (information) ,Cohen-Macaulay rings ,Àlgebra commutativa ,ideals ,numbers ,finiteness properties ,invariants ,Lyubeznik numbers ,local cohomology modules ,Mathematics - Abstract
We prove that sequentially Cohen-Macaulay rings in positive characteristic, as well as sequentially Cohen-Macaulay Stanley-Reisner rings in any characteristic, have trivial Lyubeznik table. Some other configurations of Lyubeznik tables are also provided depending on the deficiency modules of the ring.
- Published
- 2015
26. Local Cohomology Using Macaulay2
- Author
-
Josep Àlvarez Montaner and Oscar Fernández-Ramos
- Subjects
Algebra ,Grothendieck topology ,Computer science ,Cup product ,Group cohomology ,Equivariant cohomology ,Local cohomology ,Topology ,Symbolic computation ,Cohomology ,Motivic cohomology - Abstract
Over the last 20 years there were many advances made in the computational theory of D-modules. Nowadays, the most common computer algebra systems such as Macaulay2 or Singular have important available packages for working with D-modules. In particular, the package D-modules [127] for Macaulay 2 [80] developed by A. Leykin and H. Tsai contains an implementation of the algorithms given by U. Walther [194] and T. Oaku and N.
- Published
- 2013
- Full Text
- View/download PDF
27. Local Cohomology Modules Supported on Monomial Ideals
- Author
-
Josep Àlvarez Montaner
- Subjects
Pure mathematics ,Simplicial complex ,Monomial ,Mathematics::K-Theory and Homology ,Polynomial ring ,Calculus ,Structure (category theory) ,Monomial ideal ,Commutative algebra ,Local cohomology ,Mathematics - Abstract
Local cohomology was introduced by A. Grothendieck in the early 1960s and quickly became an indispensable tool in Commutative Algebra. Despite the effort of many authors in the study of these modules, their structure is still quite unknown. C
- Published
- 2013
- Full Text
- View/download PDF
28. Frobenius and Cartier algebras of Stanley-Reisner rings
- Author
-
Alberto F. Boix, Santiago Zarzuela, Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, and Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
- Subjects
Pure mathematics ,Frobenius algebras ,Commutative rings ,Cartier algebras ,Field (mathematics) ,Anells commutatius ,Commutative Algebra (math.AC) ,Set (abstract data type) ,symbols.namesake ,Mathematics - Algebraic Geometry ,Frobenius algebra ,FOS: Mathematics ,Algebra over a field ,Algebraic Geometry (math.AG) ,Real number ,Mathematics ,Stanley–Reisner rings ,Ring (mathematics) ,Algebra and Number Theory ,Mathematics::Commutative Algebra ,Associative rings ,Topologia algebraica ,Matemàtiques i estadística::Àlgebra [Àrees temàtiques de la UPC] ,Mathematics - Commutative Algebra ,Anells associatius ,Algebraic geometry ,Geometria algebraica ,Stanley-Reisner rings ,symbols ,Injective hull ,Algebraic topology ,Frobenius, Àlgebra de ,Counterexample - Abstract
We prove that the Frobenius algebra of the injective hull of a complete Stanley-Reisner ring as well as its Matlis dual notion of Cartier algebra can be only principally generated or infinitely generated. As a consequence we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley-Reisner rings form a discrete set., 16 pages
- Published
- 2011
29. Lyubeznik numbers of monomial ideals
- Author
-
Alireza Vahidi and Josep Àlvarez Montaner
- Subjects
Discrete mathematics ,Monomial ,Mathematics::Commutative Algebra ,Applied Mathematics ,General Mathematics ,Polynomial ring ,Field (mathematics) ,Monomial ideal ,Local cohomology ,Mathematics - Commutative Algebra ,Commutative Algebra (math.AC) ,Injective function ,Combinatorics ,Mathematics::K-Theory and Homology ,FOS: Mathematics ,Mathematics - Combinatorics ,Ideal (ring theory) ,Combinatorics (math.CO) ,Mathematics ,Resolution (algebra) - Abstract
We study Bass numbers of local cohomology modules supported on squarefree monomial ideals paying special attention to Lyubeznik numbers. We build a dictionary between local cohomology modules and minimal free resolutions that allow us to interpret Lyubeznik numbers as the obstruction to the acyclicity of the linear strands of the Alexander dual ideals. The methods we develop also help us to give a bound for the injective dimension of the local cohomology modules in terms of the dimension of the small support., Comment: 28 pages
- Published
- 2011
- Full Text
- View/download PDF
30. Some numerical invariants of local rings
- Author
-
Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, and Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
- Subjects
Pure mathematics ,Local cohomology ,Formal power series ,Mathematics::Commutative Algebra ,Àlgebra diferencial ,Applied Mathematics ,General Mathematics ,Prime ideal ,Local ring ,Homologia, Teoria d' ,D-modules ,Differential algebra ,13 Commutative rings and algebras::13N Differential algebra [Classificació AMS] ,Algebraic number ,13 Commutative rings and algebras::13D Homological methods [Classificació AMS] ,Mathematics ,Algebra, Homological - Abstract
LetRRbe a formal power series ring over a field of characteristic zero andI⊆RI\subseteq Rany ideal. The aim of this work is to introduce some numerical invariants of the local ringsR/IR/Iby using the theory of algebraicD\mathcal {D}-modules. More precisely, we will prove that the multiplicities of the characteristic cycle of the local cohomology modulesHIn−i(R)H_I^{n-i}(R)andHpp(HIn−i(R))H_{\mathfrak {p}}^p(H_I^{n-i}(R)), wherep⊆R\mathfrak {p} \subseteq Ris any prime ideal that containsII, are invariants ofR/IR/I.
- Published
- 2002
31. Some numerical invariants of local rings.
- Author
-
Josep Àlvarez Montaner
- Abstract
Let $R$ be a formal power series ring over a field of characteristic zero and $I\subseteq R$ any ideal. The aim of this work is to introduce some numerical invariants of the local rings $R/I$ by using the theory of algebraic $\mathcal{D}$-modules. More precisely, we will prove that the multiplicities of the characteristic cycle of the local cohomology modules $H_I^{n-i}(R)$ and $H_{\mathfrak{p}}^p(H_I^{n-i}(R))$, where $\mathfrak{p} \subseteq R$ is any prime ideal that contains $I$, are invariants of $R/I$. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
32. Characteristic cycles of local cohomology modules of monomial ideals
- Author
-
Josep Àlvarez Montaner, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, and Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
- Subjects
Discrete mathematics ,Monomial ,Algebra and Number Theory ,Mathematics::Commutative Algebra ,Local ring ,Monomial ideal ,Field (mathematics) ,Homologia, Teoria d' ,Local cohomology ,Cohomological dimension ,local cohomology ,Combinatorics ,Regular ring ,Maximal ideal ,13 Commutative rings and algebras::13D Homological methods [Classificació AMS] ,Mathematics ,Algebra, Homological - Abstract
We study, by using the theory of algebraic D -modules, the local cohomology modules supported on a monomial ideal I of the local regular ring R=k[[x 1 ,…,x n ]] , where k is a field of characteristic zero. We compute the characteristic cycle of H I r (R) and H m p (H I r (R)) , where m is the maximal ideal of R and I is a squarefree monomial ideal. As a consequence, we can decide when the local cohomology module H I r (R) vanishes and compute the cohomological dimension cd(R,I) in terms of the minimal primary decomposition of the monomial ideal I . We also give a Cohen–Macaulayness criterion for the local ring R/I and compute the Lyubeznik numbers λ p,i (R/I)=dim k Ext R p (k,H I n−i (R)) .
- Full Text
- View/download PDF
33. A Koszul complex over skew polynomial rings
- Author
-
Santiago Zarzuela, Josep Àlvarez Montaner, Alberto F. Boix, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Pure mathematics ,16 Associative rings and algebras::16S Rings and algebras arising under various constructions [Classificació AMS] ,Endomorphism ,Rings (Algebra) ,Polynomial ring ,Frobenius algebras ,Commutative rings ,14 Algebraic geometry::14B Local theory [Classificació AMS] ,Cartier algebras ,Koszul complex ,010103 numerical & computational mathematics ,Anells commutatius ,01 natural sciences ,Mathematics::Algebraic Topology ,Àlgebra commutativa ,Mathematics::K-Theory and Homology ,13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS] ,0101 mathematics ,Morfismes (Matemàtica) ,Morphisms (Mathematics) ,Mathematics ,Algebra and Number Theory ,Ideal (set theory) ,Mathematics::Commutative Algebra ,010102 general mathematics ,Mathematics::Rings and Algebras ,Skew ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,Geometry, Algebraic ,Skew polynomial rings ,Anells (Àlgebra) ,13 Commutative rings and algebras::13B Ring extensions and related topics [Classificació AMS] ,Geometria algebraica ,Commutative algebra ,Resolution (algebra) - Abstract
We construct a Koszul complex in the category of left skew polynomial rings associated with a flat endomorphism that provides a finite free resolution of an ideal generated by a Koszul regular sequence
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.