1. Enhancing Anti-Money Laundering Efforts with Network-Based Algorithms
- Author
-
Bonato, Anthony, Palan, Juan Sebastian Chavez, and Szava, Adam
- Subjects
Computer Science - Social and Information Networks - Abstract
The global banking system has faced increasing challenges in combating money laundering, necessitating advanced methods for detecting suspicious transactions. Anti-money laundering (or AML) approaches have often relied on predefined thresholds and machine learning algorithms using flagged transaction data, which are limited by the availability and accuracy of existing datasets. In this paper, we introduce a novel algorithm that leverages network analysis to detect potential money laundering activities within large-scale transaction data. Utilizing an anonymized transactional dataset from Co\"operatieve Rabobank U.A., our method combines community detection via the Louvain algorithm and small cycle detection to identify suspicious transaction patterns below the regulatory reporting thresholds. Our approach successfully identifies cycles of transactions that may indicate layering steps in money laundering, providing a valuable tool for financial institutions to enhance their AML efforts. The results suggest the efficacy of our algorithm in pinpointing potentially illicit activities that evade current detection methods.
- Published
- 2024