Introduction. The proline-rich decapeptide 10c (Bj-PRO-10c; ENWPHPQIPP) from the Bothrops jararaca snake modulates argininosuccinate synthetase (AsS) activity to stimulate L-arginine metabolite production and neuroprotection in the SH-SY5Y cell line. The relationships between structure, interactions with AsS, and neuroprotection are little known. We evaluated the neuroprotective effects of Bj-PRO-10c and three other PROs (Bn-PRO-10a, Bitis nasicornis snake venom, with a high degree of similarity to Bj-PRO-10c, on oxidative stress-induced toxicity in neuronal PC12 cells and L-arginine metabolite generation via AsS activity regulation. Methods. Cell integrity, metabolic activity, reactive oxygen species (ROS) production, and arginase activity were examined after 4 h of PRO pre-treatment and 20 h of H2O2-induced damage. Results. Only Bn-PRO-10a-MK and Bn-PRO-10c restored cell integrity and arginase function under oxidative stress settings, but they did not reduce ROS or cell metabolism. The MK dipeptide in Bn-PRO-10a-MK and valine (V8) in Bn-PRO-10c are important to these effects when compared to Bn-PRO-10a. Bj-PRO-10c is not neuroprotective in PC12 cells, perhaps because of their limited NMDA-type glutamate receptor activity. The PROs interaction analysis on AsS activation can be rated as follows: Bj-PRO-10c > Bn-PRO-10c > Bn-PRO-10a-MK > Bn-PRO-10a. The structure of PROs and their correlations with enzyme activity revealed that histidine (H5) and glutamine (Q7) in Bj-PRO-10c potentiated their affinity for AsS. Conclusions. Our investigation provides the first insights into the structure and molecular interactions of PROs with AsS, which could possibly further their neuropharmacological applications.