1. TRAF7 determines circadian period through ubiquitination and degradation of DBP
- Author
-
Shusaku Masuda, Nobuhiro Kurabayashi, Rina Nunokawa, Yuta Otobe, Hiroko Kozuka-Hata, Masaaki Oyama, Yuri Shibata, Jun-ichiro Inoue, Michinori Koebis, Atsu Aiba, Hikari Yoshitane, and Yoshitaka Fukada
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Abstract D-site binding protein, DBP, is a clock-controlled transcription factor and drives daily rhythms of physiological processes through the regulation of an array of genes harboring a DNA binding motif, D-box. DBP protein levels show a circadian oscillation with an extremely robust peak/trough ratio, but it is elusive how the temporal pattern is regulated by post-translational regulation. In this study, we show that DBP protein levels are down-regulated by the ubiquitin-proteasome pathway. Analysis using 19 dominant-negative forms of E2 enzymes have revealed that UBE2G1 and UBE2T mediate the degradation of DBP. A proteomic analysis of DBP-interacting proteins and database screening have identified Tumor necrosis factor Receptor-Associated Factor 7 (TRAF7), a RING-type E3 ligase, that forms a complex with UBE2G1 and/or UBE2T. Ubiquitination analysis have revealed that TRAF7 enhances K48-linked polyubiquitination of DBP in cultured cells. Overexpression of TRAF7 down-regulates DBP protein level, while knockdown of TRAF7 up-regulates DBP in cultured cells. Knockout of TRAF7 in NIH3T3 cells have revealed that TRAF7 mediates the time-of-the-day-dependent regulation of DBP levels. Furthermore, TRAF7 has a period-shortening effect on the cellular clock. Together, TRAF7 plays an important role in circadian clock oscillation through destabilization of DBP.
- Published
- 2024
- Full Text
- View/download PDF