15 results on '"Junttila, Ville"'
Search Results
2. Distribution of perfluoroalkyl acids in fish species from the Baltic Sea and freshwaters in Finland
- Author
-
Kumar, Eva, Koponen, Jani, Rantakokko, Panu, Airaksinen, Riikka, Ruokojärvi, Päivi, Kiviranta, Hannu, Vuorinen, Pekka J., Myllylä, Timo, Keinänen, Marja, Raitaniemi, Jari, Mannio, Jaakko, Junttila, Ville, Nieminen, Janne, Venäläinen, Eija-Riitta, and Jestoi, Marika
- Published
- 2022
- Full Text
- View/download PDF
3. Comment on Environmental quality standards for diclofenac derived under the European Water Framework Directive: 1. Aquatic organisms (Leverett et al. in Environmental Sciences Europe 2021; 33: 133)
- Author
-
Maack, Gerd, Äystö, Lauri, Carere, Mario, Clausen, Henning, James, Alice, Junghans, Marion, Junttila, Ville, Hollender, Juliane, Marinov, Dimitar, Stroomberg, Gerard, Triebskorn, Rita, Verbruggen, Eric, and Lettieri, Teresa
- Published
- 2022
- Full Text
- View/download PDF
4. Hazardous substances in the sediments and their pathways from potential sources in the eastern Gulf of Finland
- Author
-
Kuprijanov, Ivan, Väli, Germo, Sharov, Andrey, Berezina, Nadezhda, Liblik, Taavi, Lips, Urmas, Kolesova, Natalja, Maanio, Jaakko, Junttila, Ville, and Lips, Inga
- Published
- 2021
- Full Text
- View/download PDF
5. HELCOM Thematic assessment of hazardous substances, marine litter, underwater noise and non-indigenous species 2016-2021. Baltic Sea Environment Proceedings n°190
- Author
-
Rowe, Owen, Ruiz, Marta, Wolf, Jana, Alurralde, Gastón, Bildberg, Eva, Brockmeyer, Berit, Christensen, Anne Munch, Fryer, Rob, Gorokhova, Elna, Gustafsson, Johan, Hüttel, Theodor Rasmussen, Jensen, Hans Mose, Josefsson, Sarah, Junttila, Ville, Kairaranta, Joni, Klauson, Aleksander, Kolesova, Natalja, Kouloumpos, Vasileios, Larsen, Martin Mørk, Lehtiniemi, Maiju, Murray, Ciarán, Naddafi, Rahmat, Näslund, Johan, Pinarbasi, Kemal, Poikane, Rita, Raudkivi, Markus, Rindorf, Anna, Sanderson, Hans, Slobodnik, Jaroslav, Sørensen, Anne S, Stæhr, Peter A., Strand, Jakob, Tougaard, Jakob, Vähä, Emmi, Ytreberg, Erik, Zalewska, Tamara, Rowe, Owen, Ruiz, Marta, Wolf, Jana, Alurralde, Gastón, Bildberg, Eva, Brockmeyer, Berit, Christensen, Anne Munch, Fryer, Rob, Gorokhova, Elna, Gustafsson, Johan, Hüttel, Theodor Rasmussen, Jensen, Hans Mose, Josefsson, Sarah, Junttila, Ville, Kairaranta, Joni, Klauson, Aleksander, Kolesova, Natalja, Kouloumpos, Vasileios, Larsen, Martin Mørk, Lehtiniemi, Maiju, Murray, Ciarán, Naddafi, Rahmat, Näslund, Johan, Pinarbasi, Kemal, Poikane, Rita, Raudkivi, Markus, Rindorf, Anna, Sanderson, Hans, Slobodnik, Jaroslav, Sørensen, Anne S, Stæhr, Peter A., Strand, Jakob, Tougaard, Jakob, Vähä, Emmi, Ytreberg, Erik, and Zalewska, Tamara
- Abstract
The production of this report was carried out through the HELCOM Project for the development of the Third Holistic Assessment of the Baltic Sea (HOLAS 3). The work builds on the previous assessment (HOLAS II) and methodologies, evaluations and assessments included in this report have been directly contributed to by the HELCOM BLUES project, the Baltic Data Flows project, the COMPLETE project, the COMPLETE PLUS project, and the PreEMPT project.
- Published
- 2023
6. Sedimenttien pilaantuneisuuden ja puhdistamistarpeen arviointi ja sääntely – Kansainvälisiä käytäntöjä
- Author
-
Häkkinen, Jani, Immonen, Matti, Junttila, Ville, Matti, Leppänen, and Outi, Pyy
- Subjects
kunnostus ,haitalliset aineet ,sääntely ,sedimentit ,ohjearvot ,riskinarviointi ,arviointi ,saastuneet alueet ,ympäristön tila - Abstract
Sedimenttien pilaantuneisuutta arvioidaan eri valtioissa monin eri tavoin ja eri näkökulmista, mutta monessa tapauksessa arvioiden pohjana ovat sedimentille laaditut haitta-ainekohtaiset ohje-, kynnys- tai raja-arvot tai ympäristönlaatunormit. Ensimmäiset sedimenttiä koskevat ohjearvot laadittiin 1980-luvulla ja tämän jälkeen on laadittu monia joko maailmanlaajuisesti käytössä olevia ohjearvoja tai kansallisia ohjearvoja. Näiden arvojen merkitys vaihtelee maakohtaisesti ja niitä voidaan käyttää kriteereinä pilaantuneisuutta arvioitaessa, kunnostustoimista päätettäessä tai ne voivat toimia laukaisijana lisätutkimuksille kokonaisvaltaisemmassa riskinarvioinnissa. Myös EU:n prioriteettiainedirektiivi antaa jäsenvaltioille mahdollisuuden muodostaa sedimentin ja/tai eliöstön ympäristönlaatunormeja kansallisella tasolla ja soveltaa näitä ympäristönlaatunormeja Euroopan yhteisön tasolla vedelle asetettujen ympäristönlaatunormien sijasta. Muilla Pohjoismailla, kuten Norjalla ja Ruotsilla, on raja-arvoja pilaantuneelle sedimentille. Suomessa ei ole toistaiseksi ohjeistusta tai raja-arvoja sedimenttien pilaantuneisuuden, ympäristö- ja terveysriskien ja kunnostustarpeen arviointiin. Myös pilaantuneisiin sedimentteihin liittyvä sääntely mm. selvitys- ja puhdistusvelvoitteiden ja vastuiden osalta on puutteellista. Suomen sisävesillä on kuitenkin alueita, joiden sedimenttien haitta-ainepitoisuudet ovat huomattavasti luonnontilaista korkeammalla tasolla, sijaiten pääasiassa joko entisten tai nykyisten teollisuuslaitosten lähellä. Lisäksi merialueilla on jokien suistojen, laivareittien ja satamien lähellä laajoja alueita, joiden sedimenteissä on suurina pitoisuuksia haitta-aineita. Näistä voi aiheutua suoranaista haittaa vesieliöille sellaisenaan tai esimerkiksi ruoppausten yhteydessä ja välillistä haittaa ihmisterveydelle muun muassa kalansyönnin kautta. Suomessa sedimenttien haitta-ainekartoituksia tehdään lähinnä luvanvaraisten ruoppaushankkeiden yhteydessä. Ruoppaus- ja läjitysohje määrittelee sedimenttien läjityskelpoisuuden, muttei ota kantaa niiden pilaantuneisuuteen ja kunnostustarpeeseen. Pilaantuneiksi todettujen sedimenttien kunnostus voi tapahtua esimerkiksi (i) poistamalla pilaantunut sedimentti ruoppaamalla, (ii) peittämällä, tai (iii) hyödyntämällä luontaista puhdistumista. Luontaisen puhdistumisen on osoitettu olevan merkityksellinen prosessi. Yhtäältä korkeitakin haitta-ainepitoisuuksia sisältävien sedimenttien paikalleen jättäminen saattaa olla ympäristö- ja terveysriskien kannalta perusteltua, mikäli haitta-aineista ei aiheudu merkittävää eliö- tai ihmisaltistusta eivätkä ne kulkeudu/leviä ympäristöön. Toisaalta korkeita haitta-aineita sisältävä sedimentti voi aiheuttaa jatkuvaa altistusta tai toimia jatkuvana haitta-aineiden päästölähteenä ympäröivään veteen. Edellä mainittujen seikkojen vuoksi sedimenttien pilaantuneisuuden, ympäristö- ja terveysriskien sekä kunnostustarpeen arviointiin olisi välttämätöntä luoda ohjeistusta myös Suomessa. Ohjeistuksella tähdättäisiin yhtenäisiin käytäntöihin ja siihen, että mahdolliset kunnostustoimenpiteet suunnattaisiin tarkoituksenmukaisella tavalla vesiympäristön tilaa merkittävästi heikentäviin kohteisiin. Assessment and regulation of sediment contamination and the need for remediation – International practices In different countries, the contamination of sediments is assessed in number of ways and from various perspectives, but in many cases, these assessments are based on specific guidelines, threshold values, limit values or environmental quality standards for sediment. The first guideline values for sediment assessment were developed in the 1980s, and these have since been followed by a number of international and national guideline values. The significance of these values varies from country to country, and they can be used as criteria for assessing contamination, in connection with decision-making on remediation action or as a basis for further research in more comprehensive risk assessments. The EU’s directive on priority substances also allows member states to establish environmental quality standards (EQS) for sediment and/or biota at the national level and to apply these EQSs instead of EQSs for water at the European Community level. Other Nordic countries, such as Norway and Sweden, have threshold values for contaminated sediment. Currently, there are no guidelines or threshold values in Finland for assessing the contamination of sediments, environmental and health risks or the need for remediation. The regulation regarding contaminated sediments as it relates to, for example, survey and purification obligations and responsibilities, is lacking. However, there are areas in Finland's inland waters where the levels of hazardous substances in sediments are significantly elevated in relation to the natural state, mainly in the vicinity of decommissioned or operational industrial facilities. In addition, there are vast sea areas with high concentrations of hazardous substances in their sediments that are located close to estuaries, shipping routes and ports. These substances can cause direct harm to aquatic organisms on their own or in connection with dredging, and indirect harm to human health, for example through the consumption of fish. In Finland, surveys on sediment contamination are carried out mainly in connection with dredging projects subject to a permit. The instructions on dredging and deposition of dredged material determine the suitability of the sediments for deposition but do not address their level of contamination or the need for remediation. Contaminated sediments can be remediated, for example, by (i) removing the contaminated sediment by dredging, (ii) capping them or (iii) making use of natural recovery. Natural recovery has been shown to be a meaningful process. On the one hand, leaving sediments containing even high levels of hazardous substances as they are may be justified with regard to the environmental risks and health risks, provided that the hazardous substances do not give rise to significant exposure for organisms or humans and do not spread into the environment. On the other hand, sediments containing high levels of hazardous substances may lead to continuous exposure or act as a source of continuous emission of hazardous substances into the surrounding waters. Due to the above-mentioned factors, it is necessary to create guidelines for assessing the contamination of sediments, environmental risks and health risks and the need for remediation, also in Finland. The guidelines would be aimed at establishing uniform practices and ensuring that possible remediation measures would be appropriately targeted at sites that significantly degrade the state of the aquatic environment.
- Published
- 2022
7. Comment on environmental quality standards for diclofenac derived under the European Water Framework Directive: 1. Aquatic organisms
- Author
-
Maack, Gerd, Äystö, Lauri, Carere, Mario, Clausen, Henning, James, Alice, Junghans, Marion, Junttila, Ville, Hollender, Juliane, Marinov, Dimitar, Stroomberg, Gerard, Triebskorn, Rita, Verbruggen, Eric, Lettieri, Teresa, Suomen ympäristökeskus, and The Finnish Environment Institute
- Subjects
medicine ,ecotoxicity ,vesipolitiikan puitedirektiivi ,laatu ,ympäristön tila ,European Water Framework Directive ,ekotoksikologia ,diclofenac ,environmental risks ,Europe ,lääkkeet ,quality ,standards ,ympäristöriskit ,state of the environment ,standardit ,environmental quality standard ,Eurooppa ,medicines ,risks ,riskit - Abstract
Leverett et al. commented on the Environmental quality standard (EQS) for diclofenac derived under the European Water Framework Directive [Leverett et al. (2021) Environ Sci Eur 33: 133 https://doi.org/10.1186/s12302-021-00574-z]. They postulated that the derivation of the EQS value for diclofenac is not conducted according to the EQS Technical Guidance, but rather using data of poor reliability and relevance. Consequently, the authors suggested using their alternative derived value instead. It is to be noted that the process for the EQS derivation for diclofenac is still ongoing and not finalized, and that as a consequence, any critical analysis is very premature. In general, within the current European Commission process, EQS values proposals are derived by expert groups led by the Joint Research Centre. In the specific case for diclofenac, Leverett et al. have also been actively involved as experts. This response to Leverett et al. (2021) aims to clarify the reasoning behind the proposal from a scientific point of view and to express our concern for the lack of transparency of their position in the statement of competing interests. Indeed, the authors did not disclose their participation in the expert group for deriving the diclofenac EQS value, nor that they have direct and indirect ties to a company that markets diclofenac in Europe, Glaxo Smith & Kline plc (GSK). This amounts to a significant conflict of interest and leads to disinformation to the reader.
- Published
- 2022
8. Handbok till övervakningsprogrammet för Finlands havsförvaltningsplan 2020–2026
- Author
-
Ahlman, Mikaela, Alenius, Pekka, Attila, Jenni, Arnkil, Anna, Arponen, Heidi, Below, Antti, Blankett, Penina, Bäck, Anette, Cederberg, Tony, Forsman, Leena, Heikinheimo, Outi, Heikkinen, Mirja, Hällfors, Heidi, Jokikokko, Erkki, Junttila, Ville, Kangas, Antti, Kankaanpää, Harri, Kauhala, Kaarina, Kauppila, Pirkko, Keskinen, Essi, Koivisto, Pertti, Koponen, Sampsa, Korpinen, Samuli, Kunnasranta, Mervi, Kuosa, Harri, Kurvinen, Lasse, Kämäräinen, Meerit, Laine, Ari, Lappalainen, Antti, Lax, Hans-Göran, Lehtinen, Sirpa, Lehtiniemi, Maiju, Lehtonen, Kari, Lehtonen, Pekka, Lehtoranta, Jouni, Loisa, Olli, Mannio, Jaakko, Mehtonen, Jukka, Mikkola-Roos, Markku, Nygård, Henrik, Olin, Mikko, Paavilainen, Pekka, Pajala, Jukka, Pakarinen, Tapani, Parkkali, Pekka, Pitkänen, Heikki, Puro-Tahvanainen, Annukka, Raateoja, Mika, Riihimäki, Anu, Roiha, Petra, Rusanen, Pekka, Räike, Antti, Saura, Ari, Setälä, Outi, Siimes, Katri, Suikkanen, Sanna, Suomela, Janne, Söderkultalahti, Pirkko, Teppo, Anssi, Tiainen, Joni, Tuomi, Laura, Törrönen, Jouni, Vainio, Jouni, Vartti, Vesa-Pekka, Vähä, Emmi, Zacheus, Outi, Rantajärvi, Eija, Pitkänen, Heikki, Korpinen, Samuli, Nurmi, Marco, Ekebom, Jan, Liljaniemi, Petri, Cederberg, Tony, Suomela, Janne, Paavilainen, Pekka, and Lahtinen, Titta
- Subjects
seurantaohjelma ,Östersjön ,Itämeri ,havsförvaltningsplan ,havsplaneringen ,meristrategiadirektiivi ,merenhoitosuunnitelma ,övervakningsprogram - Abstract
Denna handbok är ett bakgrundsdokument till övervakningsprogrammet i Finlands havsförvaltningsplan och omfattar hela beskrivningen av programmet. Den uppdaterar övervakningsprogrammet 2014-2020 och tillämpar från juli 2020 till juli 2026. Övervakningsprogrammet är en del av havsvårdsplaneringen, som ingår i verkställandet av lagen om vattenvårds- och havsvårdsförvaltningen (272/2011) och statsrådets förordning om havsvårdsförvaltningen (980/2011). Med lagen och förordningen genomförs EU:s ramdirektiv om en marin strategi nationellt (Europaparlamentets och rådets direktiv 2008/56/EG om upprättande av en ram för gemenskapens åtgärder på havsmiljöpolitikens område, nedan MSD). I Finland kallas marina strategi för havsförvaltningsplan. Finlands övervakningsprogram består av 13 programhelheter med totalt 44 delprogram. Fyra nya delprogram lades till det uppdaterade övervakningsprogrammet, och flera delprogram reviderades antingen på grund av ändrade krav, mer avancerade metoder eller en förändrad operativmiljö. Nya krav under den andra havsförvaltningsperioden är uppdateringarna i bilaga 3 till ramdirektivet om en marin strategi (EU/2017/845) samt Europeiska kommissionens beslut EU/2017/848 om fastställande av kriterier och metodstandarder för god miljöstatus i marina vatten, specifikationer och standardiserade metoder för övervakning och bedömning. Övervakningshandboken består av tre delar: del I presenterar bakgrunden till övervakningsprogrammet, del II presenterar själva programmet och del III innehåller utvecklingsbehov, kostnader, övervakningens tillräcklighet och slutsatser. I enlighet med ekosystemansatsen omfattar övervakningsprogrammet olika variabler som dels beskriver vattnets egenskaper och kvalitet, dels ekosystemets delar och deras status samt mänsklig belastning på dessa. Handbokens presentationer av delprogrammen beskriver havsmiljöns egenskaper eller belastningar, övervakningsfrekvens, indikatorer för vilka övervakningsdata används, hantering av insamlade data och kopplingar till kvalitativa deskriptorer och kriterier för god miljöstatus enligt MSD.
- Published
- 2021
9. Enhanced environmental permitting of pharmaceutical plants in the Baltic Sea region. CWPharma project report for GoA4.3
- Author
-
Leisk, Ülle, Kõrgmaa, Vallo, Bregendahl, Jeppe, Junttila, Ville, Äystö, Lauri, Mehtonen, Jukka, Schütz, Jan, Stapf, Michael, Kubliņa, Anete, Cakars, Intars, Dworak, Anna, Walkowiak, Radosław, Nyhlén, Kristina, and Lindstam, Jill
- Subjects
pharmaceutical plants, good practices, APIs - Abstract
Enhanced environmental permitting of pharmaceutical plants in the Baltic Sea region. CWPharma project report for GoA4.3 Permitting of pharmaceutical plants in Baltic Sea countries within current legislation framework, recommendations on good practices for environmental permitting of pharmaceutical plants as a possible source of active pharmaceutical ingredients (APIs); good practices for industrial wastewater contracts between MWWTPs and pharmaceutical plants.
- Published
- 2020
- Full Text
- View/download PDF
10. Good practices for take-back and disposal of unused pharmaceuticals in the Baltic Sea region. Clear Waters from Pharmaceuticals (CWPharma) Activity 4.1 Report
- Author
-
Mehtonen, Jukka, Äystö, Lauri, Junttila, Ville, Perkola, Noora, Lehtinen, Terhi, Bregendahl, Jeppe, Leisk, Ülle, Kõrgmaa, Vallo, Aarma, Pille, Schütz, Jan, Stapf, Michael, Kublina, Anete, Karkovska, Ieva, Szumska, Marlena, Bogusz, Aleksandra, Kalinowski, Radosław, Spjuth, Sara, Nyhlén, Kristina, Jakobsson, Torsten, Suzdalev, Sergej, and Kaskelainen, Elena
- Subjects
medicinal substances ,hyvät käytännöt ,Itämeri ,pharmaceutical waste ,käsittely ,treatment and handling ,best practices ,lääkeaineet ,keräys ,lääkejäte ,collection (general) - Abstract
Appropriate collection and disposal of medicine-related waste has been identified as one of the main ways to decrease the emission of active pharmaceutical ingredients (APIs) into the environment. Improvement to the take-back and treatment of collected pharmaceutical waste may be considered low-hanging fruit when one is considering measures to reduce API emissions. However, comparable information that would enable estimating the potential impact of these efforts has not been available. Directive 2004/27/EC, related to medicinal products for human use, mandates that EU member states implement appropriate collection schemes for unused or expired human-use medicinal products. However, it does not provide any guidelines on practical implementation of these schemes. Several studies have pointed out significant differences among Member States in this regard. In March 2019, the European Commission published the European Union Strategic Approach to Pharmaceuticals in the Environment. The actions specified therein cover all stages of the pharmaceutical life cycle, from design and production to disposal and waste management. It emphasizes such elements as sharing good practices, co-operating at international level, and improving understanding of the risks. This report is aimed at filling knowledge gaps and proposing good practices for take-back and disposal of unused human and veterinary medicines and other pharmaceutical waste. The report is targeted to e.g. ministries, environment and medicines agencies, supervisory authorities, municipalities, hospitals, NGOs, pharmacists, doctors, and veterinarians. For the report, current national practices for take-back and disposal of unused medicines and other pharmaceutical waste in Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, and Sweden were evaluated. The pharmaceutical waste originating from households, hospitals and other health care institutions, the pharmaceutical industry, and veterinary use was considered. The proportion of citizens who return unused pharmaceuticals via designated collection points varies greatly between Baltic Sea countries, from about 10% to 70%, with 16–80% disposing of them of as mixed household waste and 3–30% flushing them down the drain. The most commonly cited reason for improper disposal of medicines on households’ part is lack of information about their environmental impacts and how to get rid of them in an environmentally sound manner. Separate collection of unused household pharmaceuticals does not exist in Russia, and the collection mechanism functions poorly in Latvia, Lithuania and Poland. Information on the take-back schemes for unused human medicines is more readily available than is corresponding information on veterinary medicines. We identified, all told, 21 good practices and recommendations for take-back and disposal of unused pharmaceuticals and other pharmaceutical waste and for promoting the rational use of pharmaceuticals in the Baltic Sea region. Nevertheless, implementing them at national level requires particular consideration due to differences in national legislation and other characteristics of the EU Baltic Sea countries and Russia. The good practices identified in this report answer the call issued in the EU strategic approach for an efficient risk-reduction strategy.
- Published
- 2020
11. Emissions and environmental levels of pharmaceuticals – Upscaling to the Baltic Sea Region
- Author
-
Äystö, Lauri, Siimes, Katri, Junttila, Ville, Joukola, Matti, and Liukko, Ninni
- Abstract
The report describes the Baltic Pharma Load model (BPL) and the estimated environmental loads and concentrations of selected active pharmaceutical ingredients (APIs). The BPL model was developed as a part of the project Clear Waters from Pharmaceuticals (CWPharma) funded by the EU’s Interreg Baltic Sea Region Programme. The calculation model uses national sales statistics as the driving parameter and takes into account selected differences in country-specific practices in e.g. waste management and sewer network coverage. The GIS-based model was compiled as a series of command scripts using the computing language and environment R (R Core Team 2020) and a calculation grid covering the entire Baltic Sea drainage basin. The calculation grid divides the Baltic Sea Region (BSR) into one square kilometer grid cells, with each grid cell containing the background information required for the calculations. The BPL model and the calculation grid are available in the .zip-file as a series of R scripts and .rds-files.
- Published
- 2020
12. Finnish Watch List - Results of the Screenings in 2015-2018
- Author
-
Siimes, Katri and Junttila, Ville
- Published
- 2019
- Full Text
- View/download PDF
13. The fate of pharmaceuticals in river Vantaanjoki and in the Helsinki coast
- Author
-
Siimes, Katri, Lehtonen, Mari, Äystö, Lauri, Mehtonen, Jukka, Junttila, Ville, and Perkola, Noora
- Published
- 2019
- Full Text
- View/download PDF
14. Modeling of pharmaceutical loads to the Baltic Sea -A case study on Southern Finland
- Author
-
Äystö, Lauri, Siimes, Katri, Joukola, Matti, Koskela, Jarkko Juhani, and Junttila, Ville
- Published
- 2019
- Full Text
- View/download PDF
15. PFASs in Finnish Rivers and Fish and the Loading of PFASs to the Baltic Sea.
- Author
-
Junttila, Ville, Vähä, Emmi, Perkola, Noora, Räike, Antti, Siimes, Katri, Mehtonen, Jukka, Kankaanpää, Harri, and Mannio, Jaakko
- Abstract
The concentrations of per- and polyfluoroalkyl substances (PFASs) in the Finnish aquatic environment were measured in riverine waters and in inland, coastal and open sea fish. In addition, the PFAS load to the Baltic Sea from 11 rivers was calculated. Measurements show that PFASs, including restricted perfluorooctane sulfonic acid (PFOS), are widely present in the Finnish aquatic environment. At three out of 45 sampling sites, the concentration of PFOS in fish exceeded the environmental quality standard (EQS) of the Water Framework Directive (WFD). The annual average (AA) Σ
23 PFAS concentration in surface waters ranged from 1.8 to 42 ng L−1 and the concentration of PFOS exceeded the AA-EQS in three out of 13 water bodies. In European perch (Perca fluviatilis) and Baltic herring (Clupea harengus membras), the ΣPFAS concentration ranged from 0.98 to 1 µg kg−1 f.w. (fresh weight) and from 0.2 to 2.4 µg kg−1 f.w., respectively. The highest concentrations in both surface water and fish were found in waters of southern Finland. The riverine export of Σ10 PFAS to the Baltic Sea from individual rivers ranged from 0.4 kg yr−1 to 18 kg yr−1 . PFAS concentrations in fish of point-source-polluted sites and coastal sites were higher compared to fish of open sea or diffusely polluted sites. The PFAS profiles in surface waters of background sites were different from other sites. This study shows that PFASs are widely found in the Finnish aquatic environment. Different PFAS profiles in samples from background areas and densely populated areas indicate diverse sources of PFASs. Although atmospheric deposition has a substantial influence on PFAS occurrence in remote areas, it is not the dominant source of all PFASs to the aquatic environment of Finland. Rather, wastewaters and presumably contaminated land areas are major sources of PFASs to this aquatic environment. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.