1. Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)
- Author
-
Wolff, M. A., Kerzenmacher, T., Strong, K., Walker, K. A., Toohey, M., Dupuy, E., Bernath, P. F., Boone, C. D., Brohede, S., Catoire, Valéry, Von Clarmann, T., Coffey, M., Daffer, W. H., De Mazière, M., Duchatelet, P., Glatthor, N., Griffith, D. W. T., Hannigan, J., Hase, F., Höpfner, M., Huret, Nathalie, Jones, N., Jucks, K., Kagawa, A., Kasai, Y., Kramer, I., Küllmann, H., Kuttippurath, J., Mahieu, E., Manney, G., Mclinden, C., Mébarki, Y., Mikuteit, S., Murtagh, D., Piccolo, C., Raspollini, P., Ridolfi, M., Ruhnke, R., Santee, M., Senten, C., Smale, D., Tétard, C., Urban, Jakub, Wood, S., Department of Physics [Toronto], University of Toronto, Department of Chemistry [Waterloo], University of Waterloo [Waterloo], Department of Chemistry, Department of Radio and Space Science [Göteborg], Chalmers University of Technology [Göteborg], Laboratoire de physique et chimie de l'environnement ( LPCE ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Forschungzentrum Karlsruhe and University of Karlsruhe, National Center for Atmospheric Research [Boulder] ( NCAR ), Columbus Technologies Inc., Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique ( BIRA-IASB ), Institut d'Astrophysique et de Géophysique [Liège], Université de Liège, School of Chemistry, Harvard-Smithsonian Center for Astrophysics ( CfA ), Harvard University [Cambridge]-Smithsonian Institution, Fujitsu FIP Corporation, Environmental Sensing and Network Group, Institute of Environmental Physics [Bremen] ( IUP ), University of Bremen, Jet Propulsion Laboratory ( JPL ), NASA-California Institute of Technology ( CALTECH ), New Mexico Institute of Mining and Technology [New Mexico Tech] ( NMT ), Environment and Climate Change Canada, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] ( AOPP ), University of Oxford [Oxford], Institute of Applied Physics ``Nello Carrara', Dipartimento di Chimica Fisica e Inorganica, National Institute of Water and Atmospheric Research Ltd., Laboratoire d’Optique Atmosphérique - UMR 8518 ( LOA ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de physique et chimie de l'environnement (LPCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), National Center for Atmospheric Research [Boulder] (NCAR), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, Institute of Environmental Physics [Bremen] (IUP), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), New Mexico Institute of Mining and Technology [New Mexico Tech] (NMT), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford, Institute of Applied Physics 'Nello Carrara' (IFAC), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Chimica Fisica e Inorganica [Bologna], Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), National Institute of Water and Atmospheric Research [Lauder] (NIWA), Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Smithsonian Institution-Harvard University [Cambridge], California Institute of Technology (CALTECH)-NASA, Consiglio Nazionale delle Ricerche (CNR), and Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere - Abstract
International audience; The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv (±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within ±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of -1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofisica de Andalucia (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching -0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically -0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.
- Published
- 2008