7 results on '"K. Tabaldiev"'
Search Results
2. The formation of human populations in South and Central Asia
- Author
-
V.M. Narasimhan, N. Patterson, P. Moorjani, N. Rohland, R. Bernardos, S. Mallick, I. Lazaridis, N. Nakatsuka, I. Olalde, M. Lipson, A.M. Kim, L.M. Olivieri, A. Coppa, M. Vidale, J. Mallory, V. Moiseyev, E. Kitov, J. Monge, N. Adamski, N. Alex, N. Broomandkhoshbacht, F. Candilio, K. Callan, O. Cheronet, B.J. Culleton, M. Ferry, D. Fernandes, S. Freilich, B. Gamarra, D. Gaudio, M. Hajdinjak, É. Harney, T.K. Harper, D. Keating, A.Marie Lawson, M. Mah, K. Mandl, M. Michel, M. Novak, J. Oppenheimer, N. Rai, K. Sirak, V. Slon, K. Stewardson, F. Zalzala, Z. Zhang, G. Akhatov, A.N. Bagashev, A. Bagnera, B. Baitanayev, J. Bendezu-Sarmiento, A.A. Bissembaev, G.Luca Bonora, T.T. Chargynov, T. Chikisheva, P.K. Dashkovskiy, A. Derevianko, M. Dobeš, K. Douka, N. Dubova, M.N. Duisengali, D. Enshin, A. Epimakhov, A.V. Fribus, D. Fuller, A. Goryachev, A. Gromov, S.P. Grushin, B. Hanks, M. Judd, E. Kazizov, A. Khokhlov, A.P. Krygin, E. Kupriyanova, P. Kuznetsov, D. Luiselli, F. Maksudov, A.M. Mamedov, T.B. Mamirov, C. Meiklejohn, D.C. Merrett, R. Micheli, O. Mochalov, S. Mustafokulov, A. Nayak, D. Pettener, R. Potts, D. Razhev, M. Rykun, S. Sarno, T.M. Savenkova, K. Sikhymbaeva, S.M. Slepchenko, O.A. Soltobaev, N. Stepanova, S. Svyatko, K. Tabaldiev, M. Teschler-Nicola, A.A. Tishkin, V.V. Tkachev, S. Vasilyev, P. Velemínský, D. Voyakin, A. Yermolayeva, M. Zahir, V.S. Zubkov, A. Zubova, V.S. Shinde, C. Lalueza-Fox, M. Meyer, D. Anthony, N. Boivin, K. Thangaraj, D.J. Kennett, M. Frachetti, R. Pinhasi, D. Reich, V.M. Narasimhan, N. Patterson, P. Moorjani, N. Rohland, R. Bernardos, S. Mallick, I. Lazaridis, N. Nakatsuka, I. Olalde, M. Lipson, A.M. Kim, L.M. Olivieri, A. Coppa, M. Vidale, J. Mallory, V. Moiseyev, E. Kitov, J. Monge, N. Adamski, N. Alex, N. Broomandkhoshbacht, F. Candilio, K. Callan, O. Cheronet, B.J. Culleton, M. Ferry, D. Fernandes, S. Freilich, B. Gamarra, D. Gaudio, M. Hajdinjak, É. Harney, T.K. Harper, D. Keating, A.Marie Lawson, M. Mah, K. Mandl, M. Michel, M. Novak, J. Oppenheimer, N. Rai, K. Sirak, V. Slon, K. Stewardson, F. Zalzala, Z. Zhang, G. Akhatov, A.N. Bagashev, A. Bagnera, B. Baitanayev, J. Bendezu-Sarmiento, A.A. Bissembaev, G.Luca Bonora, T.T. Chargynov, T. Chikisheva, P.K. Dashkovskiy, A. Derevianko, M. Dobeš, K. Douka, N. Dubova, M.N. Duisengali, D. Enshin, A. Epimakhov, A.V. Fribus, D. Fuller, A. Goryachev, A. Gromov, S.P. Grushin, B. Hanks, M. Judd, E. Kazizov, A. Khokhlov, A.P. Krygin, E. Kupriyanova, P. Kuznetsov, D. Luiselli, F. Maksudov, A.M. Mamedov, T.B. Mamirov, C. Meiklejohn, D.C. Merrett, R. Micheli, O. Mochalov, S. Mustafokulov, A. Nayak, D. Pettener, R. Potts, D. Razhev, M. Rykun, S. Sarno, T.M. Savenkova, K. Sikhymbaeva, S.M. Slepchenko, O.A. Soltobaev, N. Stepanova, S. Svyatko, K. Tabaldiev, M. Teschler-Nicola, A.A. Tishkin, V.V. Tkachev, S. Vasilyev, P. Velemínský, D. Voyakin, A. Yermolayeva, M. Zahir, V.S. Zubkov, A. Zubova, V.S. Shinde, C. Lalueza-Fox, M. Meyer, D. Anthony, N. Boivin, K. Thangaraj, D.J. Kennett, M. Frachetti, R. Pinhasi, and D. Reich
- Abstract
By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization’s decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.
- Published
- 2019
3. The Complex of Arms of the Tien Shan Nomads in the Mongol Epoch (a case study of archaeological materials)
- Author
-
K., Akmatov, primary and K., Tabaldiev, additional
- Published
- 2017
- Full Text
- View/download PDF
4. Condensed Chromatin, Cell Thermoregulation and Human Body Heat Conductivity
- Author
-
S. K. Tabaldiev and A. I. Ibraimov
- Subjects
Cell ,General Medicine ,Thermoregulation ,Biology ,Chromatin ,Population variability ,chemistry.chemical_compound ,medicine.anatomical_structure ,Thermal conductivity ,chemistry ,Biochemistry ,Cytoplasm ,medicine ,Biophysics ,Nucleus ,DNA - Abstract
Earlier we put out a proposal on possible participation of condensed chromatin (CC) in cell thermoregulation; CC being the densest domain in a cell, apparently conducts heat between the cytoplasm and nucleus when there is difference in temperature between them. This hypothesis can be checked at the level of cells or organisms. Experimentally we have managed to establish that at the level of organisms there is a broad intra population variability of human body heat conductivity (BHC). It is shown that these individual differences in the BHC are attributed to the amount of chromosomal Q-heterochromatin regions (Q- HRs) in their genome. It is assumed that, possibly, the biological role of the Q-HRs in the interphase nucleus of the cell is in intensification of the CC compacting thus increasing its heat conductivity (HC). On the HC of CC, correspondently on the amount of Q-HRs in the genome, depends the speed of leveling the difference of temperature between the cytoplasm and nucleus, i.e. the cell thermoregulation. From the HC of the cells the HC of the whole body is made up. This is a physical condition, where the physiological thermoregulation is realized, which is assigned for keeping relative temperature constancy in the inner medium of the organism by leveling the temperature difference in different parts of the body.
- Published
- 2007
5. The origins and spread of domestic horses from the Western Eurasian steppes.
- Author
-
Librado P, Khan N, Fages A, Kusliy MA, Suchan T, Tonasso-Calvière L, Schiavinato S, Alioglu D, Fromentier A, Perdereau A, Aury JM, Gaunitz C, Chauvey L, Seguin-Orlando A, Der Sarkissian C, Southon J, Shapiro B, Tishkin AA, Kovalev AA, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Seregély T, Klassen L, Iversen R, Bignon-Lau O, Bodu P, Olive M, Castel JC, Boudadi-Maligne M, Alvarez N, Germonpré M, Moskal-Del Hoyo M, Wilczyński J, Pospuła S, Lasota-Kuś A, Tunia K, Nowak M, Rannamäe E, Saarma U, Boeskorov G, Lōugas L, Kyselý R, Peške L, Bălășescu A, Dumitrașcu V, Dobrescu R, Gerber D, Kiss V, Szécsényi-Nagy A, Mende BG, Gallina Z, Somogyi K, Kulcsár G, Gál E, Bendrey R, Allentoft ME, Sirbu G, Dergachev V, Shephard H, Tomadini N, Grouard S, Kasparov A, Basilyan AE, Anisimov MA, Nikolskiy PA, Pavlova EY, Pitulko V, Brem G, Wallner B, Schwall C, Keller M, Kitagawa K, Bessudnov AN, Bessudnov A, Taylor W, Magail J, Gantulga JO, Bayarsaikhan J, Erdenebaatar D, Tabaldiev K, Mijiddorj E, Boldgiv B, Tsagaan T, Pruvost M, Olsen S, Makarewicz CA, Valenzuela Lamas S, Albizuri Canadell S, Nieto Espinet A, Iborra MP, Lira Garrido J, Rodríguez González E, Celestino S, Olària C, Arsuaga JL, Kotova N, Pryor A, Crabtree P, Zhumatayev R, Toleubaev A, Morgunova NL, Kuznetsova T, Lordkipanize D, Marzullo M, Prato O, Bagnasco Gianni G, Tecchiati U, Clavel B, Lepetz S, Davoudi H, Mashkour M, Berezina NY, Stockhammer PW, Krause J, Haak W, Morales-Muñiz A, Benecke N, Hofreiter M, Ludwig A, Graphodatsky AS, Peters J, Kiryushin KY, Iderkhangai TO, Bokovenko NA, Vasiliev SK, Seregin NN, Chugunov KV, Plasteeva NA, Baryshnikov GF, Petrova E, Sablin M, Ananyevskaya E, Logvin A, Shevnina I, Logvin V, Kalieva S, Loman V, Kukushkin I, Merz I, Merz V, Sakenov S, Varfolomeyev V, Usmanova E, Zaibert V, Arbuckle B, Belinskiy AB, Kalmykov A, Reinhold S, Hansen S, Yudin AI, Vybornov AA, Epimakhov A, Berezina NS, Roslyakova N, Kosintsev PA, Kuznetsov PF, Anthony D, Kroonen GJ, Kristiansen K, Wincker P, Outram A, and Orlando L
- Subjects
- Animals, Archaeology, Asia, DNA, Ancient, Europe, Genome, Grassland, Phylogeny, Domestication, Genetics, Population, Horses genetics
- Abstract
Domestication of horses fundamentally transformed long-range mobility and warfare
1 . However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3 . Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6 , have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10 . This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12 ., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
6. Southwest Asian cereal crops facilitated high-elevation agriculture in the central Tien Shan during the mid-third millennium BCE.
- Author
-
Motuzaite Matuzeviciute G, Hermes TR, Mir-Makhamad B, and Tabaldiev K
- Subjects
- Asia, Crops, Agricultural growth & development, Edible Grain growth & development, History, Ancient, Hordeum growth & development, Millets growth & development, Triticum growth & development, Archaeology, Crops, Agricultural history, Edible Grain history
- Abstract
We report the earliest and the most abundant archaeobotanical assemblage of southwest Asian grain crops from Early Bronze Age Central Asia, recovered from the Chap II site in Kyrgyzstan. The archaeobotanical remains consist of thousands of cultivated grains dating to the mid-late third millennium BCE. The recovery of cereal chaff and weeds suggest local cultivation at 2000 m.a.s.l., as crops first spread to the mountains of Central Asia. The site's inhabitants possibly cultivated two types of free-threshing wheats, glume wheats, and hulled and naked barleys. Highly compact caryopses of wheat and barley grains represent distinct morphotypes of cereals adapted to highland environments. While additional macrobotanical evidence is needed to confirm the presence of glume wheats at Chap II, the possible identification of glume wheats at Chap II may represent their most eastern distribution in Central Asia. Based on the presence of weed species, we argue that the past environment of Chap II was characterized by an open mountain landscape, where animal grazing likely took place, which may have been further modified by people irrigating agricultural fields. This research suggests that early farmers in the mountains of Central Asia cultivated compact morphotypes of southwest Asian crops during the initial eastward dispersal of agricultural technologies, which likely played a critical role in shaping montane adaptations and dynamic interaction networks between farming societies across highland and lowland cultivation zones., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
7. The formation of human populations in South and Central Asia.
- Author
-
Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R, Mallick S, Lazaridis I, Nakatsuka N, Olalde I, Lipson M, Kim AM, Olivieri LM, Coppa A, Vidale M, Mallory J, Moiseyev V, Kitov E, Monge J, Adamski N, Alex N, Broomandkhoshbacht N, Candilio F, Callan K, Cheronet O, Culleton BJ, Ferry M, Fernandes D, Freilich S, Gamarra B, Gaudio D, Hajdinjak M, Harney É, Harper TK, Keating D, Lawson AM, Mah M, Mandl K, Michel M, Novak M, Oppenheimer J, Rai N, Sirak K, Slon V, Stewardson K, Zalzala F, Zhang Z, Akhatov G, Bagashev AN, Bagnera A, Baitanayev B, Bendezu-Sarmiento J, Bissembaev AA, Bonora GL, Chargynov TT, Chikisheva T, Dashkovskiy PK, Derevianko A, Dobeš M, Douka K, Dubova N, Duisengali MN, Enshin D, Epimakhov A, Fribus AV, Fuller D, Goryachev A, Gromov A, Grushin SP, Hanks B, Judd M, Kazizov E, Khokhlov A, Krygin AP, Kupriyanova E, Kuznetsov P, Luiselli D, Maksudov F, Mamedov AM, Mamirov TB, Meiklejohn C, Merrett DC, Micheli R, Mochalov O, Mustafokulov S, Nayak A, Pettener D, Potts R, Razhev D, Rykun M, Sarno S, Savenkova TM, Sikhymbaeva K, Slepchenko SM, Soltobaev OA, Stepanova N, Svyatko S, Tabaldiev K, Teschler-Nicola M, Tishkin AA, Tkachev VV, Vasilyev S, Velemínský P, Voyakin D, Yermolayeva A, Zahir M, Zubkov VS, Zubova A, Shinde VS, Lalueza-Fox C, Meyer M, Anthony D, Boivin N, Thangaraj K, Kennett DJ, Frachetti M, Pinhasi R, and Reich D
- Subjects
- Asia, Central, Asia, Southeastern, Gene Flow, History, Ancient, Humans, Iran, Sequence Analysis, DNA, Asian People genetics, Farms history, Human Migration history, Population genetics
- Abstract
By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.