18 results on '"K. V. Sokolovsky"'
Search Results
2. Radioastron Discovery of A Mini-Cocoon Around the Restarted Parsec-Scale Jet in 3C 84
- Author
-
T Savolainen, G Giovannini, Y Y Kovalev, M Perucho, J M Anderson, G Bruni, P G Edwards, A Fuentes, M Giroletti, J L.Gómez, K Hada, S-S Lee, M M Lisakov, A P Lobanov, J López-Miralles, M Orienti, L Petrov, A V Plavin, B W Sohn, K V Sokolovsky, Petr A Voitsik, and J A Zensus
- Subjects
Astronomy ,Astrophysics - Abstract
We present RadioAstron space-based very long baseline interferometry (VLBI) observations of the nearby radio galaxy 3C 84 (NGC 1275) at the centre of the Perseus cluster. The observations were carried out during a perigee passage of the Spektr-R spacecraft on September 21–22, 2013 and involved a global array of 24 ground radio telescopes observing at 5 GHz and 22 GHz, together with the Space Radio Telescope (SRT). Furthermore, the Very Long Baseline Array (VLBA) and the phased Very Large Array (VLA) observed the source quasi-simultaneously at 15 GHz and 43 GHz. Fringes between the ground array and the SRT were detected on baseline lengths up to 8.1 times the Earth’s diameter, providing unprecedented resolution for 3C 84 at these wavelengths. We note that the corresponding fringe spacing is 125 μas at 5 GHz and 27 μas at 22 GHz. Our space-VLBI images reveal a previously unseen sub-structure inside the compact ∼1 pc long jet that was ejected about ten years earlier. In the 5 GHz image, we detected, for the first time, low-intensity emission from a cocoon-like structure around the restarted jet. Our results suggest that the increased power of the young jet is inflating a bubble of hot plasma as it carves its way through the ambient medium of the central region of the galaxy. Here, we estimate the minimum energy stored in the mini-cocoon, along with its pressure, volume, expansion speed, and the ratio of heavy particles to relativistic electrons, as well as the density of the ambient medium. About half of the energy delivered by the jet is dumped into the mini-cocoon and the quasi-spherical shape of the bubble suggests that this energy may be transferred to a significantly larger volume of the interstellar medium than what would be accomplished by the well-collimated jet on its own. The pressure of the hot mini-cocoon also provides a natural explanation for the almost cylindrical jet profile seen in the 22 GHz RadioAstron image.
- Published
- 2023
- Full Text
- View/download PDF
3. Radio light curves and imaging of the helium nova V445 Puppis reveal seven years of synchrotron emission
- Author
-
M M Nyamai, L Chomiuk, V A R M Ribeiro, P A Woudt, J Strader, and K V Sokolovsky
- Published
- 2020
- Full Text
- View/download PDF
4. The 2019 eruption of recurrent nova V3890 Sgr: observations by Swift, NICER, and SMARTS
- Author
-
K L Page, N P M Kuin, A P Beardmore, F M Walter, J P Osborne, C B Markwardt, J-U Ness, M Orio, and K V Sokolovsky
- Published
- 2020
- Full Text
- View/download PDF
5. Opacity, variability, and kinematics of AGN jets
- Author
-
A M Kutkin, I N Pashchenko, K V Sokolovsky, Y Y Kovalev, M F Aller, and H D Aller
- Published
- 2019
- Full Text
- View/download PDF
6. Fermi LAT Gamma-ray Detection of the Recurrent Nova RS Ophiuchi during its 2021 Outburst
- Author
-
C. C. Cheung, T. J. Johnson, P. Jean, M. Kerr, K. L. Page, J. P. Osborne, A. P. Beardmore, K. V. Sokolovsky, F. Teyssier, S. Ciprini, G. Martí-Devesa, I. Mereu, S. Razzaque, K. S. Wood, S. N. Shore, S. Korotkiy, A. Levina, and A. Blumenzweig
- Published
- 2022
- Full Text
- View/download PDF
7. Early Spectral Evolution of Classical Novae: Consistent Evidence for Multiple Distinct Outflows
- Author
-
E. Aydi, L. Chomink, L. Izzo, E. J. Harvey, J. Leahy-McGregor, J. Strader, D. A. H. Buckley, K. V. Sokolovsky, A. Kawash, C. S. Kochanek, J. D. Linford, B. D. Metzger, K. Mukai, M. Orio, B. J. Shappee, L. Shishkovsky, E. Steinberg, S J. Swihart, J. L. Sokoloski, F. M. Walter, and P. A. Woudt
- Subjects
Astronomy - Abstract
The physical mechanism driving mass ejection during a nova eruption is still poorly understood. Possibilities include ejection in a single ballistic event, a common-envelope interaction, a continuous wind, or some combination of these processes. Here, we present a study of 12 Galactic novae, for which we have premaximum high-resolution spectroscopy. All 12 novae show the same spectral evolution. Before optical peak, they show a slow P Cygni component. After peak, a fast component quickly arises, while the slow absorption remains superimposed on top of it, implying the presence of at least two physically distinct flows. For novae with high-cadence monitoring, a third, intermediate-velocity component is also observed. These observations are consistent with a scenario where the slow component is associated with the initial ejection of the accreted material and the fast component with a radiation-driven wind from the white dwarf. When these flows interact, the slow flow is swept up by the fast flow, producing the intermediate component. These colliding flows may produce theγ-ray emission observed in some novae. Our spectra also show that the transient heavy-element absorption lines seen in some novae have the same velocity structure and evolution as the other lines in the spectrum, implying an association with the nova ejecta rather than a preexisting circumbinary reservoir of gas or material ablated from the secondary. While this basic scenario appears to qualitatively reproduce multiwavelength observations of classical novae, substantial theoretical and observational work is still needed to untangle the rich diversity of nova properties.
- Published
- 2020
- Full Text
- View/download PDF
8. The multi-wavelength view of shocks in the fastest nova V1674 Her
- Author
-
K V Sokolovsky, T J Johnson, S Buson, P Jean, C C Cheung, K Mukai, L Chomiuk, E Aydi, B Molina, A Kawash, J D Linford, A J Mioduszewski, M P Rupen, J L Sokoloski, M N Williams, E Steinberg, I Vurm, B D Metzger, K L Page, M Orio, R M Quimby, A W Shafter, H Corbett, S Bolzoni, J DeYoung, K Menzies, F D Romanov, M Richmond, J Ulowetz, T Vanmunster, G Williamson, D J Lane, M Bartnik, M Bellaver, E Bruinsma, E Dugan, J Fedewa, C Gerhard, S Painter, D-M Peterson, J E Rodriguez, C Smith, H Sullivan, and S Watson
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Classical novae are shock-powered multi-wavelength transients triggered by a thermonuclear runaway on an accreting white dwarf. V1674 Her is the fastest nova ever recorded (time to declined by two magnitudes is t_2=1.1 d) that challenges our understanding of shock formation in novae. We investigate the physical mechanisms behind nova emission from GeV gamma-rays to cm-band radio using coordinated Fermi-LAT, NuSTAR, Swift and VLA observations supported by optical photometry. Fermi-LAT detected short-lived (18 h) 0.1-100 GeV emission from V1674 Her that appeared 6 h after the eruption began; this was at a level of (1.6 +/- 0.4)x10^-6 photons cm^-2 s^-1. Eleven days later, simultaneous NuSTAR and Swift X-ray observations revealed optically thin thermal plasma shock-heated to kT_shock = 4 keV. The lack of a detectable 6.7 keV Fe K_alpha emission suggests super-solar CNO abundances. The radio emission from V1674 Her was consistent with thermal emission at early times and synchrotron at late times. The radio spectrum steeply rising with frequency may be a result of either free-free absorption of synchrotron and thermal emission by unshocked outer regions of the nova shell or the Razin-Tsytovich effect attenuating synchrotron emission in dense plasma. The development of the shock inside the ejecta is unaffected by the extraordinarily rapid evolution and the intermediate polar host of this nova., 20 pages, 9 figures, 3 tables. Accepted to MNRAS
- Published
- 2023
9. Optical and near-infrared data and modelling of nova V5668 Sgr
- Author
-
L Takeda, M Diaz, R D Campbell, J E Lyke, S S Lawrence, J D Linford, and K V Sokolovsky
- Subjects
Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astronomy and Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present Hubble Space Telescope optical images, Keck-OSIRIS near-infrared (NIR) integral field spectroscopy data cubes and Keck-Near InfraRed Camera-2 (NIRC2) NIR images of nova V5668 Sgr from 2016 to 2019. The observations indicate enhanced emission at the polar caps and equatorial torus for low-ionization lines, and enhanced high-ionization emission lines only at the polar caps. The radial velocities are compatible with a homogeneous expansion velocity of v = 590 km s−1 and a system inclination angle of 24°. These values were used to estimate an expansion parallax distance of 1200 ± 400 pc. The NIRC2 data indicate the presence of dust in 2016 and 2017, but no dust emission could be detected in 2019. The observational data were used for assembling 3D photoionization models of the ejecta. The model results indicate that the central source has a temperature of 1.88 × 105 K and a luminosity of 1.6 × 1035 erg s−1 in August of 2017 (2.4 yr post eruption), and that the shell has a mass of 6.3 × 10−5 M⊙. The models also suggest anisotropy of the ionizing flux, possibly by the contribution from a luminous accretion disc.
- Published
- 2022
- Full Text
- View/download PDF
10. The ASAS-SN Bright Supernova Catalog -- V. 2018-2020
- Author
-
K D Neumann, T W-S Holoien, C S Kochanek, K Z Stanek, P J Vallely, B J Shappee, J L Prieto, T Pessi, T Jayasinghe, J Brimacombe, D Bersier, E Aydi, C Basinger, J F Beacom, S Bose, J S Brown, P Chen, A Clocchiatti, D D Desai, Subo Dong, E Falco, S Holmbo, N Morrell, J V Shields, K V Sokolovsky, J Strader, M D Stritzinger, S Swihart, T A Thompson, Z Way, L Aslan, D W Bishop, G Bock, J Bradshaw, P Cacella, N Castro-Morales, E Conseil, R Cornect, I Cruz, R G Farfan, J M Fernandez, A Gabuya, J-L Gonzalez-Carballo, M R Kendurkar, S Kiyota, R A Koff, G Krannich, P Marples, G Masi, L A G Monard, J A Muñoz, B Nicholls, R S Post, Z Pujic, G Stone, L Tomasella, D L Trappett, and W S Wiethoff
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We catalog the 443 bright supernovae discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) in $2018-2020$ along with the 519 supernovae recovered by ASAS-SN and 516 additional $m_{peak}\leq18$ mag supernovae missed by ASAS-SN. Our statistical analysis focuses primarily on the 984 supernovae discovered or recovered in ASAS-SN $g$-band observations. The complete sample of 2427 ASAS-SN supernovae includes earlier $V$-band samples and unrecovered supernovae. For each supernova, we identify the host galaxy, its UV to mid-IR photometry, and the offset of the supernova from the center of the host. Updated light curves, redshifts, classifications, and host galaxy identifications supersede earlier results. With the increase of the limiting magnitude to $g\leq18$ mag, the ASAS-SN sample is roughly complete up to $m_{peak}=16.7$ mag and is $90\%$ complete for $m_{peak}\leq17.0$ mag. This is an increase from the $V$-band sample where it was roughly complete up to $m_{peak}=16.2$ mag and $70\%$ complete for $m_{peak}\leq17.0$ mag., Comment: 14 pages, 7 figures, 4 tables. Updated to reflect changes made in the published version. Tables containing the catalog data presented in this submission are included in machine-readable format as ancillary files
- Published
- 2022
- Full Text
- View/download PDF
11. The 2019 outburst of the 2005 classical nova V1047 Cen: a record breaking dwarf nova outburst or a new phenomenon?
- Author
-
E. Aydi, K. V. Sokolovsky, J. S. Bright, E. Tremou, M. M. Nyamai, A. Evans, J. Strader, L. Chomiuk, G. Myers, F-J. Hambsch, K. L. Page, D. A. H. Buckley, C. E. Woodward, F. M. Walter, P. Mróz, P. J. Vallely, T. R. Geballe, D. P. K. Banerjee, R. D. Gehrz, R. P. Fender, M. Gromadzki, A. Kawash, C. Knigge, K. Mukai, U. Munari, M. Orio, V. A. R. M. Ribeiro, J. L. Sokoloski, S. Starrfield, A. Udalski, and P. A. Woudt
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astronomy and Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics - Abstract
We present a detailed study of the 2019 outburst of the cataclysmic variable V1047~Cen, which hosted a classical nova eruption in 2005. The peculiar outburst occurred 14 years after the classical nova event and lasted for more than 400 days, reaching an amplitude of around 6 magnitudes in the optical. Early spectral follow-up revealed what could be a dwarf nova (accretion disk instability) outburst. However, the outburst duration, high velocity ($>$2000\,km\,s$^{-1}$) features in the optical line profiles, luminous optical emission, and presence of prominent long-lasting radio emission together suggest a phenomenon more exotic and energetic than a dwarf nova outburst. The outburst amplitude, radiated energy, and spectral evolution are also not consistent with a classical nova eruption. There are similarities between V1047~Cen's 2019 outburst and those of classical symbiotic stars, but pre-2005 images of the field of V1047~Cen indicate that the system likely hosts a dwarf companion, implying a typical cataclysmic variable system. Based on our multi-wavelength observations, we suggest that the outburst may have started with a brightening of the disk due to enhanced mass transfer or disk instability, possibly leading to enhanced nuclear shell burning on the white dwarf, which was already experiencing some level of quasi-steady shell burning. This eventually led to the generation of a wind and/or bipolar, collimated outflows. The 2019 outburst of V1047~Cen appears to be unique, and nothing similar has been observed in a typical cataclysmic variable system before, hinting at a potentially new astrophysical phenomenon., 36 pages, 24 figures, 9 tables. Accepted in ApJ
- Published
- 2021
- Full Text
- View/download PDF
12. The Galactic Nova Rate: Estimates from the ASAS-SN and Gaia Surveys
- Author
-
A. Kawash, L. Chomiuk, J. Strader, K. V. Sokolovsky, E. Aydi, C. S. Kochanek, K. Z. Stanek, Z. Kostrzewa-Rutkowska, S. T. Hodgkin, K. Mukai, B. Shappee, T. Jayasinghe, M. Rizzo Smith, T. W.-S. Holoien, J. L. Prieto, and T. A. Thompson
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,White Dwarf Stars ,FOS: Physical sciences ,Cataclysmic Variable Stars ,Astronomy and Astrophysics ,Classical Novae ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics - High Energy Astrophysical Phenomena ,Novae ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We present the first estimate of the Galactic nova rate based on optical transient surveys covering the entire sky. Using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) and \textit{Gaia} -- the only two all-sky surveys to report classical nova candidates -- we find 39 confirmed Galactic novae and 7 additional unconfirmed candidates discovered from 2019--2021, yielding a nova discovery rate of $\approx 14$ yr$^{-1}$. Using accurate Galactic stellar mass models, three-dimensional dust maps, and incorporating realistic nova light curves, we have built a sophisticated Galactic nova model that allows an estimate of the recovery fraction of Galactic novae from these surveys over this time period. The observing capabilities of each survey are distinct: the high cadence of ASAS-SN makes it sensitive to fast novae, while the broad observing filter and high spatial resolution of \textit{Gaia} make it more sensitive to highly reddened novae across the entire Galactic plane and bulge. Despite these differences, we find that ASAS-SN and \textit{Gaia} give consistent Galactic nova rates, with a final joint nova rate of $26 \pm 5$ yr$^{-1}$. This inferred nova rate is substantially lower than found by many other recent studies. Critically assessing the systematic uncertainties in the Galactic nova rate, we argue that the role of faint fast-fading novae has likely been overestimated, but that subtle details in the operation of transient alert pipelines can have large, sometimes unappreciated effects on transient recovery efficiency. Our predicted nova rate can be directly tested with forthcoming red/near-infrared transient surveys in the southern hemisphere., 24 pages, 9 figures
- Published
- 2022
- Full Text
- View/download PDF
13. Radio Transients in the Era of Multi-Messenger Astrophysics
- Author
-
R. P. Fender, P. A. Woudt, M. Giroletti, M. L. Graham, G. E. Anderson, I. Andreoni, M. Caleb, D. Coppejans, S. Corbel, K. V. Sokolovsky, and Benjamin Stappers
- Subjects
Square kilometre array ,Exploit ,010308 nuclear & particles physics ,Space and Planetary Science ,Computer science ,0103 physical sciences ,Real-time computing ,Cataclysmic variable star ,The Renaissance ,Astronomy and Astrophysics ,010303 astronomy & astrophysics ,01 natural sciences - Abstract
Radio emission from astrophysical transients allows us to derive calorimetry of kinetic feedback and detailed imaging in ways that are not possible at other wavelengths, and as such it forms an important part of the multi-messenger follow-ups of these events. The field is burgeoning, with a renaissance of interest in accretion, stellar explosions and jetted supernovæ, alongside newer classes of phenomena such as fast radio bursts and tidal disruption events. The purpose of this workshop was to discuss the infrastructure and techniques for detecting, identifying and probing radio transients, with a particular focus on how best to exploit transient alerts from multi-messenger facilities. We examined the type of transient alerts those facilities will broadcast, and methods for following them up, such as rapid-response triggering and shadowing. In break-out groups, participants chose a science question related to a particular radio transient type or class and discussed whether the planned transient strategies and observing techniques on the Square Kilometre Array will be adequate to address the particular question. The classes they chose included fast radio bursts, supernovæ, cataclysmic variable and unknown transients. Any proposed adaptation or suggestion was relayed to a panel of experts for further discussion. The second part of the workshop concentrated on the application of long baseline interferometry for detecting and measuring radio transients.
- Published
- 2017
- Full Text
- View/download PDF
14. The Hubble Catalog of Variables (HCV)
- Author
-
K. V. Sokolovsky, A. Z. Bonanos, P. Gavras, M. Yang, D. Hatzidimitriou, M. I. Moretti, A. Karampelas, I. Bellas-Velidis, Z. Spetsieri, E. Pouliasis, I. Georgantopoulos, V. Charmandaris, K. Tsinganos, N. Laskaris, G. Kakaletris, A. Nota, D. Lennon, C. Arviset, B. C. Whitmore, T. Budavari, R. Downes, S. Lubow, A. Rest, L. Strolger, and R. White
- Subjects
010308 nuclear & particles physics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics - Abstract
The Hubble Source Catalog (HSC) combines lists of sources detected on images obtained with the WFPC2, ACS and WFC3 instruments aboard the Hubble Space Telescope (HST) available in the Hubble Legacy Archive. The catalog contains time-domain information with about two million of its sources detected with the same instrument and filter in at least five HST visits. The Hubble Catalog of Variables (HCV) project aims to identify HSC sources showing significant brightness variations. A magnitude-dependent threshold in the median absolute deviation of photometric measurements (an outlier-resistant measure of lightcurve scatter) is adopted as the variability-detection statistic. It is supplemented with a cut in $\chi_{\rm red}^2$ that removes sources with large photometric errors. A pre-processing procedure involving bad image identification, outlier rejection and computation of local magnitude zero-point corrections is applied to HSC lightcurves before computing the variability detection statistic. About 52000 HSC sources are identified as candidate variables, among which 7800 show variability in more than one filter. Visual inspection suggests that $\sim 70\%$ of the candidates detected in multiple filters are true variables while the remaining $\sim 30\%$ are sources with aperture photometry corrupted by blending, imaging artifacts or image processing anomalies. The candidate variables have AB magnitudes in the range 15-27$^{m}$ with the median 22$^{m}$. Among them are the stars in our own and nearby galaxies as well as active galactic nuclei., Comment: 4 pages, 1 figure, proceedings of the IAU Symposium 339 Southern Horizons in Time-Domain Astronomy, 13-17 November 2017, Stellenbosch, South Africa
- Published
- 2018
15. The simultaneous low state spectral energy distribution of 1ES 2344+514 from radio to very high energies
- Author
-
MAGIC Collaboration, J. Aleksić(IFAE, Edifici Cn., Campus UAB, Spain), L. A. Antonelli(INAF National Institute for Astrophysics, Rome, Italy), P. Antoranz(Università di Siena, and INFN Pisa, Italy), M. Asensio(Universidad Complutense, Spain), M. Backes(Technische Universität Dortmund, Germany), U. Barres de Almeida(Max-Planck-Institut für Physik, München, Germany), J. A. Barrio(Universidad Complutense, Spain), W. Bednarek(University of Łódź, Poland), K. Berger(Inst. de Astrofísica de Canarias, Tenerife, Spain), E. Bernardini(Deutsches Elektronen-Synchrotron), A. Biland(ETH Zurich, Switzerland), O. Blanch(IFAE, Edifici Cn., Campus UAB, Spain), R. K. Bock(Max-Planck-Institut für Physik, München, Germany), A. Boller(ETH Zurich, Switzerland), S. Bonnefoy(Universidad Complutense, Spain), G. Bonnoli(INAF National Institute for Astrophysics, Rome, Italy), D. Borla Tridon(Max-Planck-Institut für Physik, München, Germany), T. Bretz(Universität Würzburg, Germany), E. Carmona(Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Spain), A. Carosi(INAF National Institute for Astrophysics, Rome, Italy), D. Carreto Fidalgo(Universität Würzburg, Germany), P. Colin(Max-Planck-Institut für Physik, München, Germany), E. Colombo(Inst. de Astrofísica de Canarias, Tenerife, Spain), J. L. Contreras(Universidad Complutense, Spain), J. Cortina(IFAE, Edifici Cn., Campus UAB, Spain), L. Cossio(Università di Udine, and INFN Trieste, Italy), S. Covino(INAF National Institute for Astrophysics, Rome, Italy), P. Da Vela(Università di Siena, and INFN Pisa, Italy), F. Dazzi(Università di Udine, and INFN Trieste, Italy), A. De Angelis(Università di Udine, and INFN Trieste, Italy), G. De Caneva(Deutsches Elektronen-Synchrotron), B. De Lotto(Università di Udine, and INFN Trieste, Italy), C. Delgado Mendez(Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Spain), M. Doert(Technische Universität Dortmund, Germany), A. Domínguez(Inst. de Astrofísica de Andalucía), D. Dominis Prester(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), D. Dorner(Universität Würzburg, Germany), M. Doro(Universitat Autònoma de Barcelona, Spain), D. Eisenacher(Universität Würzburg, Germany), D. Elsaesser(Universität Würzburg, Germany), D. Ferenc(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), M. V. Fonseca(Universidad Complutense, Spain), L. Font(Universitat Autònoma de Barcelona, Spain), C. Fruck(Max-Planck-Institut für Physik, München, Germany), R. J. García López(Inst. de Astrofísica de Canarias, Tenerife, Spain), M. Garczarczyk(Inst. de Astrofísica de Canarias, Tenerife, Spain), D. Garrido Terrats(Universitat Autònoma de Barcelona, Spain), M. Gaug(Universitat Autònoma de Barcelona, Spain), G. Giavitto(IFAE, Edifici Cn., Campus UAB, Spain), N. Godinović(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), A. González Muñoz(IFAE, Edifici Cn., Campus UAB, Spain), S. R. Gozzini(Deutsches Elektronen-Synchrotron), A. Hadamek(Technische Universität Dortmund, Germany), D. Hadasch(Institut de Ciències de l'Espai), A. Herrero(Inst. de Astrofísica de Canarias, Tenerife, Spain), J. Hose(Max-Planck-Institut für Physik, München, Germany), D. Hrupec(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), F. Jankowski(Deutsches Elektronen-Synchrotron), V. Kadenius(Tuorla Observatory, University of Turku, Finland), S. Klepser(IFAE, Edifici Cn., Campus UAB, Spain), M. L. Knoetig(Max-Planck-Institut für Physik, München, Germany), T. Krähenbühl(ETH Zurich, Switzerland), J. Krause(Max-Planck-Institut für Physik, München, Germany), J. Kushida(Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan), A. La Barbera(INAF National Institute for Astrophysics, Rome, Italy), D. Lelas(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), E. Leonardo(Università di Siena, and INFN Pisa, Italy), N. Lewandowska(Universität Würzburg, Germany), E. Lindfors(Tuorla Observatory, University of Turku, Finland), S. Lombardi(INAF National Institute for Astrophysics, Rome, Italy), M. López(Universidad Complutense, Spain), R. López-Coto(IFAE, Edifici Cn., Campus UAB, Spain), A. López-Oramas(IFAE, Edifici Cn., Campus UAB, Spain), E. Lorenz(Max-Planck-Institut für Physik, München, Germany), I. Lozano(Universidad Complutense, Spain), M. Makariev(Inst. for Nucl. Research and Nucl. Energy, Sofia, Bulgaria), K. Mallot(Deutsches Elektronen-Synchrotron), G. Maneva(Inst. for Nucl. Research and Nucl. Energy, Sofia, Bulgaria), N. Mankuzhiyil(Università di Udine, and INFN Trieste, Italy), K. Mannheim(Universität Würzburg, Germany), L. Maraschi(INAF National Institute for Astrophysics, Rome, Italy), B. Marcote(Universitat de Barcelona), M. Mariotti(Università di Padova and INFN Padova, Italy), M. Martínez(IFAE, Edifici Cn., Campus UAB, Spain), J. Masbou(Università di Padova and INFN Padova, Italy), D. Mazin(Max-Planck-Institut für Physik, München, Germany), M. Meucci(Università di Siena, and INFN Pisa, Italy), J. M. Miranda(Università di Siena, and INFN Pisa, Italy), R. Mirzoyan(Max-Planck-Institut für Physik, München, Germany), J. Moldón(Universitat de Barcelona), A. Moralejo(IFAE, Edifici Cn., Campus UAB, Spain), P. Munar-Adrover(Universitat de Barcelona), D. Nakajima(Max-Planck-Institut für Physik, München, Germany), A. Niedzwiecki(University of Łódź, Poland), D. Nieto(Universidad Complutense, Spain), K. Nilsson(Tuorla Observatory, University of Turku, Finland), N. Nowak(Max-Planck-Institut für Physik, München, Germany), R. Orito(Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan), S. Paiano(Università di Padova and INFN Padova, Italy), M. Palatiello(Università di Udine, and INFN Trieste, Italy), D. Paneque(Max-Planck-Institut für Physik, München, Germany), R. Paoletti(Università di Siena, and INFN Pisa, Italy), J. M. Paredes(Universitat de Barcelona), S. Partini(Università di Siena, and INFN Pisa, Italy), M. Persic(Università di Udine, and INFN Trieste, Italy), M. Pilia(Università dell'Insubria, Como, Italy), F. Prada(Inst. de Astrofísica de Andalucía), P. G. Prada Moroni(Università di Pisa, and INFN Pisa, Italy), E. Prandini(Università di Padova and INFN Padova, Italy), I. Puljak(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), I. Reichardt(IFAE, Edifici Cn., Campus UAB, Spain), R. Reinthal(Tuorla Observatory, University of Turku, Finland), W. Rhode(Technische Universität Dortmund, Germany), M. Ribó(Universitat de Barcelona), J. Rico(ICREA, Barcelona, Spain), S. Rügamer(Universität Würzburg, Germany), A. Saggion(Università di Padova and INFN Padova, Italy), K. Saito(Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan), T. Y. Saito(Max-Planck-Institut für Physik, München, Germany), M. Salvati(INAF National Institute for Astrophysics, Rome, Italy), K. Satalecka(Universidad Complutense, Spain), V. Scalzotto(Università di Padova and INFN Padova, Italy), V. Scapin(Universidad Complutense, Spain), C. Schultz(Università di Padova and INFN Padova, Italy), T. Schweizer(Max-Planck-Institut für Physik, München, Germany), S. N. Shore(Università di Pisa, and INFN Pisa, Italy), A. Sillanpää(Tuorla Observatory, University of Turku, Finland), J. Sitarek(IFAE, Edifici Cn., Campus UAB, Spain), I. Snidaric(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), D. Sobczynska(University of Łódź, Poland), F. Spanier(Universität Würzburg, Germany), S. Spiro(INAF National Institute for Astrophysics, Rome, Italy), V. Stamatescu(IFAE, Edifici Cn., Campus UAB, Spain), A. Stamerra(Università di Siena, and INFN Pisa, Italy), B. Steinke(Max-Planck-Institut für Physik, München, Germany), J. Storz(Universität Würzburg, Germany), S. Sun(Max-Planck-Institut für Physik, München, Germany), T. Surić(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), L. Takalo(Tuorla Observatory, University of Turku, Finland), H. Takami(Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan), F. Tavecchio(INAF National Institute for Astrophysics, Rome, Italy), P. Temnikov(Inst. for Nucl. Research and Nucl. Energy, Sofia, Bulgaria), T. Terzić(Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, Croatia), D. Tescaro(Inst. de Astrofísica de Canarias, Tenerife, Spain), M. Teshima(Max-Planck-Institut für Physik, München, Germany), O. Tibolla(Universität Würzburg, Germany), D. F. Torres(ICREA, Barcelona, Spain), T. Toyama(Max-Planck-Institut für Physik, München, Germany), A. Treves(Università dell'Insubria, Como, Italy), M. Uellenbeck(Technische Universität Dortmund, Germany), P. Vogler(ETH Zurich, Switzerland), R. M. Wagner(Max-Planck-Institut für Physik, München, Germany), Q. Weitzel(ETH Zurich, Switzerland), F. Zandanel(Inst. de Astrofísica de Andalucía), R. Zanin(Universitat de Barcelona), The MAGIC Collaboration(Università di Trieste, and INFN Trieste, Italy), F. Longo(Università di Trieste, and INFN Trieste, Italy), F. Lucarelli(Agenzia Spaziale Italiana), C. Pittori(Agenzia Spaziale Italiana), S. Vercellone(INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy), for the AGILE team(Università di Padova and INFN Padova, Italy), D. Bastieri(Università di Padova and INFN Padova, Italy), C. Sbarra(INFN Padova, Italy), for the Fermi-LAT Collaboration(Max-Planck-Institut für Radioastronomie, Germany), E. Angelakis(Max-Planck-Institut für Radioastronomie, Germany), L. Fuhrmann(Max-Planck-Institut für Radioastronomie, Germany), I. Nestoras(Max-Planck-Institut für Radioastronomie, Germany), T. P. Krichbaum(Max-Planck-Institut für Radioastronomie, Germany), A. Sievers(Instituto de Radio Astronoma Milimétrica, Spain), J. A. Zensus(Max-Planck-Institut für Radioastronomie, Germany), for the F-GAMMA program(Crimean Astrophysical Observatory, Ukraine), K. A. Antonyuk(Crimean Astrophysical Observatory, Ukraine), W. Baumgartner(Astrophysics Science Division, NASA Goddard Space Flight Center, USA), A. Berduygin(Tuorla Observatory, University of Turku, Finland), M. Carini(Department of Physics and Astronomy, Western Kentucky University, USA), K. Cook(Department of Physics and Astronomy, Western Kentucky University, USA), N. Gehrels(Astrophysics Science Division, NASA Goddard Space Flight Center, USA), M. Kadler(Universität Würzburg, Germany), Yu. A. Kovalev(Astro Space Center of Lebedev Physical Institute, 117997 Moscow, Russia), Y. Y. Kovalev(Astro Space Center of Lebedev Physical Institute, 117997 Moscow, Russia), F. Krauss(Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Germany), H. A. Krimm(Universities Space Research Association, Columbia, MD 21044, USA), A. Lähteenmäki(Aalto University Metsähovi Radio Observatory, Finland), M. L. Lister(Department of Physics, Purdue University, USA), W. Max-Moerbeck(Cahill Center for Astronomy and Astrophysics, California Institute of Technology, USA), M. Pasanen(Tuorla Observatory, University of Turku, Finland), A. B. Pushkarev(Pulkovo Observatory, St. Petersburg, Russia), A. C. S. Readhead(Cahill Center for Astronomy and Astrophysics, California Institute of Technology, USA), J. L. Richards(Department of Physics, Purdue University, USA), J. Sainio(Tuorla Observatory, University of Turku, Finland), D. N. Shakhovskoy(Crimean Astrophysical Observatory, Ukraine), K. V. Sokolovsky(Astro Space Center of Lebedev Physical Institute, 117997 Moscow, Russia), M. Tornikoski(Aalto University Metsähovi Radio Observatory, Finland), J. Tueller(Astrophysics Science Division, NASA Goddard Space Flight Center, USA), M. Weidinger(Theoretische Physik IV, Ruhr-Universität Bochum, Germany), J. Wilms(Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Germany), Anne Lähteenmäki Group, Aalto-yliopisto, Aalto University, Institut de Física d’Altes Energies [Barcelone] (IFAE), Universitat Autònoma de Barcelona (UAB), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Instituto de Fisica Corpuscular (IFIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universitat de València (UV), Politecnico di Milano [Milan] (POLIMI), Universitá degli Studi dell’Insubria, Technische Universität Dortmund [Dortmund] (TU), IEEC-CSIC, Departamento de Ecología e Hidrología, Universidad de Murcia, Deutsches Elektronen-Synchrotron [Zeuthen] (DESY), Helmholtz-Gemeinschaft = Helmholtz Association, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'études dynamiques et structurales de la sélectivité (LEDSS), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Département de Physique des Particules (ex SPP) (DPP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Departament d'Astronomia i Meteorologia [Barcelona] (DAM), Universitat de Barcelona (UB), Universita degli Studi di Padova, Universidad de Cantabria [Santander], Istituto Nazionale di Fisica Nucleare, Sezione di Padova (INFN, Sezione di Padova), Istituto Nazionale di Fisica Nucleare (INFN), Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) (MPI-P), Instituto de Biotecnología, Departamento de Biología Molecular de Plantas, UNAM, Institute for Physical Research (IPR), National Academy of Sciences of the Republic of Armenia [Yerevan] (NAS RA), Netherlands Institute for Radio Astronomy (ASTRON), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), INAF - Osservatorio Astronomico di Trieste (OAT), Istituto Nazionale di Astrofisica (INAF), INAF-Cagliari Astronomical Observatory, Instituto de Física Teórica UAM/CSIC (IFT), Universidad Autonoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Dept. of Physics, Institut de Ciencies del Cosmos (ICCUB), Kao Group, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Optoelectronic Research Centre, University of Southampton, Department of Chemistry, Oulu, INAF - Osservatorio Astronomico di Brera (OAB), Max-Planck-Institut für Kernphysik (MPIK), Max-Planck-Gesellschaft, Università degli Studi di Udine - University of Udine [Italie], Universita degli studi di Napoli 'Parthenope' [Napoli], Istituto di Astrofisica Spaziale e Fisica cosmica - Palermo (IASF-Pa), Vecteurs - Infections tropicales et méditerranéennes (VITROME), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut de Recherche Biomédicale des Armées (IRBA), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), DAAA, ONERA, Université Paris Saclay (COmUE) [Meudon], ONERA-Université Paris-Saclay, University of Bath [Bath], Waves and Solitons LLC, 918 W. Windsong Dr., Caltech Department of Astronomy [Pasadena], California Institute of Technology (CALTECH), Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), J., Aleksić, L. A., Antonelli, P., Antoranz, M., Asensio, M., Backe, U., Barres de Almeida, J. A., Barrio, W., Bednarek, K., Berger, E., Bernardini, A., Biland, O., Blanch, R. K., Bock, A., Boller, S., Bonnefoy, G., Bonnoli, D., Borla Tridon, T., Bretz, E., Carmona, A., Carosi, D., Carreto Fidalgo, P., Colin, E., Colombo, J. L., Contrera, J., Cortina, L., Cossio, S., Covino, P., Da Vela, F., Dazzi, A., De Angeli, G., De Caneva, B., De Lotto, C., Delgado Mendez, M., Doert, A., Domínguez, D., Dominis Prester, D., Dorner, M., Doro, D., Eisenacher, D., Elsaesser, D., Ferenc, M. V., Fonseca, L., Font, C., Fruck, R. J., García López, M., Garczarczyk, D., Garrido Terrat, M., Gaug, G., Giavitto, N., Godinović, A., González Muñoz, S. R., Gozzini, A., Hadamek, D., Hadasch, A., Herrero, J., Hose, D., Hrupec, F., Jankowski, V., Kadeniu, S., Klepser, M. L., Knoetig, T., Krähenbühl, J., Krause, J., Kushida, A., La Barbera, D., Lela, E., Leonardo, N., Lewandowska, E., Lindfor, S., Lombardi, M., López, R., López Coto, A., López Orama, E., Lorenz, I., Lozano, M., Makariev, K., Mallot, G., Maneva, N., Mankuzhiyil, K., Mannheim, L., Maraschi, B., Marcote, M., Mariotti, M., Martínez, J., Masbou, D., Mazin, M., Meucci, J. M., Miranda, R., Mirzoyan, J., Moldón, A., Moralejo, P., Munar Adrover, D., Nakajima, A., Niedzwiecki, D., Nieto, K., Nilsson, N., Nowak, R., Orito, S., Paiano, M., Palatiello, D., Paneque, R., Paoletti, J. M., Parede, S., Partini, M., Persic, M., Pilia, F., Prada, P. G., Prada Moroni, E., Prandini, I., Puljak, I., Reichardt, R., Reinthal, W., Rhode, M., Ribó, J., Rico, S., Rügamer, A., Saggion, K., Saito, T. Y., Saito, M., Salvati, K., Satalecka, V., Scalzotto, V., Scapin, C., Schultz, T., Schweizer, S. N., Shore, A., Sillanpää, J., Sitarek, I., Snidaric, D., Sobczynska, F., Spanier, S., Spiro, V., Stamatescu, A., Stamerra, B., Steinke, J., Storz, S., Sun, T., Surić, L., Takalo, H., Takami, F., Tavecchio, P., Temnikov, T., Terzić, D., Tescaro, M., Teshima, O., Tibolla, D. F., Torre, T., Toyama, A., Treve, M., Uellenbeck, P., Vogler, R. M., Wagner, Q., Weitzel, F., Zandanel, R., Zanin, Longo, Francesco, F., Lucarelli, C., Pittori, S., Vercellone, D., Bastieri, C., Sbarra, E., Angelaki, L., Fuhrmann, I., Nestora, T. P., Krichbaum, A., Siever, J. A., Zensu, K. A., Antonyuk, W., Baumgartner, A., Berduygin, M., Carini, K., Cook, N., Gehrel, M., Kadler, Kovalev, Y. u. A., Y. Y., Kovalev, F., Krau, H. A., Krimm, A., Lähteenmäki, M. L., Lister, W., Max Moerbeck, M., Pasanen, A. B., Pushkarev, A. C. S., Readhead, J. L., Richard, J., Sainio, D. N., Shakhovskoy, K. V., Sokolovsky, M., Tornikoski, J., Tueller, M., Weidinger, J., Wilms, UAM. Departamento de Física Teórica, Universitá degli Studi dell’Insubria = University of Insubria [Varese] (Uninsubria), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Università degli Studi di Padova = University of Padua (Unipd), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Napoli 'Parthenope' = University of Naples (PARTHENOPE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut de Recherche Biomédicale des Armées [Brétigny-sur-Orge] (IRBA), Universitat Autònoma de Barcelona [Barcelona] (UAB), Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Universitat de València (UV), Helmholtz-Gemeinschaft, National Institute for Nuclear Physics (INFN), National Academy of Sciences of Armenia, The Netherlands Institute for Radio Astronomy (ASTRON), 7990-AA Dwingeloo, Netherlands, Universidad Autonoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), INAF-OAB, and DAAA, ONERA, Université Paris Saclay [Meudon]
- Subjects
galaxies [Gamma rays] ,Radiation mechanisms: non-thermal ,Flux ,Astrophysics ,01 natural sciences ,LARGE-AREA TELESCOPE ,law.invention ,law ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,BL Lacertae objects: individual: 1ES 2344+514 ,MAGIC (telescope) ,010303 astronomy & astrophysics ,galaxies: active ,BL Lacerae objects: individual: 1ES 2344+514 ,gamma rays: galaxies ,X-rays: individuals: 1ES 2344+514 ,radiation mechanisms: non-thermal ,ComputingMilieux_MISCELLANEOUS ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,ACTIVE GALACTIC NUCLEI ,BL-LACERTAE OBJECTS ,GAMMA-RAY EMISSION ,SIMULTANEOUS MULTIWAVELENGTH OBSERVATIONS ,SELF-COMPTON MODEL ,X-RAY ,LAC OBJECTS ,RELATIVISTIC JETS ,MARKARIAN 501 ,Gamma ray ,non-thermal [radiation mechanisms] ,active [galaxies] ,astro-ph.CO ,Spectral energy distribution ,Electrónica ,Física nuclear ,Electricidad ,Astrophysics - High Energy Astrophysical Phenomena ,Flare ,Astrophysics - Cosmology and Nongalactic Astrophysics ,[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astrophysics::High Energy Astrophysical Phenomena ,education ,FOS: Physical sciences ,Context (language use) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,0103 physical sciences ,galaxie [gamma rays] ,010308 nuclear & particles physics ,Física ,Astronomy and Astrophysics ,Light curve ,individual: 1ES 2344+514 [BL Lacertae objects] ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,galaxies [gamma-rays] ,Space and Planetary Science ,ddc:520 ,individuals: 1ES 2344+514 [X-rays] ,Fermi Gamma-ray Space Telescope - Abstract
Astronomy and Astrophysics 556 (2013): A67 reproduced with permission from Astronomy and Astrophysics, Context. BL Lacertae objects are variable at all energy bands on time scales down to minutes. To construct and interpret their spectral energy distribution (SED), simultaneous broad-band observations are mandatory. Up to now, the number of objects studied during such campaigns is very limited and biased towards high flux states. Aims.We present the results of a dedicated multi-wavelength study of the high-frequency peaked BL Lacertae (HBL) object and known TeV emitter 1ES 2344+514 by means of a pre-organised campaign. Methods.The observations were conducted during simultaneous visibility windows of MAGIC and AGILE in late 2008. The measurements were complemented by Metsähovi, RATAN-600, KVA+Tuorla, Swift and VLBA pointings. Additional coverage was provided by the ongoing long-term F-GAMMA and MOJAVE programs, the OVRO 40-m and CrAO telescopes as well as the Fermi satellite. The obtained SEDs are modelled using a one-zone as well as a self-consistent two-zone synchrotron self-Compton model. Results. 1ES 2344+514 was found at very low flux states in both X-rays and very high energy gamma rays. Variability was detected in the low frequency radio and X-ray bands only, where for the latter a small flare was observed. The X-ray flare was possibly caused by shock acceleration characterised by similar cooling and acceleration time scales. MOJAVE VLBA monitoring reveals a static jet whose components are stable over time scales of eleven years, contrary to previous findings. There appears to be no significant correlation between the 15 GHz and R-band monitoring light curves. The observations presented here constitute the first multi-wavelength campaign on 1ES 2344+514 from radio to VHE energies and one of the few simultaneous SEDs during low activity states. The quasi-simultaneous Fermi-LAT data poses some challenges for SED modelling, but in general the SEDs are described well by both applied models. The resulting parameters are typical for TeV emitting HBLs. Consequently it remains unclear whether a so-called quiescent state was found in this campaign, The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the Spanish MICINN is gratefully acknowledged. This work was also supported by the CPAN CSD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 127740 of the Academy of Finland, by the DFG Cluster of Excellence “Origin and Structure of the Universe”, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The AGILE Mission is funded by the Italian Space Agency (ASI), with scientific and programmatic participation by the Italian Institute of Astrophysics (INAF) and the Italian Institute of Nuclear Physics (INFN). Research partially supported through the ASI grants no. I/089/06/2 and I/042/10/0. The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A.Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged
- Published
- 2013
- Full Text
- View/download PDF
16. Exploring the Connection between Parsec-scale Jet Activity and Broadband Outbursts in 3C 279.
- Author
-
B. Rani, S. G. Jorstad, A. P. Marscher, I. Agudo, K. V. Sokolovsky, V. M. Larionov, P. Smith, D. A. Mosunova, G. A. Borman, T. S. Grishina, E. N. Kopatskaya, A. A. Mokrushina, D. A. Morozova, S. S. Savchenko, Yu. V. Troitskaya, I. S. Troitsky, C. Thum, S. N. Molina, and C. Casadio
- Subjects
VERY long baseline interferometry ,MULTIWALLED carbon nanotubes ,POLARIZATION (Nuclear physics) ,NUCLEAR magnetic resonance ,GALACTIC nuclei - Abstract
We use a combination of high-resolution very long baseline interferometry (VLBI) radio and multiwavelength flux density and polarization observations to constrain the physics of the dissipation mechanism powering the broadband flares in 3C 279 during an episode of extreme flaring activity in 2013–2014. Six bright flares superimposed on a long-term outburst are detected at γ-ray energies. Four of the flares have optical and radio counterparts. The two modes of flaring activity (faster flares sitting on top of a long-term outburst) present at radio, optical, and γ-ray frequencies are missing in X-rays. X-ray counterparts are only observed for two flares. The first three flares are accompanied by ejection of a new VLBI component (NC2), suggesting the 43 GHz VLBI core as the site of energy dissipation. Another new component, NC3, is ejected after the last three flares, which suggests that the emission is produced upstream from the core (closer to the black hole). The study therefore indicates multiple sites of energy dissipation in the source. An anticorrelation is detected between the optical percentage polarization (PP) and optical/γ-ray flux variations, while the PP has a positive correlation with optical/γ-ray spectral indices. Given that the mean polarization is inversely proportional to the number of cells in the emission region, the PP versus optical/γ-ray anticorrelation could be due to more active cells during the outburst than at other times. In addition to the turbulent component, our analysis suggests the presence of a combined turbulent and ordered magnetic field, with the ordered component transverse to the jet axis. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
17. RADIOASTRON OBSERVATIONS OF THE QUASAR 3C273: A CHALLENGE TO THE BRIGHTNESS TEMPERATURE LIMIT.
- Author
-
Y. Y. Kovalev, N. S. Kardashev, K. I. Kellermann, A. P. Lobanov, M. D. Johnson, L. I. Gurvits, P. A. Voitsik, J. A. Zensus, J. M. Anderson, U. Bach, D. L. Jauncey, F. Ghigo, T. Ghosh, A. Kraus, Yu. A. Kovalev, M. M. Lisakov, L. Yu. Petrov, J. D. Romney, C. J. Salter, and K. V. Sokolovsky
- Published
- 2016
- Full Text
- View/download PDF
18. The Brightest Gamma-Ray Flaring Blazar in the Sky: AGILE and Multi-wavelength Observations of 3C 454.3 During 2010 November
- Author
-
Sofia O. Kurtanidze, Valeri M. Larionov, M. F. Aller, Lorand A. Sigua, M. Trifoglio, V. Strelnitski, S. G. Sergeev, Fulvio Gianotti, J. L. Gomez, M. Cardillo, Pietro Ubertini, I. M. McHardy, Angela Bazzano, Fabrizio Lucarelli, Kirill Sokolovsky, C. M. Raiteri, A. Trois, T. Krajci, F. Lazzarotto, Mark Gurwell, I. Donnarumma, A. C. Sadun, Y. Evangelista, G. Walker, Manasvita Joshi, P. Santolamazza, M. Pasanen, D. A. Morozova, R. Reinthal, Elena Pian, M. G. Nikolashvili, M. Tavani, G. A. Borman, P. W. Cattaneo, A. Sillanpää, A. A. Arkharov, L. Maraschi, N. V. Efimova, Givi N. Kimeridze, E. Del Monte, F. Longo, G. Pucella, C. Pittori, K. Nilsson, A. Pellizzoni, E. Striani, V. Vittorini, Marc Türler, V. Bianchin, M. Rapisarda, A. Giuliani, Carlo Ferrigno, P. Soffitta, S. V. Nazarov, Hugh D. Aller, G. Barbiellini, R. A. Chigladze, E. Lindfors, Arnaud Ferrari, F. Verrecchia, S. Sabatini, M. Pilia, M. Villata, M. Giusti, F. Fuschino, Andrei Berdyugin, Uwe Bach, I. Agudo, L. O. Takalo, A. W. Chen, Brian W. Taylor, P. Giommi, Omar M. Kurtanidze, S. N. Molina, J. A. Ros, G. Piano, Stephanie Sallum, M. Feroci, Andrea Bulgarelli, T. Sakamoto, Yu. S. Efimov, P. Romano, S. Vercellone, L. Pacciani, Mariateresa Fiocchi, A. Rappoldi, R. D. Schwartz, S., Vercellone, E., Striani, V., Vittorini, I., Donnarumma, L., Pacciani, G., Pucella, M., Tavani, C. M., Raiteri, M., Villata, P., Romano, M., Fiocchi, A., Bazzano, V., Bianchin, C., Ferrigno, L., Maraschi, E., Pian, M., T\urler, P., Ubertini, A., Bulgarelli, A. W., Chen, A., Giuliani, Longo, Francesco, G., Barbiellini, M., Cardillo, P. W., Cattaneo, Monte, E., Y., Evangelista, M., Feroci, A., Ferrari, F., Fuschino, F., Gianotti, M., Giusti, F., Lazzarotto, A., Pellizzoni, G., Piano, M., Pilia, M., Rapisarda, A., Rappoldi, S., Sabatini, P., Soffitta, M., Trifoglio, A., Troi, P., Giommi, F., Lucarelli, C., Pittori, P., Santolamazza, F., Verrecchia, I., Agudo, H. D., Aller, M. F., Aller, A. A., Arkharov, U., Bach, A., Berdyugin, G. A., Borman, R., Chigladze, Y. S., Efimov, N. V., Efimova, J. L., Gomez, M. A., Gurwell, I. M., Mchardy, M., Joshi, G. N., Kimeridze, T., Krajci, O. M., Kurtanidze, S. O., Kurtanidze, V. M., Larionov, E., Lindfor, S. N., Molina, D. A., Morozova, S. V., Nazarov, M. G., Nikolashvili, K., Nilsson, M., Pasanen, R., Reinthal, J. A., Ro, A. C., Sadun, T., Sakamoto, S., Sallum, S. G., Sergeev, R. D., Schwartz, L. A., Sigua, A., Sillanp\a\a, K. V., Sokolovsky, V., Strelnitski, L., Takalo, B., Taylor, and G., Walker
- Subjects
galaxies: active ,galaxies: jets ,radiation mechanisms: non-thermal ,quasars: general ,quasars: individual: 3C 454.3 ,Photon ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Flux ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Vela ,01 natural sciences ,law.invention ,Pulsar ,law ,0103 physical sciences ,Blazar ,010303 astronomy & astrophysics ,media_common ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,general [quasars] ,010308 nuclear & particles physics ,individual: 3C 454.3 [quasars] ,Gamma ray ,Astronomy and Astrophysics ,non-thermal [radiation mechanisms] ,jet [galaxies] ,Space and Planetary Science ,Sky ,active [galaxies] ,Astrophysics - High Energy Astrophysical Phenomena ,Flare - Abstract
Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s on a time scale of about 12 hours, more than a factor of 6 higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of 3 brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make a thorough study of the present event possible: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the gamma-ray flare, we find that the radio, optical and X-ray emission varies within a factor 2-3, whereas the gamma-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons., Accepted for publication in ApJ Letters. 18 Pages, 4 Figures, 1 Table
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.