1. Generative AI for Discovering Porous Oxide Materials for Next-Generation Energy Storage
- Author
-
Datta, Joy, Datta, Dibakar, Nadimpally, Amruth, and Koratkar, Nikhil
- Subjects
Condensed Matter - Materials Science - Abstract
The key challenge in advancing multivalent-ion batteries lies in finding suitable intercalation hosts. Open-tunnel oxides, featuring one-dimensional channels or nanopores, show promise for enabling effective ion transport. However, the vast range of compositional possibilities renders traditional experimental and quantum-based methods impractical for large-scale studies. This work presents a generative AI framework that uses the Crystal Diffusion Variational Autoencoder (CDVAE) and a fine-tuned Large Language Model (LLM) to expedite the discovery of stable open-tunneled oxide materials for multivalent-ion batteries. By combining machine learning with data mining techniques, five promising transition metal oxide (TMO) structures are generated. These structures, known for forming open-tunnel oxide frameworks, are structurally validated through Density Functional Theory (DFT). The results show that the generated structures have lower formation energies compared to similar compositions in the Materials Project (MP) database, indicating improved thermodynamic stability. Additionally, the graph-based M3GNet model is employed to relax further generated structures, providing a more computationally efficient alternative to DFT. Machine learning-based predictions of formation energy, band gap, and energy above the hull refine the selection process, leading to the identification of materials with significant potential for real-world battery applications. This research demonstrates the power of generative AI in rapidly exploring the vast chemical space of TMOs, offering a new approach to discovering stable open-tunnel oxides for multivalent-ion batteries. The results highlight the potential of this approach to contribute to more sustainable energy storage technologies, addressing the growing concerns surrounding the scarcity of lithium., Comment: 11 pages, 10 figures
- Published
- 2024