1. Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions
- Author
-
Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, and Manuel De la Sen
- Subjects
fixed point technique ,carathéodory function ,existence solution ,fractional derivatives ,sequential differential inclusions ,Mathematics ,QA1-939 - Abstract
Many scholars have lately explored fractional-order boundary value issues with a variety of conditions, including classical, nonlocal, multipoint, periodic/anti-periodic, fractional-order, and integral boundary conditions. In this manuscript, the existence and uniqueness of solutions to sequential fractional differential inclusions via a novel set of nonlocal boundary conditions were investigated. The existence results were presented under a new class of nonlocal boundary conditions, Carathéodory functions, and Lipschitz mappings. Further, fixed-point techniques have been applied to study the existence of results under convex and non-convex multi-valued mappings. Ultimately, to support our findings, we analyzed an illustrative example.
- Published
- 2024
- Full Text
- View/download PDF