1. Robust Single-Photon Generation for Quantum Information Enabled by Stimulated Adiabatic Rapid Passage
- Author
-
Karli, Yusuf, Schwarz, René, Kappe, Florian, Vajner, Daniel A., Krämer, Ria G., Bracht, Thomas K., da Silva, Saimon F. Covre, Richter, Daniel, Nolte, Stefan, Rastelli, Armando, Reiter, Doris E., Weihs, Gregor, Heindel, Tobias, and Remesh, Vikas
- Subjects
Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Physics - Optics - Abstract
The generation of single photons using solid-state quantum emitters is pivotal for advancing photonic quantum technologies, particularly in quantum communication. As the field continuously advances towards practical use cases and beyond shielded laboratory environments, specific demands are placed on the robustness of quantum light sources during operation. In this context, the robustness of the quantum light generation process against intrinsic and extrinsic effects is a major challenge. Here, we present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence (PNC) using a three-level system in a semiconductor quantum dot. Our novel approach combines the advantages of adiabatic rapid passage (ARP) and stimulated two-photon excitation (sTPE). We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state. Moreover, we highlight the immediate advantages for the implementation of various quantum cryptographic protocols., Comment: 12 pages, 6 figures
- Published
- 2024