20 results on '"Kapustin, Y"'
Search Results
2. Database resources of the National Center for Biotechnology Information
- Author
-
Ew, Sayers, Barrett T, Da, Benson, Sh, Bryant, Canese K, Chetvernin V, Dm, Church, DiCuccio M, Edgar R, Federhen S, Feolo M, Ly, Geer, Helmberg W, Kapustin Y, David Landsman, Dj, Lipman, Tl, Madden, Dr, Maglott, Miller V, Mizrachi I, Ostell J, Kd, Pruitt, Gd, Schuler, Sequeira E, St, Sherry, Shumway M, Sirotkin K, Souvorov A, Starchenko G, Ta, Tatusova, Wagner L, Yaschenko E, and Ye J
- Subjects
Models, Molecular ,Proteomics ,PubMed ,Genotype ,Sequence Homology ,Gene Expression ,03 medical and health sciences ,0302 clinical medicine ,Databases, Genetic ,Genetics ,Animals ,Humans ,natural sciences ,030304 developmental biology ,0303 health sciences ,Internet ,National Library of Medicine (U.S.) ,Articles ,Genomics ,United States ,3. Good health ,Protein Structure, Tertiary ,Systems Integration ,Phenotype ,Genes ,030220 oncology & carcinogenesis ,Corrigendum ,Databases, Nucleic Acid ,Sequence Alignment ,030217 neurology & neurosurgery - Abstract
In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
- Published
- 2007
3. Genome sequence of the pea aphid Acyrthosiphon pisum
- Author
-
Richards, S, Gibbs, RA, Gerardo, NM, Moran, N, Nakabachi, A, Stern, D, Tagu, D, Wilson, ACC, Muzny, D, Kovar, C, Cree, A, Chacko, J, Chandrabose, MN, Dao, MD, Dinh, HH, Gabisi, RA, Hines, S, Hume, J, Jhangian, SN, Joshi, V, Lewis, LR, Liu, Y-S, Lopez, J, Morgan, MB, Nguyen, NB, Okwuonu, GO, Ruiz, SJ, Santibanez, J, Wright, RA, Fowler, GR, Hitchens, ME, Lozado, RJ, Moen, C, Steffen, D, Warren, JT, Zhang, J, Nazareth, LV, Chavez, D, Davis, C, Lee, SL, Patel, BM, Pu, L-L, Bell, SN, Johnson, AJ, Vattathil, S, Jr, WRL, Shigenobu, S, Dang, PM, Morioka, M, Fukatsu, T, Kudo, T, Miyagishima, S-Y, Jiang, H, Worley, KC, Legeai, F, Gauthier, J-P, Collin, O, Zhang, L, Chen, H-C, Ermolaeva, O, Hlavina, W, Kapustin, Y, Kiryutin, B, Kitts, P, Maglott, D, Murphy, T, Pruitt, K, Sapojnikov, V, Souvorov, A, Thibaud-Nissen, F, Camara, F, Guigo, R, Stanke, M, Solovyev, V, Kosarev, P, Gilbert, D, Gabaldon, T, Huerta-Cepas, J, Marcet-Houben, M, Pignatelli, M, Moya, A, Rispe, C, Ollivier, M, Quesneville, H, Permal, E, Llorens, C, Futami, R, Hedges, D, Robertson, HM, Alioto, T, Mariotti, M, Nikoh, N, McCutcheon, JP, Burke, G, Kamins, A, Latorre, A, Moran, NA, Ashton, P, Calevro, F, Charles, H, Colella, S, Douglas, A, Jander, G, Jones, DH, Febvay, G, Kamphuis, LG, Kushlan, PF, Macdonald, S, Ramsey, J, Schwartz, J, Seah, S, Thomas, G, Vellozo, A, Cass, B, Degnan, P, Hurwitz, B, Leonardo, T, Koga, R, Altincicek, B, Anselme, C, Atamian, H, Barribeau, SM, de Vos, M, Duncan, EJ, Evans, J, Ghanim, M, Heddi, A, Kaloshian, I, Vincent-Monegat, C, Parker, BJ, Perez-Brocal, V, Rahbe, Y, Spragg, CJ, Tamames, J, Tamarit, D, Tamborindeguy, C, Vilcinskas, A, Bickel, RD, Brisson, JA, Butts, T, Chang, C-C, Christiaens, O, Davis, GK, Duncan, E, Ferrier, D, Iga, M, Janssen, R, Lu, H-L, McGregor, A, Miura, T, Smagghe, G, Smith, J, van der Zee, M, Velarde, R, Wilson, M, Dearden, P, Edwards, OR, Gordon, K, Hilgarth, RS, Jr, RSD, Srinivasan, D, Walsh, TK, Ishikawa, A, Jaubert-Possamai, S, Fenton, B, Huang, W, Rizk, G, Lavenier, D, Nicolas, J, Smadja, C, Zhou, J-J, Vieira, FG, He, X-L, Liu, R, Rozas, J, Field, LM, Ashton, PD, Campbell, P, Carolan, JC, Douglas, AE, Fitzroy, CIJ, Reardon, KT, Reeck, GR, Singh, K, Wilkinson, TL, Huybrechts, J, Abdel-latief, M, Robichon, A, Veenstra, JA, Hauser, F, Cazzamali, G, Schneider, M, Williamson, M, Stafflinger, E, Hansen, KK, Grimmelikhuijzen, CJP, Price, DRG, Caillaud, M, van Fleet, E, Ren, Q, Gatehouse, JA, Brault, V, Monsion, B, Diaz, J, Hunnicutt, L, Ju, H-J, Pechuan, X, Aguilar, J, Cortes, T, Ortiz-Rivas, B, Martinez-Torres, D, Dombrovsky, A, Dale, RP, Davies, TGE, Williamson, MS, Jones, A, Sattelle, D, Williamson, S, Wolstenholme, A, Cottret, L, Sagot, MF, Heckel, DG, Hunter, W, Consortium, IAG, Universitat de Barcelona, Princeton University, Biologie des organismes et des populations appliquées à la protection des plantes (BIO3P), Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST, Biologie Fonctionnelle, Insectes et Interactions (BF2I), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA), Baylor College of Medicine (BCM), Baylor University, An algorithmic view on genomes, cells, and environments (BAMBOO), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), IAGC, Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon, Eisen, Jonathan A., and Eisen, Jonathan A
- Subjects
0106 biological sciences ,TANDEM REPEATS ,Genome, Insect ,Gene Transfer ,RRES175 ,Sequència genòmica ,Faculty of Science\Computer Science ,CPG METHYLATION ,01 natural sciences ,Genome ,Medical and Health Sciences ,International Aphid Genomics Consortium ,Biologiska vetenskaper ,Biology (General) ,GENE-EXPRESSION ,2. Zero hunger ,Genetics ,0303 health sciences ,Aphid ,Afídids ,General Neuroscience ,GENOME SEQUENCE ,food and beverages ,DROSOPHILA CIRCADIAN CLOCK ,Biological Sciences ,Genetics and Genomics/Microbial Evolution and Genomics ,INSECTE ,Genètica microbiana ,puceron ,APIS-MELLIFERA ,General Agricultural and Biological Sciences ,Infection ,symbiose ,Biotechnology ,Research Article ,VIRUS VECTORING ,175_Genetics ,SYMBIOTIC BACTERIA ,Gene Transfer, Horizontal ,QH301-705.5 ,ACYRTHOSIPHON PISUM ,Biology ,HOLOMETABOLOUS INSECTS ,HOST-PLANT ,010603 evolutionary biology ,PEA APHID ,INSECT-PLANT ,PHENOTYPIC PLASTICITY ,RAVAGEUR DES CULTURES ,SOCIAL INSECT ,General Biochemistry, Genetics and Molecular Biology ,Horizontal ,03 medical and health sciences ,Buchnera ,Gene family ,Life Science ,Animals ,Symbiosis ,Gene ,030304 developmental biology ,Whole genome sequencing ,General Immunology and Microbiology ,Annotation ,Genome sequence ,Agricultural and Veterinary Sciences ,175_Entomology ,Genètica animal ,Bacteriocyte ,génome ,gène ,Human Genome ,Biology and Life Sciences ,15. Life on land ,biochemical phenomena, metabolism, and nutrition ,biology.organism_classification ,REPETITIVE ELEMENTS ,DNA-SEQUENCES ,Acyrthosiphon pisum ,Genome Sequence ,Genetics and Genomics/Genome Projects ,Aphids ,PHEROMONE-BINDING ,Insect ,Developmental Biology ,[SDV.EE.IEO]Life Sciences [q-bio]/Ecology, environment/Symbiosis - Abstract
The genome of the pea aphid shows remarkable levels of gene duplication and equally remarkable gene absences that shed light on aspects of aphid biology, most especially its symbiosis with Buchnera., Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems., Author Summary Aphids are common pests of crops and ornamental plants. Facilitated by their ancient association with intracellular symbiotic bacteria that synthesize essential amino acids, aphids feed on phloem (sap). Exploitation of a diversity of long-lived woody and short-lived herbaceous hosts by many aphid species is a result of specializations that allow aphids to discover and exploit suitable host plants. Such specializations include production by a single genotype of multiple alternative phenotypes including asexual, sexual, winged, and unwinged forms. We have generated a draft genome sequence of the pea aphid, an aphid that is a model for the study of symbiosis, development, and host plant specialization. Some of the many highlights of our genome analysis include an expanded total gene set with remarkable levels of gene duplication, as well as aphid-lineage-specific gene losses. We find that the pea aphid genome contains all genes required for epigenetic regulation by methylation, that genes encoding the synthesis of a number of essential amino acids are distributed between the genomes of the pea aphid and its symbiont, Buchnera aphidicola, and that many genes encoding immune system components are absent. These genome data will form the basis for future aphid research and have already underpinned a variety of genome-wide approaches to understanding aphid biology.
- Published
- 2010
- Full Text
- View/download PDF
4. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species
- Author
-
Werren, J. H., Richards, S., Desjardins, C. A., Niehuis, O., Gadau, J., Colbourne, J. K., Beukeboom, L. W., Desplan, C., Elsik, C. G., Grimmelikhuijzen, C. J., Kitts, P., Lynch, J. A., Murphy, T., Oliveira, D. C., Smith, C. D., van de Zande, L., Worley, K. C., Zdobnov, E. M., Aerts, M., Albert, S., Anaya, V. H., Anzola, J. M., Barchuk, A. R., Behura, S. K., Bera, A. N., Berenbaum, M. R., Bertossa, R. C., Bitondi, M. M., Bordenstein, S. R., Bork, P., Bornberg-Bauer, E., Brunain, M., Cazzamali, G., Chaboub, L., Chacko, J., Chavez, D., Childers, C. P., Choi, J. H., Clark, M. E., Claudianos, C., Clinton, R. A., Cree, A. G., Cristino, A. S., Dang, P. M., Darby, A. C., de Graaf, D. C., Devreese, B., Dinh, H. H., Edwards, R., Elango, N., Elhaik, E., Ermolaeva, O., Evans, J. D., Foret, S., Fowler, G. R., Gerlach, D., Gibson, J. D., Gilbert, D. G., Graur, D., Gr�nder, S., Hagen, D. E., Han, Y., Hauser, F., Hultmark, D., Hunter, H. C., Hurst, G. D., Jhangian, S. N., Jiang, H., Johnson, R. M., Jones, A. K., Junier, T., Kadowaki, T., Kamping, A., Kapustin, Y., Kechavarzi, B., Kim, J., Kiryutin, B., Koevoets, T., Kovar, C. L., Kriventseva, E. V., Kucharski, R., Lee, H., Lee, S. L., Lees, K., Lewis, L. R., Loehlin, D. W., Logsdon, J. M., Lopez, J. A., Lozado, R. J., Maglott, D., Maleszka, R., Mayampurath, A., Mazur, D. J., McClure, M. A., Moore, A. D., Morgan, M. B., Muller, J., Munoz-Torres, M. C., Muzny, D. M., Nazareth, L. V., Neupert, S., Nguyen, N. B., Nunes, F. M., Oakeshott, J. G., Okwuonu, G. O., Pannebakker, B. A., Pejaver, V. R., Peng, Z., Pratt, S. C., Predel, R., Pu, L. L., Ranson, H., Raychoudhury, R., Rechtsteiner, A., Reese, J. T., Reid, J. G., Riddle, M., Robertson, H. M., Romero-Severson, J., Rosenberg, M., Sackton, T. B., Sattelle, D. B., Schl�ns, H., Schmitt, T., Schneider, M., Sch�ler, A., Schurko, A. M., Shuker, D. M., Sims, Z. L., Sinha, S., Smith, Z., Solovyev, V., Souvorov, A., Springauf, A., Stafflinger, E., Stage, D. E., Stanke, M., Tanaka, Y., Telschow, A., Trent, C., Vattathil, S., Verhulst, E. C., Viljakainen, L., Wanner, K. W., Waterhouse, R. M., Whitfield, J. B., Wilkes, T. E., Williamson, M., Willis, J. H., Wolschin, F., Wyder, S., Yamada, Takuji, Yi, S. V., Zecher, C. N., Zhang, L., Gibbs, R. A., Group, Nasonia Genome Working, Zdobnov, Evgeny, Gerlach, Daniel, Junier, Thomas, Muller, Jean, Beukeboom lab, and Van de Zande lab
- Subjects
0106 biological sciences ,Male ,Wasp Venoms/chemistry/toxicity ,Insecta ,Insect Viruses/genetics ,PARASITOLOGIA ,VITRIPENNIS ,Wasps ,Genome, Insect ,HYMENOPTERA ,Wasp Venoms ,Genes, Insect ,01 natural sciences ,Genome ,Nasonia vitripennis ,HONEYBEE ,PTEROMALIDAE ,Wasps/ genetics/physiology ,Arthropods/parasitology ,Pteromalidae ,DNA METHYLATION ,ddc:616 ,Recombination, Genetic ,0303 health sciences ,Multidisciplinary ,biology ,Ecology ,WASP NASONIA ,Biological Evolution ,3. Good health ,Insects ,DROSOPHILA ,APIS-MELLIFERA ,Insect Proteins ,Wolbachia ,Female ,Wolbachia/genetics ,Nasonia ,GENES ,Gene Transfer, Horizontal ,Evolution ,Genetic Speciation ,Molecular Sequence Data ,Quantitative Trait Loci ,Insect Viruses ,Quantitative trait locus ,010603 evolutionary biology ,Article ,Host-Parasite Interactions ,03 medical and health sciences ,Genetic model ,Animals ,Life Science ,Arthropods ,030304 developmental biology ,fungi ,Genetic Variation ,Sequence Analysis, DNA ,DNA Methylation ,biology.organism_classification ,SOCIAL INSECTS ,Insects/genetics ,Evolutionary biology ,DNA Transposable Elements ,Insect Proteins/genetics/metabolism - Abstract
Parasitoid Wasp Genomes Parasitoid wasps, which prey on and reproduce in host insect species, play important roles in plant herbivore interactions, and may provide valuable tools in the biological control of pest species. The Nasonia Genome Working Group (p. 343 ; see the news story by Pennisi ) presents the genome of three very closely related species: Nasonia vitripennis, N. giraulti , and N. longicornis . The findings document rapid evolution between a host and endosymbiont that can cause nuclear-cytoplasmic incompatibilities that may affect speciation.
- Published
- 2010
5. The genome of the model beetle and pest tribolium castaneum
- Author
-
Richards, S, Gibbs, RA, Weinstock, GM, Brown, SJ, Denell, R, Beeman, RW, Gibbs, R, Bucher, G, Friedrich, M, Grimmelikhuijzen, CJ, Klingler, M, Lorenzen, M, Roth, S, Schröder, R, Tautz, D, Zdobnov, EM, Muzny, D, Attaway, T, Bell, S, Buhay, CJ, Chandrabose, MN, Chavez, D, Clerk-Blankenburg, KP, Cree, A, Dao, M, Davis, C, Chacko, J, Dinh, H, Dugan-Rocha, S, Fowler, G, Garner, TT, Garnes, J, Gnirke, A, Hawes, A, Hernandez, J, Hines, S, Holder, M, Hume, J, Jhangiani, SN, Joshi, V, Khan, ZM, Jackson, L, Kovar, C, Kowis, A, Lee, S, Lewis, LR, Margolis, J, Morgan, M, Nazareth, LV, Nguyen, N, Okwuonu, G, Parker, D, Ruiz, SJ, Santibanez, J, Savard, J, Scherer, SE, Schneider, B, Sodergren, E, Vattahil, S, Villasana, D, White, CS, Wright, R, Park, Y, Lord, J, Oppert, B, Brown, S, Wang, L, Weinstock, G, Liu, Y, Worley, K, Elsik, CG, Reese, JT, Elhaik, E, Landan, G, Graur, D, Arensburger, P, Atkinson, P, Beidler, J, Demuth, JP, Drury, DW, Du, YZ, Fujiwara, H, Maselli, V, Osanai, M, Robertson, HM, Tu, Z, Wang, JJ, Wang, S, Song, H, Zhang, L, Werner, D, Stanke, M, Morgenstern, B, Solovyev, V, Kosarev, P, Brown, G, Chen, HC, Ermolaeva, O, Hlavina, W, Kapustin, Y, Kiryutin, B, Kitts, P, Maglott, D, Pruitt, K, Sapojnikov, V, Souvorov, A, Mackey, AJ, Waterhouse, RM, Wyder, S, Kriventseva, EV, Kadowaki, T, Bork, P, Aranda, M, Bao, R, Beermann, A, Berns, N, Bolognesi, R, Bonneton, F, Bopp, D, Butts, T, Chaumot, A, Denell, RE, Ferrier, DE, Gordon, CM, Jindra, M, Lan, Q, Lattorff, HM, Laudet, V, von Levetsow, C, Liu, Z, Lutz, R, Lynch, JA, da Fonseca, RN, Posnien, N, Reuter, R, Schinko, JB, Schmitt, C, Schoppmeier, M, Shippy, TD, Simonnet, F, Marques-Souza, H, Tomoyasu, Y, Trauner, J, Van der Zee, M, Vervoort, M, Wittkopp, N, Wimmer, EA, Yang, X, Jones, AK, Sattelle, DB, Ebert, PR, Nelson, D, Scott, JG, Muthukrishnan, S, Kramer, KJ, Arakane, Y, Zhu, Q, Hogenkamp, D, Dixit, R, Jiang, H, Zou, Z, Marshall, J, Elpidina, E, Vinokurov, K, Oppert, C, Evans, J, Lu, Z, Zhao, P, Sumathipala, N, Altincicek, B, Vilcinskas, A, Williams, M, Hultmark, D, Hetru, C, Hauser, F, Cazzamali, G, Williamson, M, Li, B, Tanaka, Y, Predel, R, Neupert, S, Schachtner, J, Verleyen, P, Raible, F, Walden, KK, Angeli, S, Forêt, S, Schuetz, S, Maleszka, R, Miller, SC, Grossmann, D, MDC Library, and Zdobnov, Evgeny
- Subjects
0106 biological sciences ,Repetitive Sequences, Nucleic Acid/genetics ,Insecticides ,Proteome ,Genome, Insect ,Cytochrome P-450 Enzyme System/genetics ,Genes, Insect ,Insect ,Receptors, Odorant ,01 natural sciences ,Genome ,Receptors, G-Protein-Coupled ,G-Protein-Coupled Receptors ,Genome, Insect/ genetics ,Oogenesis ,Cytochrome P-450 Enzyme System ,RNA interference ,Odorant Receptors ,Caenorhabditis elegans ,Insect Genome ,Phylogeny ,media_common ,Genetics ,ddc:616 ,0303 health sciences ,Base Composition ,Neurotransmitter Agents ,Tribolium ,Multidisciplinary ,Neurotransmitter Agents/genetics ,Receptors, Odorant/genetics ,Vision, Ocular/genetics ,Telomere ,Insecticides/pharmacology ,DNA Transposable Elements/genetics ,Proteome/genetics ,Genes, Insect/ genetics ,Oogenesis/genetics ,Taste ,RNA Interference ,Growth and Development ,Drosophila melanogaster ,animal structures ,Nucleic Acid Repetitive Sequences ,Taste/genetics ,media_common.quotation_subject ,570 Life Sciences ,Biology ,010603 evolutionary biology ,610 Medical Sciences, Medicine ,03 medical and health sciences ,Humans ,Insect Genes ,Ocular Vision ,Animals ,Tribolium/classification/embryology/ genetics/physiology ,Red flour beetle ,Gene ,Drosophila ,Vision, Ocular ,030304 developmental biology ,Repetitive Sequences, Nucleic Acid ,Growth and Development/genetics ,Telomere/genetics ,Body Patterning ,fungi ,biology.organism_classification ,Body Patterning/genetics ,Cardiovascular and Metabolic Diseases ,DNA Transposable Elements ,Receptors, G-Protein-Coupled/genetics - Abstract
Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
- Published
- 2008
6. Database resources of the National Center for Biotechnology Information
- Author
-
Sayers, E. W., primary, Barrett, T., additional, Benson, D. A., additional, Bolton, E., additional, Bryant, S. H., additional, Canese, K., additional, Chetvernin, V., additional, Church, D. M., additional, DiCuccio, M., additional, Federhen, S., additional, Feolo, M., additional, Fingerman, I. M., additional, Geer, L. Y., additional, Helmberg, W., additional, Kapustin, Y., additional, Krasnov, S., additional, Landsman, D., additional, Lipman, D. J., additional, Lu, Z., additional, Madden, T. L., additional, Madej, T., additional, Maglott, D. R., additional, Marchler-Bauer, A., additional, Miller, V., additional, Karsch-Mizrachi, I., additional, Ostell, J., additional, Panchenko, A., additional, Phan, L., additional, Pruitt, K. D., additional, Schuler, G. D., additional, Sequeira, E., additional, Sherry, S. T., additional, Shumway, M., additional, Sirotkin, K., additional, Slotta, D., additional, Souvorov, A., additional, Starchenko, G., additional, Tatusova, T. A., additional, Wagner, L., additional, Wang, Y., additional, Wilbur, W. J., additional, Yaschenko, E., additional, and Ye, J., additional
- Published
- 2011
- Full Text
- View/download PDF
7. Database resources of the National Center for Biotechnology Information
- Author
-
Sayers, E. W., primary, Barrett, T., additional, Benson, D. A., additional, Bolton, E., additional, Bryant, S. H., additional, Canese, K., additional, Chetvernin, V., additional, Church, D. M., additional, DiCuccio, M., additional, Federhen, S., additional, Feolo, M., additional, Fingerman, I. M., additional, Geer, L. Y., additional, Helmberg, W., additional, Kapustin, Y., additional, Landsman, D., additional, Lipman, D. J., additional, Lu, Z., additional, Madden, T. L., additional, Madej, T., additional, Maglott, D. R., additional, Marchler-Bauer, A., additional, Miller, V., additional, Mizrachi, I., additional, Ostell, J., additional, Panchenko, A., additional, Phan, L., additional, Pruitt, K. D., additional, Schuler, G. D., additional, Sequeira, E., additional, Sherry, S. T., additional, Shumway, M., additional, Sirotkin, K., additional, Slotta, D., additional, Souvorov, A., additional, Starchenko, G., additional, Tatusova, T. A., additional, Wagner, L., additional, Wang, Y., additional, Wilbur, W. J., additional, Yaschenko, E., additional, and Ye, J., additional
- Published
- 2010
- Full Text
- View/download PDF
8. Database resources of the National Center for Biotechnology Information
- Author
-
Sayers, E. W., primary, Barrett, T., additional, Benson, D. A., additional, Bryant, S. H., additional, Canese, K., additional, Chetvernin, V., additional, Church, D. M., additional, DiCuccio, M., additional, Edgar, R., additional, Federhen, S., additional, Feolo, M., additional, Geer, L. Y., additional, Helmberg, W., additional, Kapustin, Y., additional, Landsman, D., additional, Lipman, D. J., additional, Madden, T. L., additional, Maglott, D. R., additional, Miller, V., additional, Mizrachi, I., additional, Ostell, J., additional, Pruitt, K. D., additional, Schuler, G. D., additional, Sequeira, E., additional, Sherry, S. T., additional, Shumway, M., additional, Sirotkin, K., additional, Souvorov, A., additional, Starchenko, G., additional, Tatusova, T. A., additional, Wagner, L., additional, Yaschenko, E., additional, and Ye, J., additional
- Published
- 2009
- Full Text
- View/download PDF
9. Database resources of the National Center for Biotechnology Information
- Author
-
Wheeler, D. L., primary, Barrett, T., additional, Benson, D. A., additional, Bryant, S. H., additional, Canese, K., additional, Chetvernin, V., additional, Church, D. M., additional, DiCuccio, M., additional, Edgar, R., additional, Federhen, S., additional, Feolo, M., additional, Geer, L. Y., additional, Helmberg, W., additional, Kapustin, Y., additional, Khovayko, O., additional, Landsman, D., additional, Lipman, D. J., additional, Madden, T. L., additional, Maglott, D. R., additional, Miller, V., additional, Ostell, J., additional, Pruitt, K. D., additional, Schuler, G. D., additional, Shumway, M., additional, Sequeira, E., additional, Sherry, S. T., additional, Sirotkin, K., additional, Souvorov, A., additional, Starchenko, G., additional, Tatusov, R. L., additional, Tatusova, T. A., additional, Wagner, L., additional, and Yaschenko, E., additional
- Published
- 2007
- Full Text
- View/download PDF
10. Database resources of the National Center for Biotechnology Information
- Author
-
Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., Dicuccio, M., Edgar, R., Federhen, S., Geer, L. Y., Helmberg, W., Kapustin, Y., Kenton, D. L., Khovayko, O., Lipman, D. J., Madden, T. L., Maglott, D. R., Ostell, J., Pruitt, K. D., Schuler, G. D., Lynn Schriml, Sequeira, E., Sherry, S. T., Sirotkin, K., Souvorov, A., Starchenko, G., Suzek, T. O., Tatusov, R., Tatusova, T. A., Wagner, L., and Yaschenko, E.
- Subjects
Internet ,PubMed ,0303 health sciences ,National Library of Medicine (U.S.) ,Genomics ,Sequence Analysis, DNA ,United States ,Article ,3. Good health ,03 medical and health sciences ,0302 clinical medicine ,Gene Expression Regulation ,Genes ,Databases, Genetic ,Genetics ,Humans ,natural sciences ,Databases, Nucleic Acid ,Databases, Protein ,Sequence Alignment ,Software ,030217 neurology & neurosurgery ,030304 developmental biology - Abstract
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Retroviral Genotyping Tools, HIV-1, Human Protein Interaction Database, SAGEmap, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.
11. Database resources of the National Center for Biotechnology Information.
- Author
-
Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, Wilbur WJ, Yaschenko E, and Ye J
- Subjects
- Gene Expression, Genomics, Internet, Models, Molecular, National Library of Medicine (U.S.), Periodicals as Topic, PubMed, Sequence Alignment, Sequence Analysis, DNA, Sequence Analysis, Protein, Sequence Analysis, RNA, Small Molecule Libraries, United States, Databases as Topic, Databases, Genetic, Databases, Protein
- Abstract
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
- Published
- 2012
- Full Text
- View/download PDF
12. Cryptic splice sites and split genes.
- Author
-
Kapustin Y, Chan E, Sarkar R, Wong F, Vorechovsky I, Winston RM, Tatusova T, and Dibb NJ
- Subjects
- Base Sequence, Consensus Sequence, Evolution, Molecular, Expressed Sequence Tags chemistry, Genes, Genetic Diseases, Inborn genetics, Genomics methods, Humans, Introns, Sequence Alignment, Sequence Analysis, Protein, RNA Splice Sites, Software
- Abstract
We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.
- Published
- 2011
- Full Text
- View/download PDF
13. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species.
- Author
-
Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJ, Kitts P, Lynch JA, Murphy T, Oliveira DC, Smith CD, van de Zande L, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MM, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi JH, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, de Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Gründer S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter HC 4th, Hurst GD, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon JM Jr, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, McClure MA, Moore AD, Morgan MB, Muller J, Munoz-Torres MC, Muzny DM, Nazareth LV, Neupert S, Nguyen NB, Nunes FM, Oakeshott JG, Okwuonu GO, Pannebakker BA, Pejaver VR, Peng Z, Pratt SC, Predel R, Pu LL, Ranson H, Raychoudhury R, Rechtsteiner A, Reese JT, Reid JG, Riddle M, Robertson HM, Romero-Severson J, Rosenberg M, Sackton TB, Sattelle DB, Schlüns H, Schmitt T, Schneider M, Schüler A, Schurko AM, Shuker DM, Simões ZL, Sinha S, Smith Z, Solovyev V, Souvorov A, Springauf A, Stafflinger E, Stage DE, Stanke M, Tanaka Y, Telschow A, Trent C, Vattathil S, Verhulst EC, Viljakainen L, Wanner KW, Waterhouse RM, Whitfield JB, Wilkes TE, Williamson M, Willis JH, Wolschin F, Wyder S, Yamada T, Yi SV, Zecher CN, Zhang L, and Gibbs RA
- Subjects
- Animals, Arthropods parasitology, DNA Methylation, DNA Transposable Elements, Female, Gene Transfer, Horizontal, Genes, Insect, Genetic Speciation, Genetic Variation, Host-Parasite Interactions, Insect Proteins genetics, Insect Proteins metabolism, Insect Viruses genetics, Insecta genetics, Male, Molecular Sequence Data, Quantitative Trait Loci, Recombination, Genetic, Sequence Analysis, DNA, Wasp Venoms chemistry, Wasp Venoms toxicity, Wasps physiology, Wolbachia genetics, Biological Evolution, Genome, Insect, Wasps genetics
- Abstract
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
- Published
- 2010
- Full Text
- View/download PDF
14. Lineage-specific biology revealed by a finished genome assembly of the mouse.
- Author
-
Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, and Ponting CP
- Subjects
- Animals, Databases, Genetic, Gene Duplication, Genome physiology, Humans, Mice, Computational Biology methods, Genome genetics
- Abstract
The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2009
- Full Text
- View/download PDF
15. The genome sequence of taurine cattle: a window to ruminant biology and evolution.
- Author
-
Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigó R, Hamernik DL, Kappes SM, Lewin HA, Lynn DJ, Nicholas FW, Reymond A, Rijnkels M, Skow LC, Zdobnov EM, Schook L, Womack J, Alioto T, Antonarakis SE, Astashyn A, Chapple CE, Chen HC, Chrast J, Câmara F, Ermolaeva O, Henrichsen CN, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Kokocinski F, Landrum M, Maglott D, Pruitt K, Sapojnikov V, Searle SM, Solovyev V, Souvorov A, Ucla C, Wyss C, Anzola JM, Gerlach D, Elhaik E, Graur D, Reese JT, Edgar RC, McEwan JC, Payne GM, Raison JM, Junier T, Kriventseva EV, Eyras E, Plass M, Donthu R, Larkin DM, Reecy J, Yang MQ, Chen L, Cheng Z, Chitko-McKown CG, Liu GE, Matukumalli LK, Song J, Zhu B, Bradley DG, Brinkman FS, Lau LP, Whiteside MD, Walker A, Wheeler TT, Casey T, German JB, Lemay DG, Maqbool NJ, Molenaar AJ, Seo S, Stothard P, Baldwin CL, Baxter R, Brinkmeyer-Langford CL, Brown WC, Childers CP, Connelley T, Ellis SA, Fritz K, Glass EJ, Herzig CT, Iivanainen A, Lahmers KK, Bennett AK, Dickens CM, Gilbert JG, Hagen DE, Salih H, Aerts J, Caetano AR, Dalrymple B, Garcia JF, Gill CA, Hiendleder SG, Memili E, Spurlock D, Williams JL, Alexander L, Brownstein MJ, Guan L, Holt RA, Jones SJ, Marra MA, Moore R, Moore SS, Roberts A, Taniguchi M, Waterman RC, Chacko J, Chandrabose MM, Cree A, Dao MD, Dinh HH, Gabisi RA, Hines S, Hume J, Jhangiani SN, Joshi V, Kovar CL, Lewis LR, Liu YS, Lopez J, Morgan MB, Nguyen NB, Okwuonu GO, Ruiz SJ, Santibanez J, Wright RA, Buhay C, Ding Y, Dugan-Rocha S, Herdandez J, Holder M, Sabo A, Egan A, Goodell J, Wilczek-Boney K, Fowler GR, Hitchens ME, Lozado RJ, Moen C, Steffen D, Warren JT, Zhang J, Chiu R, Schein JE, Durbin KJ, Havlak P, Jiang H, Liu Y, Qin X, Ren Y, Shen Y, Song H, Bell SN, Davis C, Johnson AJ, Lee S, Nazareth LV, Patel BM, Pu LL, Vattathil S, Williams RL Jr, Curry S, Hamilton C, Sodergren E, Wheeler DA, Barris W, Bennett GL, Eggen A, Green RD, Harhay GP, Hobbs M, Jann O, Keele JW, Kent MP, Lien S, McKay SD, McWilliam S, Ratnakumar A, Schnabel RD, Smith T, Snelling WM, Sonstegard TS, Stone RT, Sugimoto Y, Takasuga A, Taylor JF, Van Tassell CP, Macneil MD, Abatepaulo AR, Abbey CA, Ahola V, Almeida IG, Amadio AF, Anatriello E, Bahadue SM, Biase FH, Boldt CR, Carroll JA, Carvalho WA, Cervelatti EP, Chacko E, Chapin JE, Cheng Y, Choi J, Colley AJ, de Campos TA, De Donato M, Santos IK, de Oliveira CJ, Deobald H, Devinoy E, Donohue KE, Dovc P, Eberlein A, Fitzsimmons CJ, Franzin AM, Garcia GR, Genini S, Gladney CJ, Grant JR, Greaser ML, Green JA, Hadsell DL, Hakimov HA, Halgren R, Harrow JL, Hart EA, Hastings N, Hernandez M, Hu ZL, Ingham A, Iso-Touru T, Jamis C, Jensen K, Kapetis D, Kerr T, Khalil SS, Khatib H, Kolbehdari D, Kumar CG, Kumar D, Leach R, Lee JC, Li C, Logan KM, Malinverni R, Marques E, Martin WF, Martins NF, Maruyama SR, Mazza R, McLean KL, Medrano JF, Moreno BT, Moré DD, Muntean CT, Nandakumar HP, Nogueira MF, Olsaker I, Pant SD, Panzitta F, Pastor RC, Poli MA, Poslusny N, Rachagani S, Ranganathan S, Razpet A, Riggs PK, Rincon G, Rodriguez-Osorio N, Rodriguez-Zas SL, Romero NE, Rosenwald A, Sando L, Schmutz SM, Shen L, Sherman L, Southey BR, Lutzow YS, Sweedler JV, Tammen I, Telugu BP, Urbanski JM, Utsunomiya YT, Verschoor CP, Waardenberg AJ, Wang Z, Ward R, Weikard R, Welsh TH Jr, White SN, Wilming LG, Wunderlich KR, Yang J, and Zhao FQ
- Subjects
- Alternative Splicing, Animals, Animals, Domestic, Cattle, Evolution, Molecular, Female, Genetic Variation, Humans, Male, MicroRNAs genetics, Molecular Sequence Data, Proteins genetics, Sequence Analysis, DNA, Species Specificity, Synteny, Biological Evolution, Genome
- Abstract
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
- Published
- 2009
- Full Text
- View/download PDF
16. Splign: algorithms for computing spliced alignments with identification of paralogs.
- Author
-
Kapustin Y, Souvorov A, Tatusova T, and Lipman D
- Subjects
- DNA, Complementary genetics, Genome, Human, Humans, Predictive Value of Tests, RNA, Messenger genetics, Software, Algorithms, RNA Splicing genetics, Sequence Alignment methods, Sequence Analysis, DNA methods, Sequence Analysis, RNA methods
- Abstract
Background: The computation of accurate alignments of cDNA sequences against a genome is at the foundation of modern genome annotation pipelines. Several factors such as presence of paralogs, small exons, non-consensus splice signals, sequencing errors and polymorphic sites pose recognized difficulties to existing spliced alignment algorithms., Results: We describe a set of algorithms behind a tool called Splign for computing cDNA-to-Genome alignments. The algorithms include a high-performance preliminary alignment, a compartment identification based on a formally defined model of adjacent duplicated regions, and a refined sequence alignment. In a series of tests, Splign has produced more accurate results than other tools commonly used to compute spliced alignments, in a reasonable amount of time., Conclusion: Splign's ability to deal with various issues complicating the spliced alignment problem makes it a helpful tool in eukaryotic genome annotation processes and alternative splicing studies. Its performance is enough to align the largest currently available pools of cDNA data such as the human EST set on a moderate-sized computing cluster in a matter of hours. The duplications identification (compartmentization) algorithm can be used independently in other areas such as the study of pseudogenes.
- Published
- 2008
- Full Text
- View/download PDF
17. The genome of the model beetle and pest Tribolium castaneum.
- Author
-
Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Beeman RW, Brown SJ, Bucher G, Friedrich M, Grimmelikhuijzen CJ, Klingler M, Lorenzen M, Richards S, Roth S, Schröder R, Tautz D, Zdobnov EM, Muzny D, Gibbs RA, Weinstock GM, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, Davis C, Chacko J, Dinh H, Dugan-Rocha S, Fowler G, Garner TT, Garnes J, Gnirke A, Hawes A, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Jackson L, Kovar C, Kowis A, Lee S, Lewis LR, Margolis J, Morgan M, Nazareth LV, Nguyen N, Okwuonu G, Parker D, Richards S, Ruiz SJ, Santibanez J, Savard J, Scherer SE, Schneider B, Sodergren E, Tautz D, Vattahil S, Villasana D, White CS, Wright R, Park Y, Beeman RW, Lord J, Oppert B, Lorenzen M, Brown S, Wang L, Savard J, Tautz D, Richards S, Weinstock G, Gibbs RA, Liu Y, Worley K, Weinstock G, Elsik CG, Reese JT, Elhaik E, Landan G, Graur D, Arensburger P, Atkinson P, Beeman RW, Beidler J, Brown SJ, Demuth JP, Drury DW, Du YZ, Fujiwara H, Lorenzen M, Maselli V, Osanai M, Park Y, Robertson HM, Tu Z, Wang JJ, Wang S, Richards S, Song H, Zhang L, Sodergren E, Werner D, Stanke M, Morgenstern B, Solovyev V, Kosarev P, Brown G, Chen HC, Ermolaeva O, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Maglott D, Pruitt K, Sapojnikov V, Souvorov A, Mackey AJ, Waterhouse RM, Wyder S, Zdobnov EM, Zdobnov EM, Wyder S, Kriventseva EV, Kadowaki T, Bork P, Aranda M, Bao R, Beermann A, Berns N, Bolognesi R, Bonneton F, Bopp D, Brown SJ, Bucher G, Butts T, Chaumot A, Denell RE, Ferrier DE, Friedrich M, Gordon CM, Jindra M, Klingler M, Lan Q, Lattorff HM, Laudet V, von Levetsow C, Liu Z, Lutz R, Lynch JA, da Fonseca RN, Posnien N, Reuter R, Roth S, Savard J, Schinko JB, Schmitt C, Schoppmeier M, Schröder R, Shippy TD, Simonnet F, Marques-Souza H, Tautz D, Tomoyasu Y, Trauner J, Van der Zee M, Vervoort M, Wittkopp N, Wimmer EA, Yang X, Jones AK, Sattelle DB, Ebert PR, Nelson D, Scott JG, Beeman RW, Muthukrishnan S, Kramer KJ, Arakane Y, Beeman RW, Zhu Q, Hogenkamp D, Dixit R, Oppert B, Jiang H, Zou Z, Marshall J, Elpidina E, Vinokurov K, Oppert C, Zou Z, Evans J, Lu Z, Zhao P, Sumathipala N, Altincicek B, Vilcinskas A, Williams M, Hultmark D, Hetru C, Jiang H, Grimmelikhuijzen CJ, Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Raible F, Bork P, Friedrich M, Walden KK, Robertson HM, Angeli S, Forêt S, Bucher G, Schuetz S, Maleszka R, Wimmer EA, Beeman RW, Lorenzen M, Tomoyasu Y, Miller SC, Grossmann D, and Bucher G
- Subjects
- Animals, Base Composition, Body Patterning genetics, Cytochrome P-450 Enzyme System genetics, DNA Transposable Elements genetics, Growth and Development genetics, Humans, Insecticides pharmacology, Neurotransmitter Agents genetics, Oogenesis genetics, Phylogeny, Proteome genetics, RNA Interference, Receptors, G-Protein-Coupled genetics, Receptors, Odorant genetics, Repetitive Sequences, Nucleic Acid genetics, Taste genetics, Telomere genetics, Tribolium classification, Tribolium embryology, Tribolium physiology, Vision, Ocular genetics, Genes, Insect genetics, Genome, Insect genetics, Tribolium genetics
- Abstract
Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
- Published
- 2008
- Full Text
- View/download PDF
18. Database resources of the National Center for Biotechnology Information.
- Author
-
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, and Yaschenko E
- Subjects
- Animals, Databases, Nucleic Acid, Gene Expression, Genomics, Genotype, Humans, Internet, Models, Molecular, Phenotype, Proteomics, Sequence Alignment, United States, Databases, Genetic, National Library of Medicine (U.S.)
- Abstract
In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
- Published
- 2008
- Full Text
- View/download PDF
19. Database resources of the National Center for Biotechnology Information.
- Author
-
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Helmberg W, Kapustin Y, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott DR, Ostell J, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Suzek TO, Tatusov R, Tatusova TA, Wagner L, and Yaschenko E
- Subjects
- Databases, Nucleic Acid, Databases, Protein, Gene Expression Regulation, Genes, Genomics, Humans, Internet, PubMed, Sequence Alignment, Sequence Analysis, DNA, Software, United States, Databases, Genetic, National Library of Medicine (U.S.)
- Abstract
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Retroviral Genotyping Tools, HIV-1, Human Protein Interaction Database, SAGEmap, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.
- Published
- 2006
- Full Text
- View/download PDF
20. The mechanism of carcinogenic action of 1,2-dimethylhydrazine (SDMH) in rats.
- Author
-
Pozharisski KM, Kapustin YM, Likhachev AJ, and Shaposhnikov JD
- Subjects
- Alkylation, Brain metabolism, DNA metabolism, Dimethylhydrazines analogs & derivatives, Glucuronates metabolism, Hepatectomy, Intestinal Mucosa metabolism, Kidney metabolism, Liver metabolism, Proteins metabolism, RNA metabolism, Spleen metabolism, Thymus Gland metabolism, Time Factors, Colonic Neoplasms, Dimethylhydrazines pharmacology, Hydrazines pharmacology
- Abstract
The radioactivity level in blood, bile, urine and contents of parts of the gastro-intestinal tract in rats was studied after subcutaneous administration of 3-H-1,2-dimethylhydrazine (3-H-SDMH) which induces colonic tumours. The alkylation of DNA, RNA and protein in the intestinal mucosa, liver and kidneys was estimated 1 h to 28 days after 3-H-SDMH treatment from the 3-H-incorporation into these macromolecules. Administration of 3-H-1,2-diethylhydrazine (3-H-SDEH) which does not induce intestinal tumours was made as a control. Fifteen to 30 min after 3-H-SDMH treatment, marked radioactivity was found in blood, bile, urine and in contents of all regions of gastro-intestinal tract. After 3-H-SDMH administration no label occurred in the contents of localized segments of gastro-intestinal tract although it was present in blood, bile and urine. 3-H-SDMH methylated DNA, RNA and proteins of intestinal mucosa, liver and kidney to a high degree. One hour after 3-H-SDMH treatment the incorporation of label into protein of intestinal mucosa was higher than into liver and kidneys. 3-H-SDEH did not alkylate macromolecules in these organs but did so in thymus, spleen and brain, which are target organs for this carcinogen. After total hepatectomy, 3-H-SDMH did not methylate macromolecules of the intestinal mucosa. The following mechanism for the carcinogenic effect of SDMH is suggested. A carcinogenic metabolite of SDMH forms, in the liver, a conjugate with glucuronic acid. This glucuronide enters the gut both with bile and directly via the circulation. Microbial beta-glucuronidase releases the active metabolite which, in turn, alkylates tissue macromolecules.
- Published
- 1975
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.