Günümüzde insansız hava araçları oldukça geniş bir alanda kullanılmaktadır. Terörle mücadele, keşif ve gözetleme, yangın ve doğal afetlerle mücadele, arama kurtarma, haritalama, maden arama, bilimsel araştırma, kargo taşıma, nakil amacıyla organ taşıma, tarımsal ilaçlama, fotoğrafçılık, hobi ve sportif amaçlı uçuşlar insansız hava araçlarının kullanım alanına girmektedir. İnsansız hava araçları, insanlı uçaklara kıyasla üretim maliyetinin daha düşük olması, içinde pilot bulundurmaması ve küçük boyutları sayesinde daha sert manevralar yapabilmesi nedeniyle daha avantajlıdır. İnsansız hava araçları, kanatlı insansız hava araçları ve dikey iniş kalkış yapabilen insansız hava araçları olarak iki kategoride düşünülebilir. Dikey iniş kalkış yapabilen insansız hava araçları, iniş ve kalkış esnasında piste ihtiyaç duymama, havada asılı kalabilme, kendi ekseni etrafında dönebilme, havada takla atabilme ve sert manevralar yapabilme kabiliyetine sahiptir. Bu özellikleri dikey iniş kalkış yapabilen insansız hava araçlarını sabit kanatlı insansız hava araçlarına kıyasla daha avantajlı hale getirmektedir. Quadrotor insansız hava araçları da dikey iniş kalkış yapabilen dört rotorlu araçlardır. Quadrotor insansız hava aracının sistem dinamikleri katı bir cismin uzaydaki 6 serbestlik dereceli hareketine benzemektedir. Bu 6 serbestlik derecesi açısal hızların oluşmasını sağlayan ve Euler açıları olarak bilinen yalpa, yunuslama, sapma açıları ile üç boyutlu uzayda lineer hareketleri tanımlayan x, y, z eksenlerinden oluşmaktadır. Bu tez çalışması kapsamında öncelikle quadrotor insansız hava aracının doğrusal olmayan modeli oluşturulmuştur. Oluşturulan bu model MATLAB/Simulink yazılımı kullanılarak bilgisayar ortamında gerçeklenmiştir. Daha sonra quadrotorun irtifasının, yalpa, yunuslama ve sapma açılarının kontrolü için farklı kontrolcü tasarımları gerçekleştirilmiştir. Tez çalışması kapsamında tüm bu zor koşullara karşı en dayanıklı şekilde çalışacak gürbüz kontrolcü tasarımı elde edi, Nowadays, unmanned aerial vehicles are used in a very wide area. Combating terrorism, reconnaissance and surveillance, fighting fire and natural disasters, search and rescue, mapping, mineral exploration, scientific research, cargo transport, organ transport, agricultural spraying, photography, hobby and sportive flights are among the areas of use of unmanned aerial vehicles. Unmanned aerial vehicles are more advantageous compared to manned aircraft due to their lower production cost, not carrying pilots, and being able to perform harder maneuvers thanks to their small size. Unmanned aerial vehicles can be considered in two categories: winged unmanned aerial vehicles and vertical take-off and landing unmanned aerial vehicles. Unmanned aerial vehicles that can take-off and land vertically do not need a runway during take-off and landing, they have the ability to hang in the air, rotate around their own axis, flip in the air and perform harsh maneuvers. These features make unmanned aerial vehicles capable of vertical take-off and landing more advantageous compared to fixed-wing unmanned aerial vehicles. Quadrotor unmanned aerial vehicles are four propeller vehicles that can take off and land vertically. The system dynamics of the quadrotor unmanned aerial vehicle are similar to the motion of a rigid body in space with 6 degrees of freedom. These 6 degrees of freedom consist of roll, pitch and yaw angles, known as Euler angles, which enable the formation of angular velocities, and x, y, z axes, which define linear movements in three-dimensional space. Within the scope of this thesis work, first of all, a nonlinear model of the quadrotor unmanned aerial vehicle was created. This created model was implemented in computer environment using MATLAB/Simulink software. Then, different controller designs were developed to control the altitude, roll, pitch and yaw angles of the quadrotor. Within the scope of the thesis work, an attempt was made to obtain a robust controller des