1. Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs
- Author
-
Chanenath Sriaporn, Kathleen A. Campbell, Martin J. Van Kranendonk, and Kim M. Handley
- Subjects
Acidithiobacillus ,Genome streamlining ,Adaptation ,Hot spring ,Temperature ,pH ,Microbial ecology ,QR100-130 - Abstract
Abstract Background Terrestrial hot spring settings span a broad spectrum of physicochemistries. Physicochemical parameters, such as pH and temperature, are key factors influencing differences in microbial composition across diverse geothermal areas. Nonetheless, analysis of hot spring pools from the Taupo Volcanic Zone (TVZ), New Zealand, revealed that some members of the bacterial genus, Acidithiobacillus, are prevalent across wide ranges of hot spring pHs and temperatures. To determine the genomic attributes of Acidithiobacillus that inhabit such diverse conditions, we assembled the genomes of 19 uncultivated hot spring Acidithiobacillus strains from six geothermal areas and compared these to 37 publicly available Acidithiobacillus genomes from various habitats. Results Analysis of 16S rRNA gene amplicons from 138 samples revealed that Acidithiobacillus comprised on average 11.4 ± 16.8% of hot spring prokaryotic communities, with three Acidithiobacillus amplicon sequence variants (ASVs) (TVZ_G1, TVZ_G2, TVZ_G3) accounting for > 90% of Acidithiobacillus in terms of relative abundance, and occurring in 126 out of 138 samples across wide ranges of temperature (17.5–92.9 °C) and pH (1.0–7.5). We recovered 19 environmental genomes belonging to each of these three ASVs, as well as a fourth related group (TVZ_G4). Based on genome average nucleotide identities, the four groups (TVZ_G1-TVZ_G4) constitute distinct species (ANI
- Published
- 2021
- Full Text
- View/download PDF