1. Interleaved quartic high gain DC–DC converter
- Author
-
T. Sakthiram, L. Yogesh, Rahul Srikanth, M. Prabhakar, and Kazem Varesi
- Subjects
DC–DC converters ,Power conversion ,Power electronics ,Microgrids ,Medicine ,Science - Abstract
Abstract This research paper presents a high-gain DC–DC converter with ultra-step-up voltage gain capability. The proposed converter is synthesized from a two-phase interleaved boost converter (IBC), and its voltage gain is doubled by adopting a voltage lift capacitor. To enhance its voltage gain capability, a floating capacitor-based gain extension cell is adopted subsequently. This cell yields a voltage gain that is cubed times the output voltage obtained from a classical boost converter (CBC). By cascading the two stages, the voltage gain of the proposed converter is enhanced to quartic times (4th power) that of the CBC. The proposed gain extension concept is validated by conducting practical experiments on a 16 V to 400 V, 150 W prototype version. Practically, the prototype converter delivers 150 W to the load and operates at a full-load efficiency of 92.7% when its switches are operated at safe duty ratio values. Under dynamic conditions, the proposed converter regulates the output voltage to 400 V quickly over a wide range of input voltage and load current variations; the overshoots and undershoots are also negligible. The maximum voltage gain of the proposed converter momentarily increases to 37 when the input voltage is drastically reduced to 10.8 V while the switches are still operated at safe duty ratio values. The voltage stress on the semiconductor devices is only a fraction of the output voltage due to the hybrid voltage gain extension technique. The input current is also ripple-free as the switches in the IBC structure are always operated at a duty ratio of 50%, and only the third switch is controlled to meet the required voltage gain. The salient features of the proposed converter are clearly highlighted by comparing it with several converters that possess quadratic, cubic, and quartic voltage gain functions. The common-ground connection between the source and the load in the proposed converter is an added preferable feature for PV applications.
- Published
- 2025
- Full Text
- View/download PDF