1. Left atrial single-cell transcriptomics reveals amphiregulin as a surrogate marker for atrial fibrillation
- Author
-
Yuya Suzuki, Takuo Emoto, Shunsuke Sato, Takeshi Yoshida, Mitsuhiko Shoda, Hiromi Endoh, Manabu Nagao, Tomoyo Hamana, Taishi Inoue, Tomohiro Hayashi, Eriko Nitta, Hiroki Konishi, Kunihiko Kiuchi, Mitsuru Takami, Kimitake Imamura, Masayuki Taniguchi, Masatoshi Inoue, Toshihiro Nakamura, Yusuke Sonoda, Hiroyuki Takahara, Kazutaka Nakasone, Kyoko Yamamoto, Kenichi Tani, Hidehiro Iwai, Yusuke Nakanishi, Shogo Yonehara, Atsushi Murakami, Ryuji Toh, Takenao Ohkawa, Tomoyuki Furuyashiki, Ryo Nitta, Tomoya Yamashita, Ken-ichi Hirata, and Koji Fukuzawa
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Abstract Atrial fibrillation (AF) is strongly associated with strokes, heart failure, and increased mortality. This study aims to identify the monocyte–macrophage heterogeneity and interactions of these cells with non-immune cells, and to identify functional biomarkers in patients with AF. Therefore, we assess the single cell landscape of left atria (LA), using a combination of single cell and nucleus RNA-seq. Myeloid cells in LA tissue are categorized into five macrophage clusters, three monocyte clusters, and others. Cell-Chat analysis revealed that monocytes and IL1B+ macrophages send epidermal growth factor (EGF) signals to fibroblasts. Amphiregulin (AREG) is the most upregulated gene in monocytes and IL1B+ macrophages in the AF group, compared with healthy controls from other groups. Serum AREG levels are higher in patients with persistent AF. These data suggested that EGF signaling pathway could be a therapeutic target for AF and serum AREG levels provide an effective biomarker for predicting persistent AF.
- Published
- 2024
- Full Text
- View/download PDF