1. Learning Radical Excited States from Sparse Data
- Author
-
Shen, Jingkun, Walker, Lucy, Ma, Kevin, Green, James D., Bronstein, Hugo, Butler, Keith T., and Hele, Timothy J. H.
- Subjects
Physics - Chemical Physics ,Condensed Matter - Materials Science - Abstract
Emissive organic radicals are currently of great interest for their potential use in the next generation of highly efficient organic light emitting diode (OLED) devices and as molecular qubits. However, simulating their optoelectronic properties is challenging, largely due to spin-contamination and the multireference character of their excited states. Here we present a data-driven approach where, for the first time, the excited electronic states of organic radicals are learned directly from experimental excited state data, using a much smaller amount of data than required by typical Machine Learning. We adopt ExROPPP, a fast and spin-pure semiempirical method for calculation of excited states of radicals, as a surrogate physical model for which we learn the optimal set of parameters. We train the model on 81 previously published radicals and find that the trained model is a huge improvement over ExROPPP with literature parameters, giving RMS and mean absolute errors of 0.24 and 0.16 eV respectively with R$^2$ and SRCC of 0.86 and 0.88 respectively. We synthesise four new radicals and validate the model on their spectra, finding even lower errors and similar correlation as for the testing set. This model paves the way for high throughput discovery of next-generation radical based optoelectronics.
- Published
- 2024