6 results on '"Kenzo-Kagawa B"'
Search Results
2. Exploring the ability of low-level laser irradiation to reduce myonecrosis and increase Myogenin transcription after Bothrops jararacussu envenomation.
- Author
-
Vieira WF, Kenzo-Kagawa B, Alvares LE, Cogo JC, Baranauskas V, and da Cruz-Höfling MA
- Subjects
- Animals, Cell Differentiation, Low-Level Light Therapy, Male, Mice, Muscle, Skeletal drug effects, Muscle, Skeletal radiation effects, Myogenin genetics, Bothrops, Crotalid Venoms toxicity, Gene Expression Regulation radiation effects, Laser Therapy, Myogenin metabolism, Necrosis therapy
- Abstract
Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6-8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.
- Published
- 2021
- Full Text
- View/download PDF
3. Muscle proteolysis via ubiquitin-proteasome system (UPS) is activated by BthTx-I Lys49 PLA 2 but not by BthTx-II Asp49 PLA 2 and Bothrops jararacussu venom.
- Author
-
Kenzo-Kagawa B, Vieira WF, Cogo JC, and da Cruz-Höfling MA
- Subjects
- Animals, Crotalid Venoms chemistry, Gene Expression Regulation drug effects, Group II Phospholipases A2 chemistry, Male, Mice, Muscle Proteins genetics, Proteolysis, Crotalid Venoms pharmacology, Group II Phospholipases A2 pharmacology, Muscle Proteins metabolism, Muscle, Skeletal drug effects, Muscle, Skeletal metabolism
- Abstract
Bites by viperid snakes belonging to Bothrops genus produce fast and intense local edema, inflammation, bleeding and myonecrosis. In this study, we investigated the role of Myogenic Regulatory Factors (MRFs: MyoD; Myog), negatively regulated by GDF-8 (Myostatin), and ubiquitin-proteasome system pathway (UPS: MuRF-1; Fbx-32) in gastrocnemius muscle regeneration after Bothrops jararacussu snake venom (Bjussu) or its isolated phospholipase A
2 myotoxins, BthTx-I (Lys-49 PLA2 ) and BthTx-II (Asp-49 PLA2 ) injection. Male Swiss mice received a single intra-gastrocnemius injection of crude Bjussu, at a dose/volume of 0.83 mg/kg/20 μl, and BthTx-I or BthTx-II, at a dose/volume of 2.5 mg/kg/20 μl. Control mice (Sham) received an injection of sterile saline solution (NaCl 0.9%; 20 μl). At 24, 48, 72 and 96 h post injection, right gastrocnemius was collected for protein expression analyses. Based on the temporal expressional dynamics of MyoD, Myog and GDF-8/Myostatin, it was possible to propose that the myogenesis pathway was impacted most badly by BthTx-II followed by BthTx-I and lastly by B. jararacussu venom, thus suggesting that catalytic activity has likely inhibitory role on the satellite cells-mediated reparative myogenesis pathway. Inversely, the catalytic activity seems to be not a determinant for the activation of proteins ubiquitination by MuRF-1 and Fbx-32/Atrogin-1 E3 proteasome ligases, given proteolysis pathway through UPS was activated neither after Bjussu, nor after BthTx-II, but just after the catalytically-inactive BthTx-I Lys-49 PLA2 -homologue exposure. The findings of this study disclose interesting perspective for further mechanistic studies about pathways that take part in the atrophy and repair after permanent damage induced by bothropic snakebites., Competing Interests: Declaration of Competing Interest Authors declare no conflict of interest., (Copyright © 2020 Elsevier Inc. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
4. Vibrational spectroscopy of muscular tissue intoxicated by snake venom and exposed to photobiomodulation therapy.
- Author
-
Vieira WF, Kenzo-Kagawa B, Britto MHM, Ceragioli HJ, Sakane KK, Baranauskas V, and da Cruz-Höfling MA
- Subjects
- Animals, Bothrops, Freeze Drying, Male, Mice, Muscle, Skeletal pathology, Spectroscopy, Fourier Transform Infrared, Low-Level Light Therapy methods, Muscle, Skeletal drug effects, Muscle, Skeletal radiation effects, Snake Venoms toxicity, Spectrum Analysis, Raman, Vibration
- Abstract
The pathogenesis of myonecrosis caused by myotoxins from bothropic venom is associated with local extracellular matrix (ECM) disintegration, hemorrhage, and inflammation. Search for alternative methods associated with serum therapy is mandatory to neutralize the fast development of local damage following snakebites. The experimental use of photobiomodulation therapy (PBMT) in murine models has shown promising results relative to structural and functional recovery from bothropic snakebite-induced myonecrosis. This study pioneered in using Raman and Fourier transform infrared (FTIR) spectroscopies to characterize biochemical alterations in the gastrocnemius that had been injected with Bothrops jararacussu venom and exposed to local PBMT. Results show that vibrational spectra from lyophilized and diluted venom (1307 cm
-1 ) was also found in the envenomed gastrocnemius indicating venom presence in the unirradiated muscle 48 h post-injection; but any longer visible after PBMT at this time exposure or 72 h post-injection regardless irradiated or not. Raman and FTIR analyses indicated that the bands with higher area and intensity were 1657 and 1547 cm-1 and 1667 and 1452 cm-1 , respectively; all are assignments for proteins, especially collagen, and are higher in the PBMT-exposed gastrocnemius. The infrared spectra suggest that laser treatment was able to change protein in tissue and that such change indicates collagen as the main target. We hypothesize that the findings reflect remodeling of ECM with key participation of collagen and faster tissue recovery for an anabolic condition.- Published
- 2018
- Full Text
- View/download PDF
5. Low-Level Laser Therapy (904 nm) Counteracts Motor Deficit of Mice Hind Limb following Skeletal Muscle Injury Caused by Snakebite-Mimicking Intramuscular Venom Injection.
- Author
-
Vieira WF, Kenzo-Kagawa B, Cogo JC, Baranauskas V, and Cruz-Höfling MA
- Subjects
- Animals, Gait, Hindlimb injuries, Male, Mice, Recovery of Function, Bothrops, Crotalid Venoms toxicity, Hindlimb physiopathology, Low-Level Light Therapy, Muscle, Skeletal injuries, Muscle, Skeletal physiopathology, Snake Bites physiopathology, Snake Bites radiotherapy
- Abstract
Myotoxins present in Bothrops venom disrupt the sarcolemma of muscle fibers leading to the release of sarcoplasmic proteins and loss of muscle homeostasis. Myonecrosis and tissue anoxia induced by vascularization impairment can lead to amputation or motor functional deficit. The objective of this study was to investigate the dynamic behavior of motor function in mice subjected to injection of Bothrops jararacussu venom (Bjssu) and exposed to low-level laser therapy (LLLT). Male Swiss mice received Bjssu injection (830 μg/kg) into the medial portion of the right gastrocnemius muscle. Three hours later the injected region was irradiated with diode semiconductor Gallium Arsenide (GaAs- 904 nm, 4 J/cm²) laser following by irradiation at 24, 48 and 72 hours. Saline injection (0.9% NaCl) was used as control. Gait analysis was performed 24 hours before Bjssu injection and at every period post-Bjssu using CatWalk method. Data from spatiotemporal parameters Stand, Maximum Intensity, Swing, Swing Speed, Stride Length and Step Cycle were considered. The period of 3 hours post venom-induced injury was considered critical for all parameters evaluated in the right hindlimb. Differences (p<0.05) were concentrated in venom and venom + placebo laser groups during the 3 hours post-injury period, in which the values of stand of most animals were null. After this period, the gait characteristics were re-established for all parameters. The venom + laser group kept the values at 3 hours post-Bjssu equal to that at 24 hours before Bjssu injection indicating that the GaAs laser therapy improved spatially and temporally gait parameters at the critical injury period caused by Bjssu. This is the first study to analyze with cutting edge technology the gait functional deficits caused by snake envenoming and gait gains produced by GaAs laser irradiation. In this sense, the study fills a gap on the field of motor function after laser treatment following snake envenoming.
- Published
- 2016
- Full Text
- View/download PDF
6. Pharmacological study of a new Asp49 phospholipase A(2) (Bbil-TX) isolated from Bothriopsis bilineata smargadina (forest viper) venom in vertebrate neuromuscular preparations.
- Author
-
Floriano RS, Carregari VC, de Abreu VA, Kenzo-Kagawa B, Ponce-Soto LA, da Cruz-Höfling MA, Hyslop S, Marangoni S, and Rodrigues-Simioni L
- Subjects
- Acetophenones metabolism, Animals, Bothrops, Carbachol pharmacology, Chickens, Diaphragm drug effects, Diaphragm metabolism, Male, Mice, Miniature Postsynaptic Potentials drug effects, Muscle Contraction drug effects, Muscle, Skeletal drug effects, Neuromuscular Junction drug effects, Phrenic Nerve drug effects, Phrenic Nerve metabolism, Neuromuscular Blockade, Phospholipases A2, Secretory pharmacology, Reptilian Proteins pharmacology, Viper Venoms chemistry
- Abstract
The neuromuscular activity of Bbil-TX, a PLA2 with catalytic activity isolated from Bothriopsis bilineata smargadina venom, was examined in chick biventer cervicis (BC) and mouse phrenic nerve-diaphragm (PND) preparations. In BC preparations, Bbil-TX (0.5-10 μg/ml) caused time- and concentration-dependent blockade that was not reversed by washing; the times for 50% blockade were 87 ± 7, 41 ± 7 and 19 ± 2 min (mean ± SEM; n = 4-6) for 1, 5 and 10 μg/ml, respectively. Muscle contractures to exogenous ACh and KCl were unaffected. The toxin (10 μg/ml) also did not affect the twitch-tension of directly-stimulated, curarized (10 μg/ml) BC preparations. However, Bbil-TX (10 μg/ml) produced mild morphological alterations (edematous and/or hyperchromic fibers) in BC; there was also a progressive release of CK (from 116 ± 17 IU/ml (basal) to 710 ± 91 IU/ml after 45 min). Bbil-TX (5 μg/ml)-induced blockade was markedly inhibited at 22-24 °C and pretreatment with p-bromophenacyl bromide (p-BPB) abolished the neuromuscular blockade. Bbil-TX (3-30 μg/ml, n = 4-6) caused partial time- and concentration-dependent blockade in PND preparations (52 ± 2% at the highest concentration). Bbil-TX (30 μg/ml) also markedly reduced the MEPPs frequency [from 26 ± 2.5 (basal) to 10 ± 1 after 60 min; n = 5; p < 0.05] and the quantal content [from 94 ± 14 (basal) to 24 ± 3 after 60 min; n = 5; p < 0.05] of PND preparations, but caused only minor depolarization of the membrane resting potential [from -80 ± 1 mV (basal) to -66 ± 2 mV after 120 min; n = 5; p < 0.05], with no significant change in the depolarizing response to exogenous carbachol. These results show that Bbil-TX is a presynaptic PLA2 that contributes to the neuromuscular blockade caused by B. b. smargadina venom., (Copyright © 2013 Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.