Kevin Dalleau, Jean-Marc Boivin, Malika Smaïl-Tabbone, Anne-Cecile Huby, Patrick Rossignol, Margret Leosdottir, Marie-Dominique Devignes, Gregoire Preud'homme, Olivier Huttin, Emmanuel Bresso, Martin Magnusson, Faiez Zannad, Kevin Duarte, João Pedro Ferreira, Masatake Kobayashi, Stanislas study, Erwan Bozec, Peter M. Nilsson, Zohra Lamiral, Nicolas Girerd, Défaillance Cardiovasculaire Aiguë et Chronique (DCAC), Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Centre d'investigation clinique plurithématique Pierre Drouin [Nancy] (CIC-P), Centre d'investigation clinique [Nancy] (CIC), Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL)-Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Cardiovascular and Renal Clinical Trialists [Vandoeuvre-les-Nancy] (INI-CRCT), Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu [Nancy], French-Clinical Research Infrastructure Network - F-CRIN [Paris] (Cardiovascular & Renal Clinical Trialists - CRCT ), Lund University [Lund], Skane University Hospital [Malmo], Computational Algorithms for Protein Structures and Interactions (CAPSID), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), The STANISLAS Cohort visit 4 was sponsored by the Nancy CHRU and was funded in part by the Programme Hospitalier de Recherche Clinique Interrégional. Biomarker studies are co-funded by the French National Research Agency Fighting Heart Failure (ANR-15-RHU-0004) and FEDER Lorraine, and all French co-authors are supported by the French Programme d'investissements d'avenir project 'Lorraine Université d’Excellence' GEENAGE (ANR-15-IDEX-04-LUE) programs, and the Contrat de Plan Etat Région Lorraine and FEDER IT2MP. The research leading to these results also received support from the European Union Commission’s Seventh Framework program under grant 305507 (Heart OMics in Aging). Support was also provided from the 'EXPERT' ERA-CVD 2016 and MR-Focus (both grants managed by the French National Research Agency). Drs. Girerd, Rossignol, and Zannad are supported by the French National Research Agency Fighting Heart Failure (ANR-15-RHU-0004), the French PIA project Lorraine Université d’Excellence GEENAGE (ANR-15-IDEX-04-LUE) programs, and the Contrat de Plan Etat Région Lorraine and FEDER IT2MP., ANR-15-RHUS-0004,FIGHT-HF,Combattre l'insuffisance cardiaque(2015), ANR-15-IDEX-0004,LUE,Isite LUE(2015), European Project, European Project: 305507,EC:FP7:HEALTH,FP7-HEALTH-2012-INNOVATION-1,HOMAGE(2013), European Project: ERA-CVD/0001/2016,MINOTAUR, BOZEC, Erwan, Combattre l'insuffisance cardiaque - - FIGHT-HF2015 - ANR-15-RHUS-0004 - RHUS - VALID, ISITE - Isite LUE - - LUE2015 - ANR-15-IDEX-0004 - IDEX - VALID, Entreprises lorraines, parties prenantes et Développement Durable (FEDER) (Région Lorraine) - INCOMING, Heart OMics in AGEing - HOMAGE - - EC:FP7:HEALTH2013-02-01 - 2019-01-31 - 305507 - VALID, Metabolic Therapy for Managing Diastolic Heart Failure - MINOTAUR - ERA-CVD/0001/2016 - INCOMING, and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)
This study sought to identify homogenous echocardiographic phenotypes in community-based cohorts and assess their association with outcomes.Asymptomatic cardiac dysfunction leads to a high risk of long-term cardiovascular morbidity and mortality; however, better echocardiographic classification of asymptomatic individuals remains a challenge.Echocardiographic phenotypes were identified using K-means clustering in the first generation of the STANISLAS (Yearly non-invasive follow-up of Health status of Lorraine insured inhabitants) cohort (N = 827; mean age: 60 ± 5 years; men: 48%), and their associations with vascular function and circulating biomarkers were also assessed. These phenotypes were externally validated in the Malmö Preventive Project cohort (N = 1,394; mean age: 67 ± 6 years; men: 70%), and their associations with the composite of cardiovascular mortality (CVM) or heart failure hospitalization (HFH) were assessed as well.Three echocardiographic phenotypes were identified as "mostly normal (MN)" (n = 334), "diastolic changes (D)" (n = 323), and "diastolic changes with structural remodeling (D/S)" (n = 170). The D and D/S phenotypes had similar ages, body mass indices, cardiovascular risk factors, vascular impairments, and diastolic function changes. The D phenotype consisted mainly of women and featured increased levels of inflammatory biomarkers, whereas the D/S phenotype, consisted predominantly of men, displayed the highest values of left ventricular mass, volume, and remodeling biomarkers. The phenotypes were predicted based on a simple algorithm including e', left ventricular mass and volume (e'VM algorithm). In the Malmö cohort, subgroups derived from e'VM algorithm were significantly associated with a higher risk of CVM and HFH (adjusted HR in the D phenotype = 1.87; 95% CI: 1.04 to 3.37; adjusted HR in the D/S phenotype = 3.02; 95% CI: 1.71 to 5.34).Among asymptomatic, middle-aged individuals, echocardiographic data-driven classification based on the simple e'VM algorithm identified profiles with different long-term HF risk. (4th Visit at 17 Years of Cohort STANISLAS-Stanislas Ancillary Study ESCIF [STANISLASV4]; NCT01391442).