1. Early Mission Calibration Performance of NOAA-21 VIIRS Reflective Solar Bands
- Author
-
Ning Lei, Xiaoxiong Xiong, Kevin Twedt, Sherry Li, Tiejun Chang, Qiaozhen Mu, and Amit Angal
- Subjects
VIIRS ,JPSS ,SNPP ,reflective solar bands ,calibration ,performance ,Science - Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments on the recently launched NOAA-21 (previously known as JPSS-2) satellite. The VIIRS, like its predecessors on the SNPP and NOAA-20 satellites, provides daily global coverage in 22 spectral bands from 412 nm to 12 μm. The geometrically and radiometrically calibrated observations are the basis for many operational applications and scientific research studies. A total of 14 of the 22 bands are reflective solar bands (RSBs), covering photon wavelengths from 412 nm to 2.25 μm. The RSBs were radiometrically calibrated prelaunch and have been regularly calibrated on orbit through the onboard solar diffuser (SD) and scheduled lunar observations. The on-orbit SD’s reflectance change is determined by the onboard solar diffuser stability monitor (SDSM). We review the calibration algorithms and present the early mission performance of the NASA N21 VIIRS RSBs. Using the calibration data collected at both the yaw maneuver and regular times, we derive the screen transmittance functions. The visible and near-infrared bands’ radiometric gains have been stable, nearly independent of time, and so were the radiometric gains of the shortwave-infrared bands after the second mid-mission outgassing. Further, we assess the Earth-view striping observed in the immediate prior collection (Collection 2.0) and apply a previously developed algorithm to mitigate the striping. The N21 VIIRS RSB detector signal-to-noise ratios are all above the design values with large margins. Finally, the uncertainties of the retrieved Earth-view top-of-the-atmosphere spectral reflectance factors at the respective typical spectral radiance levels are estimated to be less than 1.5% for all the RSBs, except band M11 whose reflectance factor uncertainty is 2.2%.
- Published
- 2024
- Full Text
- View/download PDF