1. Mapping a sustainable approach: biosynthesis of lactobacilli-silver nanocomposites using whey-based medium for antimicrobial and bioactivity applications.
- Author
-
El Fadly EB, Salah AS, Abdella B, Al Ali A, AlShmrany H, ElBaz AM, Abdelatty NS, Khamis EF, Maagouz OF, Salamah MA, Saleh MN, Sakr HK, and El-Kemary MA
- Subjects
- Lactobacillus acidophilus drug effects, Lactobacillus acidophilus metabolism, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents biosynthesis, Metal Nanoparticles chemistry, Lactobacillus metabolism, Anti-Infective Agents pharmacology, Anti-Infective Agents chemistry, Spectroscopy, Fourier Transform Infrared, Nanocomposites chemistry, Silver chemistry, Silver pharmacology, Whey chemistry, Whey metabolism, Microbial Sensitivity Tests
- Abstract
This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF