79 results on '"Khatami SH"'
Search Results
2. Spawning season and maturity stages of Potamon persicum in Jajroud River
- Author
-
Khatami, SH., Balouch, M., Valinassab, T., and Sari, A.R.
- Subjects
Potamon persicum ,Tehran Province ,Jajroud River ,Iran ,Biology ,Freshwater crab - Abstract
Jajroud river with 140km length, inhabits various species of aquatics of which one of the main identified one is freshwater crab belongs to POTAMIDAE family with scientific name of Potamon persicum. In this study, 388 specimens from 5 sampling stations (Latian dam, Taraghion, Khojir, Giahan daroie and Mamloo dam) were collected since November 1998. All samples were transferred to the laboratory for reproduction studies and determination of spawning season, with studying the maturity stages of gonads and external eggs. The results showed that the spawning season of this species occurring in middle of spring, it was also found that P. persicum is a total spawner. The external maturity (of eggs) was classified to 7 stages. On the other hand the maturity stages of gonad was recognized in accordance with the color, size and egg diameter and classified to 5 stages.
- Published
- 2004
3. Species identification of freshwater crab in Jajroud River
- Author
-
Khatami, Sh. and Valinasab, T.
- Subjects
Ecology ,Potamon persicum ,Iran ,Biology ,Freshwater crab ,Species identification ,Jajroud river ,Tehran - Abstract
Jajroud river is one of the most important aquatic ecosystem in Iran (east of Tehran) and consist of variety of different aquatics, of which is a freshwater crab. The crab sample were collected from 5 stations of Taraghion, Khojeer, Latian, Daroee plants and Mamloo dam. The collected samples were studied from point of reproduction and feeding behaviour; and also, carapace length, carapace width and body weight were measured. The most important objective of this survey was to find out the precise species identification. In this regard, sample were transported to the Natural History Museum in Netherland and ultimately, it was certified that all specimens belong to Potamidae family and species of Potamon persicum.
- Published
- 2003
4. Physico-chemical Analysis of Drinking Groundwater of Around Tehran by Seasonal Variation
- Author
-
Pourfallah, F., primary, Javadian, S., additional, Zamani, Z., additional, Siadat, S.D., additional, Khatami, Sh-, additional, Saghiri, R., additional, and Kordi, T., additional
- Published
- 2014
- Full Text
- View/download PDF
5. Hemoglobin Q-Iran and the importance of using suitable laboratory screening methods-Case report.
- Author
-
Khatami, Sh., Rouhi Dehnabeh, S., and Najmabadi, H.
- Subjects
- *
HEMOGLOBIN polymorphisms , *BIOSYNTHESIS , *CHROMATOGRAMS , *ELECTROPHORESIS , *CELLULOSE acetate - Abstract
Background and Objectives Using suitable laboratory methods for the diagnosis of hemoglobinopathies in laboratories not equipped with automatic systems is essential. The correct diagnosis of hemoglobin Q-Iran (α75Asp → His) is important. Case A 33-year-old woman was referred to the national reference globin chain biosynthesis laboratory. The patient's globin chains chromatogram indicated an unknown peak after a globin chain peak. Direct conventional sequencing revealed single G to C missense mutation in the a-globin gene. The genetic analysis led to the identification of a rare hemoglobin variant. Conclusions Medical diagnosis laboratories not equipped with modern automatic systems must run solubility test and hemoglobin electrophoresis on citrate agar and cellulose acetate for definite detection of Hb Q-Iran; otherwise, it can be regarded as a cause of misdiagnosis with hemoglobin S. [ABSTRACT FROM AUTHOR]
- Published
- 2014
6. Formalin pain increases the concentration of serotonin and its 5-hydroxyindoleacetic acid metabolite in the CA1 region of hippocampus.
- Author
-
Soleimannejad, E., Naghdi, N., Khatami, Sh., Semnanian, S., and Fathollahi, Y.
- Subjects
FORMALDEHYDE ,SEROTONIN ,PAIN ,METABOLITES ,HIPPOCAMPUS (Brain) ,PATIENTS - Abstract
Background and the purpose of the study: The hippocampal formation is involved in nociception. Prenatal serotonin depletion results in a significant decrease in the concentration of nociceptive sensitivity during the second phase of behavioral response in the formalin test. Methods: A microdialysis probe was inserted via a guide cannula into the right CA1 region of the hippocampus. Extracellular serotonin (5HT) and its 5-hydroxyindoleacetic acid (5HIAA) metabolite overflow were collected every 10 min during the formalin test and measured by HPLC with electrochemichal detector. Results: Compared to the sham group, formalin injection in the hind paw of the rat significantly increased 5HT after 10, 30, 40, and 50 min and increased 5HIAA after 10, 30, 40, 50, and 60 min collection time periods in hippocampal dialysate. (n = 6 for each group at each sampling time). In the formalin treated rats serotonin and 5HIAA concentrations increased in the biphasic pattern in concert with the first and second phases of formalin pain. Conclusion: The hippocampal formation might be involved in the processing of nociceptive information and serotonin-related mechanisms in the hippocampus may play a role in the biphasic behavioral responses to formalin noxious stimulation. [ABSTRACT FROM AUTHOR]
- Published
- 2010
7. Adenosine Deaminase 1 as A biomarker for diagnosis and monitoring of patients with Acute Lymphoblastic leukemia
- Author
-
Ebrahim-Rad Mina, Khatami Shohreh, Ansari Shahla, Jalylfar Shohreh, Valadbeigi Shirin, and Saghir Reza
- Subjects
acute lymphoblastic leukemia (all) ,adenosine deaminase (ada) ,ada isoenzymes ,electrophoresis ,agarose gel ,Biochemistry ,QD415-436 - Abstract
Background: Acute lymphoblastic leukemia (ALL) is known as the most prevalent pediatric malignancy all around the world. Identification of specific biomarker is necessary for early diagnosis and effective therapy. It is believed that Adenosine deaminase (ADA) as an enzyme involved in the purine salvage pathway increases in ALL patients. Herein, the quantity and pattern of ADA isoenzymes were surveyed among ALL patients in comparison to healthy subjects. Methods: Serum and RBC samples of three different groups of ALL patients, including newly diagnosed cases without any drugs administration, subjects with the relapsed disease, patients in the remission stage after therapy, and the healthy subjects were enrolled in the study. Then, the activity and pattern of ADA1, ADA2 and ADA1+cp were determined using ADA kit and electrophoresis on SDS-PAGE, respectively. To confirm the presence of ADA enzyme, the fresh serums, extractions from erythrocytes, JM cell line as a human T lymphocyte line and J774 A.1 as mouse monocyte line were electrophoresed on 1.2% agarose gel and stained with the specific dye. Results: The activities of ADA1 isoenzyme and total ADA in new cases and subjects with the relapsed disease were significantly higher than their activities in the patients in the remission stage and healthy controls (p< 0.001). The unbounded ADA1 isoenzyme was found to exist in the erythrocyte, lymphocyte and monocyte. But in serum, all the ADA1 was bounded to the cp protein. Conclusions: ADA1 is the key isoenzyme elevating in ALL patients, therefore this isoenzyme could be a useful biomarker to diagnose ALL patients and monitor their therapies.
- Published
- 2018
8. Boswellic Acids Reduce Systemic Inflammation in Patients with Moderate COVID-19 Through Modulation of NF-κB Pathway.
- Author
-
Barzin Tond S, Abolghasemi S, Khatami SH, Ehtiati S, Zarei T, Shateri S, Mahmoodi Baram S, Yarahmadi S, Fallah S, Salmani F, Shahmohammadi MR, Khajavirad N, Tafakhori A, Riazi A, and Karima S
- Abstract
Prevention and/or management of the dysregulated immune response in patients with COVID-19 is expected to help in the treatment of COVID-19. Boswellic acids (BAs) have great therapeutic potential because they have anti-inflammatory and immunomodulatory effects. Here, we aimed to investigate the mechanism of action of a BA formulation, Inflawell syrup, which was previously shown to be effective in reducing disease symptoms in patients who suffer from mild to moderate COVID-19. Patients with mild to moderate COVID-19 were treated with either Inflawell containing boswellic acids or a placebo for 14 days. The serum levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-8, IL-1α, IL-17, IL-1Ra, and Monocyte Chemoattractant Protein-1 (MCP-1), were measured both at study onset and on day 14 after treatment started. In addition, to further investigate the signaling pathway(s) underlying the changes in cytokine levels, we evaluated the expression of tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 mRNAs and phospho-inhibitor of nuclear factor kappa B (IκB) and IκB proteins. In our study, a significant decrease in the serum levels of IL-1α ( p < .009), IL-8 ( p < .04), TNF-α ( p < .0001), and MCP-1 ( p < .007) was detected in patients treated with Inflawell. Additionally, our data revealed a decrease in phospho-IκB protein levels ( p < .02) and NF-κB p65 mRNA levels ( p < .002), whereas the amount of IκB protein ( p < .01) in the Inflawell group was significantly greater than that in the placebo group. Furthermore, despite the decreasing trend in the expression of TNFR1 and TNFR2 in the Inflawell group, there was no statistically significant difference compared with that in the placebo group. In general, treatment with Inflawell syrup led to a lower level of proinflammatory cytokines and a decrease in the activity of the TNF-α/NF-κB signaling pathway.
- Published
- 2025
- Full Text
- View/download PDF
9. Therapeutic Efficacy of Intermittent Ketogenesis in Modulating Adenosine Metabolism, Immune Response, and Seizure Severity in Refractory Temporal Lobe Epilepsy: A Pilot Human Study.
- Author
-
Khatami SH, Alehossein P, Ehtiati S, Zarei T, Salmani F, Bagherzadeh S, Razmafrooz M, Rajabibazl M, Halimi A, Shahmohammadi MR, Jouibari MF, Tafakhori A, and Karima S
- Abstract
Temporal lobe epilepsy (TLE) is a common neurological disorder characterized by recurrent seizures originating in the temporal lobe, often affecting patients' physical, cognitive, and social well-being. Despite the availability of antiseizure medication (ASMs), approximately 30% of TLE patients exhibit drug-resistant seizures, emphasizing the need for alternative therapeutic approaches. Ketogenic diets, known for their anticonvulsant effects, have shown promise in managing drug-resistant epilepsy. However, their demanding high-fat, low-carbohydrate regimens pose significant adherence challenges. Medium-chain triglyceride (MCT) offers a viable alternative by inducing ketosis periodically without the need for continuous dietary restrictions. This study evaluated seizure severity, biochemical markers, and immune-related factors in TLE patients. The intervention group received neuro-Capridin caprylate and caprate (n-CAP), while the control group did not. Significant findings included increased plasma ATP and adenosine levels in the treatment group, along with higher expression of ADORA1 and CD73 and reduced expression of ADK. Corresponding protein changes were observed, with increased CD73 and decreased ADK levels. Caprylate and Caprate also elevated regulatory T cells and reduced proinflammatory cytokines (TNF-α, IL-6, IL-1β). These changes were associated with significant reductions in seizure severity and frequency. Intermittent ketogenesis through the consumption of Caprylate and Caprate effectively reduced seizures and improved immune and metabolic markers in drug-resistant TLE patients. These findings highlight its potential as a complementary therapy, warranting further exploration of its long-term impact and underlying molecular mechanisms., Competing Interests: Declarations. Ethics Approval: All study procedures were carried out with approval and oversight from the Ethics Committee of Shahid Beheshti University of Medical Sciences (SBMU; reference number: IR.SBMU.MSP.REC.1401.613). The trial was registered prospectively in the Iranian Registry of Clinical Trials (IRCT), a primary registry in the World Health Organization's registry network (URL: https://irct.behdasht.gov.ir/trial/69426 ), under identifier number IRCT20170315033086N11. All participants provided written informed consent by signing an authorization form before enrolling in the research. Informed consent protected participants' autonomy and rights throughout their involvement. Consent to Participate: Informed consent was obtained from all individual participants included in the study. Consent for Publication: All the authors agreed on the final version of the manuscript. Conflict of Interest: The authors declare no competing interests., (© 2025. The Author(s).)
- Published
- 2025
- Full Text
- View/download PDF
10. Plasma cytokines profile in patients with Alzheimer's and Parkinson's Disease: a comparative study in terms of inflammation.
- Author
-
Shateri S, Khatami SH, Haghbin Toutounchi A, Rajaei S, Mahdavi M, Mahmoodi Baram S, Shahidi GA, Habibi AH, Aghamollaii V, Ghlichnia B, Safakish L, Doagoo A, Salmani F, Tafakhori A, Keramatinia A, Shahmohammadi MR, and Karima S
- Subjects
- Humans, Male, Aged, Female, Middle Aged, Biomarkers blood, Aged, 80 and over, Parkinson Disease blood, Alzheimer Disease blood, Cytokines blood, Inflammation blood
- Abstract
Background: Neurodegenerative disorders such as Alzheimer's and Parkinson's disease inflict economic and health burdens on societies. Alzheimer's disease (AD), the most prevalent form of dementia, is accompanied by progressive degradation of memory, decision-making, and judgment. Parkinson's disease (PD) is characterized by resting tremor, rigidity, bradykinesia, and loss of balance. Extensive research has pinpointed inflammation as a cause of the onset and progression of both diseases. However, it has not been confirmed which one is more formidable in terms of inflammation., Methods: To assess the extent of inflammation that is implicated in AD and PD and answer the question of which one is more inflammatory, serum levels of inflammatory biomarkers, including cytokines, chemokines, and prostaglandin E2 (PEG2), were measured in AD and PD patients as well as a healthy group., Results: Our results showed a significant increase in IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-12p70, IP-10, MCP-1, PEG2, and TNF-α in AD and PD patients compared with the control. Interestingly, IFN-γ did not manifest any significant difference in AD or PD patients compared with the control., Conclusion: As a hallmark of our results, it could be inferred that inflammation, as the underlying etiological cause, plays a more crucial role in PD compared with AD. Based on our results, it is proposed that anti-inflammatory remedies would be putatively more effective in PD rather than AD.
- Published
- 2025
- Full Text
- View/download PDF
11. Electrochemical biosensors for depression: Diagnosis and therapeutic monitoring.
- Author
-
Asadi A, Ferdosi F, Anoosheh S, Kaveh M, Dadgostar E, Ehtiati S, Movahedpour A, Khanifar H, Haghighi MM, and Khatami SH
- Subjects
- Humans, Antidepressive Agents therapeutic use, Biomarkers analysis, Biosensing Techniques, Electrochemical Techniques, Depression diagnosis, Depression drug therapy
- Abstract
Electrochemical biosensors have revolutionized the detection of biomarkers related to depression and the quantification of antidepressant drugs. These biosensors leverage nanomaterials and advanced assay designs to achieve high sensitivity and selectivity for clinically relevant analytes. Key neurotransmitters implicated in depression, such as serotonin, dopamine, and glutamate, can be accurately measured via biosensors, providing insights into the effects of antidepressant treatments on neurotransmission. Biosensors can also detect biomarkers of inflammation, oxidative stress, and neuronal health that are altered in depression. Real-time biosensing techniques such as fast-scan cyclic voltammetry enable monitoring of dynamic neurotransmitter changes during depressive episodes and pharmacological interventions. Advancements incorporating graphene, gold nanoparticles, and other nanomaterials have enhanced biosensor performance, enabling the detection of low biomarker concentrations. Closed-loop biosensing systems hold promise for precision medicine by automating antidepressant dosage adjustments on the basis of neurotransmitter levels. A wide range of depression biomarkers, including apolipoprotein A4, heat shock protein 70, brain-derived neurotrophic factor, microRNAs, proteins, and combinatorial biomarker panels, have been detected via sophisticated biosensor platforms. Emerging biosensors show selectivity for antidepressant drugs such as serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, and selective serotonin reuptake inhibitors in biological samples. This review emphasizes the transformative potential of electrochemical biosensors in combating depression. By facilitating earlier and more accurate diagnoses, these biosensors can revolutionize patient care and enhance treatment outcomes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
12. Autophagy and the peroxisome proliferator-activated receptor signaling pathway: A molecular ballet in lipid metabolism and homeostasis.
- Author
-
Kiani P, Khodadadi ES, Nikdasti A, Yarahmadi S, Gheibi M, Yousefi Z, Ehtiati S, Yahyazadeh S, Shafiee SM, Taghizadeh M, Igder S, Khatami SH, Karima S, Vakili O, and Pourfarzam M
- Abstract
Lipids, which are indispensable for cellular architecture and energy storage, predominantly consist of triglycerides (TGs), phospholipids, cholesterol, and their derivatives. These hydrophobic entities are housed within dynamic lipid droplets (LDs), which expand and contract in response to nutrient availability. Historically perceived as a cellular waste disposal mechanism, autophagy has now been recognized as a crucial regulator of metabolism. Within this framework, lipophagy, the selective degradation of LDs, plays a fundamental role in maintaining lipid homeostasis. Dysregulated lipid metabolism and autophagy are frequently associated with metabolic disorders such as obesity and atherosclerosis. In this context, peroxisome proliferator-activated receptors (PPARs), particularly PPAR-γ, serve as intracellular lipid sensors and master regulators of gene expression. Their regulatory influence extends to both autophagy and lipid metabolism, indicating a complex interplay between these processes. This review explores the hypothesis that PPARs may directly modulate autophagy within the realm of lipid metabolism, thereby contributing to the pathogenesis of metabolic diseases. By elucidating the underlying molecular mechanisms, we aim to provide a comprehensive understanding of the intricate regulatory network that connects PPARs, autophagy, and lipid homeostasis. The crosstalk between PPARs and other signaling pathways underscores the complexity of their regulatory functions and the potential for therapeutic interventions targeting these pathways. The intricate relationships among PPARs, autophagy, and lipid metabolism represent a pivotal area of research with significant implications for understanding and treating metabolic disorders., Competing Interests: Declarations. Conflict of interest: The authors declare no competing interests. Ethical approval: Not applicable. Consent to participate: Not applicable. Consent for publication: All the authors have read the final version of the manuscript and declared their consent for publication., (© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2025
- Full Text
- View/download PDF
13. Investigation of the expression of Cis P-tau and Pin1 proteins following air pollution induction in the brain tissue of C57BL/6 mice.
- Author
-
Shahpasand S, Khatami SH, Ehtiati S, Salmani F, Zarei T, Shahpasand K, Ghobeh M, and Karima S
- Subjects
- Animals, Mice, Male, Phosphorylation, NIMA-Interacting Peptidylprolyl Isomerase metabolism, tau Proteins metabolism, Mice, Inbred C57BL, Brain metabolism, Air Pollution adverse effects
- Abstract
Alzheimer's disease (AD) is a multifactorial disease in which environmental factors play a role. Among environmental factors, air pollution is a vital issue in modern life. Despite extensive considerations, it remains uncertain how pollution mediates neurodegeneration in AD. Beta-amyloids and hyperphosphorylated tau proteins are the two main pathological markers that have been studied in AD so far. Tau protein is basically a phosphoprotein whose functions are controlled by phosphorylation. The function of tau protein is to be located on the surface of microtubules and stabilize them. Studies have shown that phosphorylated tau protein (p-tau) exists in cis and trans conformations at Thr231, among which cis is highly neurotoxic. The Pin1 enzyme performs the conversion of cis to trans or vice versa. In this study, an experimental mouse model was designed to investigate the formation of cis p-tau by inducing air pollution. In this way, mice were randomly exposed to pollution at 2-week, 1-month, and 2-month intervals. We investigated the formation of phosphorylated cis tau form during air pollution on mouse brains using Western blots and immunofluorescence. The fluorescent imaging results and Western blotting analysis of mouse brains revealed a significant accumulation of cis p-tau in pollution-treated mice models compared to the healthy control mice. According to Western blot results, air pollution induction caused a significant decrease in Pin1 protein. The results clearly show that the tauopathy observed during air pollution is mediated through the formation of cis tau. Our findings unravel tauopathy mysteries upon pollution and would help find a possible therapeutic target to fight the devastating disorder caused by modern life., (© 2024 International Union of Biochemistry and Molecular Biology, Inc.)
- Published
- 2025
- Full Text
- View/download PDF
14. MicroRNA biosensors for detection of chronic kidney disease.
- Author
-
Balali MR, Taghizadeh M, Alizadeh M, Karami Y, Karimi F, Khatami SH, Taheri-Anganeh M, Ehtiati S, Movahedpour A, Mahmoudi R, and Ghasemi H
- Subjects
- Humans, Biosensing Techniques methods, MicroRNAs analysis, MicroRNAs genetics, Renal Insufficiency, Chronic diagnosis, Renal Insufficiency, Chronic genetics
- Abstract
Chronic kidney disease (CKD) is a prevalent health condition characterized by gradual kidney function loss. Early detection is crucial for the effective management and treatment of CKD. A promising biomarker for various diseases, including chronic kidney disease, is microRNAs (miRNAs), which are becoming increasingly important due to their stability and differential expression in various disease-related states, including CKD. Recent developments in microRNA biosensors have made it possible to detect miRNAs associated with CKD in a sensitive and specific manner. This review article discusses the current state of microRNA biosensors for detecting CKD and highlights their potential applications in clinical settings. Various microRNA biosensors, including electrochemical, optical, and nanomaterial-based sensors, are explored for their ability to detect specific miRNAs linked to CKD progression. The advantages and limitations of these biosensors are evaluated, focusing on factors such as sensitivity, specificity, and ease of use. Overall, microRNA biosensors are promising diagnostic tools for early detection of CKD. However, challenges such as standardizing protocols, validating in large cohorts, and translating to clinical practice remain to be addressed. Future research efforts should aim to overcome these limitations to fully realize the potential of microRNA biosensors in improving the diagnosis and management of CKD., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2025
- Full Text
- View/download PDF
15. Non-coding RNA biosensors for early detection of brain cancer.
- Author
-
Karami Y, Ehtiati S, Ghasemi H, Rafiee M, Zamani Sani M, Hosseini SE, Moradi Kazerouni H, Movahedpour A, Aiiashi S, and Khatami SH
- Subjects
- Humans, Biomarkers, Tumor genetics, Biosensing Techniques methods, Brain Neoplasms genetics, Brain Neoplasms diagnosis, RNA, Untranslated genetics, RNA, Untranslated analysis, Early Detection of Cancer methods
- Abstract
Brain cancer remains a formidable challenge with limited treatment options. Non-coding RNAs (ncRNAs) have emerged as promising biomarkers due to their dysregulation in tumorigenesis. This review explores the potential of biosensors for early detection of brain cancer by targeting ncRNAs. We discuss the classification and functions of ncRNAs, emphasizing their involvement in key cancer-related processes. Additionally, we delve into recent advancements in biosensor technology, focusing on their ability to accurately detect specific ncRNA biomarkers associated with brain cancer. Our findings underscore the potential of biosensors to revolutionize brain cancer diagnosis, enabling personalized medicine and improving patient outcomes. Future research should focus on refining biosensor technology and expanding their clinical application., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
16. Aptamer biosensors for thrombin.
- Author
-
Oushyani Roudsari Z, Ghasemi H, Khatami SH, Khorsand M, Rahdan F, Chehri D, Sheydaei O, Aiiashi S, Mahmoudi R, and Movahedpour A
- Subjects
- Humans, Spectrum Analysis, Raman methods, Electrochemical Techniques, Biosensing Techniques methods, Aptamers, Nucleotide chemistry, Thrombin analysis, Thrombin metabolism
- Abstract
Thrombin, a key factor in the coagulation cascade, is a valuable biomarker of great importance for the prognosis, diagnosis, and monitoring of various diseases, including cancer and heart disease. Due to the increasing attention to the development of point-of-care testing (POCT) options, various types of biosensors have been invented to enhance the accuracy and speed of detection of important biomarkers such as thrombin. Implementation of aptamers in biosensors (aptasensors) improves the target recognition capacity due to the high-affinity binding nature of aptamers. Herein, this review presents recent studies of aptasensors for thrombin detection based on different detection mechanisms encompassing optical biosensors, surface-enhanced Raman spectroscopy (SERS), electrochemical detection, piezoelectric detection, and lateral flow assay., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
17. Electrochemical biosensors in early detection of Parkinson disease.
- Author
-
Khatami SH, Khanifar H, Movahedpour A, Taheri-Anganeh M, Ehtiati S, Khanifar H, and Asadi A
- Subjects
- Humans, Biomarkers analysis, Parkinson Disease diagnosis, Biosensing Techniques methods, Electrochemical Techniques, Early Diagnosis
- Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the motor system, with symptoms including tremors, rigidity, bradykinesia, and postural instability. Affecting over six million people globally, PD's pathophysiology is marked by the loss of dopaminergic neurons in the substantia nigra. Early diagnosis is crucial for effective management, yet current methods are limited by low sensitivity, high cost, and the need for advanced equipment. Electrochemical biosensors have emerged as promising tools for early PD diagnosis, converting biological reactions into measurable electrical signals for evaluating PD biomarkers. Advances in nanotechnology and material science have led to innovative sensing platforms with enhanced sensitivity and selectivity. Key biomarkers such as alpha-synuclein (α-syn), dopamine (DA), and microRNAs (miRNAs) have been targeted using these biosensors. For instance, gold nanoparticle-modified graphene immunosensors have shown ultra-sensitive detection of α-syn, while graphene-based biosensors have demonstrated high sensitivity for DA detection. Additionally, nanobiosensors for miR-195 and electrochemical aptasensors have shown potential for early PD diagnosis. The integration of nanomaterials like gold nanoparticles, quantum dots, and carbon nanotubes has further advanced the field, enhancing electrochemical activity and sensitivity. These developments offer a reliable, rapid, and cost-effective approach for early PD diagnosis, paving the way for better management and treatment. Continued research is essential for the commercialization and clinical integration of these biosensors, ultimately improving patient outcomes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
18. Electrochemical and optical biosensors for the detection of E. Coli.
- Author
-
Oushyani Roudsari Z, Karami Y, Khoramrooz SS, Rouhi S, Ghasem H, Khatami SH, Alizadeh M, Ahmad Khosravi N, Mansoriyan A, Ghasemi E, Movahedpour A, and Dargahi Z
- Subjects
- Humans, Biosensing Techniques methods, Escherichia coli isolation & purification, Electrochemical Techniques methods
- Abstract
E. coli is a common pathogenic microorganism responsible for numerous food and waterborne illnesses. Traditional detection methods often require long, multi-step processes and specialized equipment. Electrochemical and optical biosensors offer promising alternatives due to their high sensitivity, selectivity, and real-time monitoring capabilities. Recent advancements in sensor development focus on various techniques for detecting E. coli, including optical (fluorescence, colorimetric analysis, surface-enhanced Raman spectroscopy, surface plasmon resonance, localized surface plasmon resonance, chemiluminescence) and electrochemical (amperometric, voltammetry, impedance, potentiometric). Herein, the latest advancements in optical and electrochemical biosensors created for identifying E. coli with an emphasis on surface modifications employing nanomaterials and biomolecules are outlined in this review. Electrochemical biosensors exploit the unique electrochemical properties of E. coli or its specific biomolecules to generate a measurable signal. In contrast, optical biosensors rely on interactions between E. coli and optical elements to generate a detectable response. Moreover, optical detection has been exploited in portable devices such as smart phones and paper-based sensors. Different types of electrodes, nanoparticles, antibodies, aptamers, and fluorescence-based systems have been employed to enhance the sensitivity and specificity of these biosensors. Integrating nanotechnology and biorecognition (which bind to a specific region of the E. coli) elements has enabled the development of portable and miniaturized devices for on-site and point-of-care (POC) applications. These biosensors have demonstrated high sensitivity and offer low detection limits for E. coli detection. The convergence of electrochemical and optical technologies promises excellent opportunities to revolutionize E. coli detection, improving food safety and public health., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
19. Electrochemical biosensors for early detection of breast cancer.
- Author
-
Kiani P, Vatankhahan H, Zare-Hoseinabadi A, Ferdosi F, Ehtiati S, Heidari P, Dorostgou Z, Movahedpour A, Baktash A, Rajabivahid M, and Khatami SH
- Subjects
- Humans, Female, Biomarkers, Tumor analysis, Biosensing Techniques methods, Breast Neoplasms diagnosis, Early Detection of Cancer methods, Electrochemical Techniques
- Abstract
Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel. Recent shifts towards biosensor technologies offer a promising alternative for monitoring biological processes and providing accurate health diagnostics in a cost-effective, non-invasive manner. These biosensors are particularly advantageous for early detection of primary tumors, metastases, and recurrent diseases, contributing to more effective breast cancer management. The integration of biosensor technology into medical devices has led to the development of low-cost, adaptable, and efficient diagnostic tools. In this framework, electrochemical screening platforms have garnered significant attention due to their selectivity, affordability, and ease of result interpretation. The current review discusses various breast cancer biomarkers and the potential of electrochemical biosensors to revolutionize early cancer detection, making provision for new diagnostic platforms and personalized healthcare solutions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
20. miRNA-based electrochemical biosensors for ovarian cancer.
- Author
-
Rouhi S, Ghasemi H, Alizadeh M, Movahedpour A, Vahedi F, Fattahi M, Aiiashi S, and Khatami SH
- Subjects
- Humans, Female, Ovarian Neoplasms diagnosis, Ovarian Neoplasms genetics, Biosensing Techniques methods, MicroRNAs analysis, MicroRNAs genetics, Electrochemical Techniques
- Abstract
Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
21. Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa.
- Author
-
Gila F, Alamdari-Palangi V, Rafiee M, Jokar A, Ehtiaty S, Dianatinasab A, Khatami SH, Taheri-Anganeh M, Movahedpour A, and Fallahi J
- Subjects
- Humans, Stem Cell Transplantation, Animals, Transplantation, Homologous, Epidermolysis Bullosa therapy, Epidermolysis Bullosa genetics, Genetic Therapy methods, Cell- and Tissue-Based Therapy methods, Gene Editing
- Abstract
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment., Competing Interests: Declarations Ethics approval and consent to participate Not applicable. Consent for publication Not applicable. Competing interests The authors declare no competing interests., (© 2024. The Author(s), under exclusive licence to Institute of Plant Genetics Polish Academy of Sciences.)
- Published
- 2024
- Full Text
- View/download PDF
22. "Nanoparticle-based sensitizers in prostate cancer treatment: Enhancing radiotherapy efficacy through innovative nanotechnology: Narrative review".
- Author
-
Shafiee M, Soltani Fard E, Taghvimi S, Movahedpour A, Mousavi P, Rezaeijo SM, Khatami SH, and Azadbakht O
- Subjects
- Male, Humans, Nanotechnology, Prostatic Neoplasms radiotherapy, Prostatic Neoplasms drug therapy, Radiation-Sensitizing Agents therapeutic use, Metal Nanoparticles therapeutic use
- Abstract
For men with localized prostate cancer, radiotherapy (RT) remains a common therapeutic option. Although radiotherapy has had significant success, it remains an intractable issue in promoting radiation damage to tumor tissue while reducing adverse effects on healthy tissue. Chemicals or pharmacological substances known as radiosensitizers can increase the killing effect on tumor cells by accelerating DNA damage and indirectly producing free radicals. Of all the approaches to improving RT management outcomes, metal nanoparticle-enhanced radiation for prostate cancer patient therapy is a unique strategy that has sparked scientific attention in the past decade. Most current data is based on targeted RT with gold nanoparticles, among the most studied materials. Nevertheless, several novel materials have also been employed in preclinical settings. This study assesses existing dosimetric data on prostate cancer tissue as well as the likely future influence on treatment options and patient outcomes since further research in a clinical setting is necessary., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2025 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
23. MicroRNAs in disease States.
- Author
-
Alizadeh M, Ghasemi H, Bazhan D, Mohammadi Bolbanabad N, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, and Armand N
- Subjects
- Humans, Nervous System Diseases genetics, Nervous System Diseases diagnosis, Nervous System Diseases metabolism, MicroRNAs genetics, Neoplasms genetics, Neoplasms metabolism, Neoplasms diagnosis
- Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2025 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
24. Nutritional Strategies in Major Depression Disorder: From Ketogenic Diet to Modulation of the Microbiota-Gut-Brain Axis.
- Author
-
Nikdasti A, Khodadadi ES, Ferdosi F, Dadgostar E, Yahyazadeh S, Heidari P, Ehtiati S, Vakili O, and Khatami SH
- Subjects
- Humans, Animals, Probiotics therapeutic use, Diet, Ketogenic methods, Gastrointestinal Microbiome physiology, Depressive Disorder, Major diet therapy, Depressive Disorder, Major metabolism, Depressive Disorder, Major microbiology, Brain-Gut Axis physiology
- Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. While traditional pharmacological treatments are effective for many cases, a significant proportion of patients do not achieve full remission or experience side effects. Nutritional interventions hold promise as an alternative or adjunctive approach, especially for treatment-resistant depression. This review examines the potential role of nutrition in managing MDD through addressing biological deficits and modulating pathways relevant to its pathophysiology. Specifically, it explores the ketogenic diet and gut microbiome modulation through various methods, including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation. Numerous studies link dietary inadequacies to increased MDD risk and deficiencies in nutrients like omega-3 s, vitamins D and B, magnesium, and zinc. These deficiencies impact neurotransmitters, inflammation, and other biological factors in MDD. The gut-brain axis also regulates mood, stress response, and immunity, and disruptions are implicated in MDD. While medications aid acute symptoms, nutritional strategies may improve long-term outcomes by preventing relapse and promoting sustained remission. This comprehensive review aims to provide insights into nutrition's multifaceted relationship with MDD and its potential for developing more effective integrated treatment approaches., Competing Interests: Declarations. Ethics Approval and Consent to Participate: Not applicable. Consent for Publication: Not applicable. Competing Interests: The authors declare no competing interests., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2025
- Full Text
- View/download PDF
25. Acetyl 11-Keto Beta-Boswellic Acid Improves Neurological Functions in a Mouse Model of Multiple Sclerosis.
- Author
-
Karima S, Khatami SH, Ehtiati S, Khoshtinatnikkhouy S, Kachouei RA, Jahan-Abad AJ, Tafakhori A, Firoozpour H, and Salmani F
- Abstract
Acetyl-11-keto-β-boswellic acid is one of the main active components of Boswellia sp. resin with the most potent anti-inflammatory activity. In recent years, herbal therapy has received considerable attention for the treatments of inflammatory and demyelinating diseases such as Multiple sclerosis (MS). Studies have shown that herbal compounds could enhance myelin repair and suppress inflammation. This study was designed to investigate the therapeutic effects of intraperitoneal administration of AKBA in Experimental Autoimmune Encephalomyelitis (EAE), as an animal model of MS. Following EAE induction in female C57BL/6J mice, animals were treated with AKBA and the levels of different serum inflammatory mediators, as well as motor functions, myelination, and inflammatory cell infiltration were assessed. Our results revealed that the application of AKBA alleviated EAE clinical severity, and suppressed inflammation, demyelination, leukocyte infiltration, and gliosis in EAE mice. Our findings suggest that the therapeutic effects of AKBA are likely a consequence of its neuroprotective and anti-inflammatory properties. The beneficial effects of AKBA may therefore provide new insights in various neuroinflammatory diseases such as MS and thereby could serve as a potential treatment candidate., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
26. Therapeutic potential of the ketogenic diet: A metabolic switch with implications for neurological disorders, the gut-brain axis, and cardiovascular diseases.
- Author
-
Shahpasand S, Khatami SH, Ehtiati S, Alehossein P, Salmani F, Toutounchi AH, Zarei T, Shahmohammadi MR, Khodarahmi R, Aghamollaii V, Tafakhori A, and Karima S
- Subjects
- Humans, Animals, Gastrointestinal Microbiome physiology, Ketone Bodies metabolism, Diet, Ketogenic, Cardiovascular Diseases diet therapy, Brain-Gut Axis, Nervous System Diseases diet therapy, Nervous System Diseases metabolism
- Abstract
The Ketogenic Diet (KD) is a dietary regimen that is low in carbohydrates, high in fats, and contains adequate protein. It is designed to mimic the metabolic state of fasting. This diet triggers the production of ketone bodies through a process known as ketosis. The primary objective of KD is to induce and sustain ketosis, which has been associated with numerous health benefits. Recent research has uncovered promising therapeutic potential for KD in the treatment of various diseases. This includes evidence of its effectiveness as a dietary strategy for managing intractable epilepsy, a form of epilepsy that is resistant to medication. We are currently assessing the efficacy and safety of KD through laboratory and clinical studies. This review focuses on the anti-inflammatory properties of the KD and its potential benefits for neurological disorders and the gut-brain axis. We also explore the existing literature on the potential effects of KD on cardiac health. Our aim is to provide a comprehensive overview of the current knowledge in these areas. Given the encouraging preliminary evidence of its therapeutic effects and the growing understanding of its mechanisms of action, randomized controlled trials are warranted to further explore the rationale behind the clinical use of KD. These trials will ultimately enhance our understanding of how KD functions and its potential benefits for various health conditions. We hope that our research will contribute to the body of knowledge in this field and provide valuable insights for future studies., Competing Interests: Declaration of competing interest The authors declare that they have no competing interests., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
27. lncRNA HOTAIR and Cardiovascular diseases.
- Author
-
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, and Ghasemi H
- Subjects
- Humans, Biomarkers metabolism, Animals, Epigenesis, Genetic, Signal Transduction, RNA, Long Noncoding genetics, RNA, Long Noncoding metabolism, Cardiovascular Diseases genetics, Cardiovascular Diseases metabolism
- Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
28. Electrochemical biosensors in early leukemia detection.
- Author
-
Ehtiati S, Naeeni B, Qeysouri B, Heidarian E, Azmon M, Ahmadzade R, Movahedpour A, Kazemi F, Motamedzadeh A, and Khatami SH
- Subjects
- Humans, Early Detection of Cancer methods, Biosensing Techniques methods, Electrochemical Techniques, Leukemia diagnosis
- Abstract
Leukemia, a type of blood cancer marked by an abnormal increase in white blood cells, poses a significant challenge to healthcare. The key to successful treatment lies in early detection. However, traditional methods often fall short. This review investigates the potential of electrochemical biosensors for a more accurate and earlier diagnosis of leukemia. Electrochemical biosensors are compact devices that transform biological interactions into electrical signals. Their small size, ease of use, and minimal sample requirements make them perfectly suited for point-of-care applications. Their remarkable sensitivity and specificity enable the detection of subtle biomolecular changes associated with leukemia, which is crucial for early disease detection. This review delves into studies that have utilized these biosensors to identify various types of leukemia. It examines the roles of electrodes, biorecognition elements, and signal transduction mechanisms. The discussion includes the integration of nanomaterials such as gold nanoparticles and nitrogen-doped graphene into biosensor design. These materials boost sensitivity, enhance signal amplification, and facilitate multi-analyte detection, thereby providing a more holistic view of the disease. Beyond technical advancements, the review underscores the practical benefits of these biosensors. Their portability makes them a promising tool for resource-constrained settings, enabling swift diagnosis in remote areas or at a patient's bedside. The potential for monitoring treatment effectiveness and detecting minimal residual disease to prevent relapse is also explored. This review emphasizes the transformative potential of electrochemical biosensors in combating leukemia. By facilitating earlier and more accurate diagnosis, these biosensors stand to revolutionize patient care and enhance treatment outcomes., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
29. Urinary biomarkers in diabetic nephropathy.
- Author
-
Soltani-Fard E, Taghvimi S, Karimi F, Vahedi F, Khatami SH, Behrooj H, Deylami Hayati M, Movahedpour A, and Ghasemi H
- Subjects
- Humans, Oxidative Stress, MicroRNAs urine, Diabetic Nephropathies urine, Diabetic Nephropathies diagnosis, Biomarkers urine
- Abstract
Diabetic nephropathy (DN), a significant consequence of diabetes, is associated with adverse cardiovascular and renal disease as well as mortality. Although microalbuminuria is considered the best non-invasive marker for DN, better predictive markers are needed of sufficient sensitivity and specificity to detect disease in general and in early disease specifically. Even prior to appearance of microalbuminuria, urinary biomarkers increase in diabetics and can serve as accurate nephropathy biomarkers even in normoalbuminuria. In this review, a number of novel urine biomarkers including those reflecting kidney damage caused by glomerular/podocyte damage, tubular damage, oxidative stress, inflammation, and intrarenal renin-angiotensin system activation are discussed. Our review also includes emerging biomarkers such as urinary microRNAs. These short noncoding miRNAs regulate gene expression and could be utilized to identify potential novel biomarkers in DN development and progression. ., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
30. Electrochemical biosensors for early diagnosis of glioblastoma.
- Author
-
Vatankhahan H, Esteki F, Jabalameli MA, Kiani P, Ehtiati S, Movahedpour A, Vakili O, and Khatami SH
- Subjects
- Early Detection of Cancer, Electrochemical Techniques, Magnetic Resonance Imaging, Biosensing Techniques methods, Glioblastoma diagnostic imaging
- Abstract
Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
31. Lysine ε-aminolysis and incorporation of sulfhydryl groups into human brain tau 4R/1N and 306 VQIVYK 311 enhances the formation of beta structures and toxicity.
- Author
-
Salmani F, Mohammadi M, Seif R, Khatami SH, Noori S, Tehrani HS, Riazi G, Balalaie S, Moosavi-Movahedi AA, Fard AM, Mahnam K, Keramatinia A, Tafakhori A, Aghamollaii V, Toutounchi AH, Shahmohammadi MR, and Karima S
- Subjects
- Humans, tau Proteins chemistry, Lysine metabolism, Brain metabolism, Heparin metabolism, Neuroblastoma metabolism, Alzheimer Disease metabolism
- Abstract
In the present study, we investigated the effects of N-homocysteine thiolactone (tHcy) modification on expressed and purified tau protein and the synthesized VQIVYK target peptide. The modified constructs were subjected to comprehensive validation using various methodologies, including mass spectrometry. Subsequently, in vivo, in vitro, and in silico characterizations were performed under both reducing and non-reducing conditions, as well as in the presence and absence of heparin as a cofactor. Our results unequivocally confirmed that under reducing conditions and in the presence of heparin, the modified constructs exhibited a greater propensity for aggregation. This enhanced aggregative behavior can be attributed to the disruption of lysine positive charges and the subsequent influence of hydrophobic and p-stacking intermolecular forces. Notably, the modified oligomeric species induced apoptosis in the SH-SY5Y cell line, and this effect was further exacerbated with longer incubation times and higher concentrations of the modifier. These observations suggest a potential mechanism involving reactive oxygen species (ROS). To gain a deeper understanding of the molecular mechanisms underlying the neurotoxic effects, further investigations are warranted. Elucidating these mechanisms will contribute to the development of more effective strategies to counteract aggregation and mitigate neurodegeneration., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
32. MicroRNA biosensors for detection of glioblastoma.
- Author
-
Fattahi M, Maghsudlu M, Razipour M, Movahedpour A, Ghadami M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Ghasemi E, Ghasemi H, Aiiashi S, and Ghadami E
- Subjects
- Humans, Biomarkers, Tumor genetics, Electrochemical Techniques, MicroRNAs genetics, Glioblastoma diagnosis, Glioblastoma genetics, Glioblastoma therapy, Nanostructures chemistry, Nanoparticles, Biosensing Techniques
- Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor.The discovery of microRNAs and their unique properties have made them suitable tools as biomarkers for cancer diagnosis, prognosis, and evaluation of therapeutic response using different types of nanomaterials as sensitive and specific biosensors. In this review, we discuss microRNA-based electrochemical biosensing systems and the use of nanoparticles in the evolving development of microRNA-based biosensors in glioblastoma., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
33. MicroRNAs in Male Fertility.
- Author
-
Bahmyari S, Khatami SH, Taghvimi S, Rezaei Arablouydareh S, Taheri-Anganeh M, Ghasemnejad-Berenji H, Farazmand T, Soltani Fard E, Solati A, Movahedpour A, and Ghasemi H
- Subjects
- Humans, Male, Semen metabolism, Spermatozoa metabolism, Spermatozoa pathology, Spermatogenesis genetics, Fertility genetics, MicroRNAs genetics, MicroRNAs metabolism, Infertility, Male genetics
- Abstract
Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.
- Published
- 2024
- Full Text
- View/download PDF
34. MicroRNA biosensors for the detection of liver cancer.
- Author
-
Fattahi M, Rahdan F, Shaterabadi D, Zamani Sani M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Movahedpour A, and Ghasemi H
- Subjects
- Humans, Biomarkers, Electrochemical Techniques, MicroRNAs genetics, Liver Neoplasms diagnosis, Liver Neoplasms genetics, Nanostructures, Biosensing Techniques
- Abstract
Liver cancer is one of the deadliest types worldwide and early diagnosis is highly important for successful treatment. Therefore, it is necessary to develop rapid, sensitive, simple, and inexpensive analytical tools for its detection. MicroRNAs (miRNA) represent unique biomarkers whose expression in biofluids is strongly associated with cancer in general and miR-21, -31, -122, -145, -146a, -200c, -221, -222, and -223 in liver cancer, specifically. Various biosensors for miRNA detection have been developed. These include electrochemical biosensors based on amperometric, potentiometric, conductometric and impedimetric technology. Furthermore, the use of advanced nanomaterials with enhanced chemical stability, conductivity and electrocatalytic activity have greatly increased the sensitivity and specificity of these devices. The present review focuses on recent advances in electrochemical biosensors for miRNA detection in liver cancer., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
35. Designing a Secretory form of RTX-A as an Anticancer Toxin: An In Silico Approach.
- Author
-
Taheri-Anganeh M, Nezafat N, Gharibi S, Khatami SH, Vahedi F, Shabaninejad Z, Asadi M, Savardashtaki A, Movahedpour A, and Ghasemi H
- Subjects
- Animals, Humans, Computational Biology methods, Patents as Topic, Protein Sorting Signals, Sea Anemones chemistry, Solubility, Cnidarian Venoms chemistry, Cnidarian Venoms pharmacology, Antineoplastic Agents chemistry, Antineoplastic Agents pharmacology, Antineoplastic Agents metabolism, Bacillus subtilis metabolism, Computer Simulation
- Abstract
Background: Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form., Methods: Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures., Results: According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures., Conclusion: The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2024
- Full Text
- View/download PDF
36. MicroRNA biosensors in lung cancer.
- Author
-
Shaterabadi D, Zamani Sani M, Rahdan F, Taghizadeh M, Rafiee M, Dorosti N, Dianatinasab A, Taheri-Anganeh M, Asadi P, Khatami SH, and Movahedpour A
- Subjects
- Humans, Biomarkers, Tumor genetics, Electrochemical Techniques, MicroRNAs genetics, Lung Neoplasms diagnosis, Lung Neoplasms genetics, Nanostructures chemistry, Biosensing Techniques methods
- Abstract
Lung cancer has been one of the leading causes of death over the past century. Unfortunately, the reliance on conventional methods to diagnose the phenotypic properties of tumors hinders early-stage cancer diagnosis. However, recent advancements in identifying disease-specific nucleotide biomarkers, particularly microRNAs, have brought us closer to early-stage detection. The roles of miR-155, miR-197, and miR-182 have been established in stage I lung cancer. Recent progress in synthesizing nanomaterials with higher conductivity has enhanced the diagnostic sensitivity of electrochemical biosensors, which can detect low concentrations of targeted biomarkers. Therefore, this review article focuses on exploring electrochemical biosensors based on microRNA in lung cancer., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
37. Non-coding RNAs in gynecologic cancer.
- Author
-
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, and Movahedpour A
- Subjects
- Humans, Female, RNA, Untranslated genetics, MicroRNAs genetics, RNA, Long Noncoding genetics, Neoplasms drug therapy, Gynecology
- Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
38. Nano-delivery systems as a promising therapeutic potential for epilepsy: Current status and future perspectives.
- Author
-
Movahedpour A, Taghvaeefar R, Asadi-Pooya AA, Karami Y, Tavasolian R, Khatami SH, Soltani Fard E, Taghvimi S, Karami N, Rahimi Jaberi K, Taheri-Anganeh M, and Ghasemi H
- Subjects
- Humans, Blood-Brain Barrier, Drug Delivery Systems, Anticonvulsants therapeutic use, Epilepsy drug therapy, Exosomes
- Abstract
Epilepsy is a common chronic neurological disorder caused by aberrant neuronal electrical activity. Antiseizure medications (ASMs) are the first line of treatment for people with epilepsy (PWE). However, their effectiveness may be limited by their inability to cross the blood-brain barrier (BBB), among many other potential underpinnings for drug resistance in epilepsy. Therefore, there is a need to overcome this issue and, hopefully, improve the effectiveness of ASMs. Recently, synthetic nanoparticle-based drug delivery systems have received attention for improving the effectiveness of ASMs due to their ability to cross the BBB. Furthermore, exosomes have emerged as a promising generation of drug delivery systems because of their potential benefits over synthetic nanoparticles. In this narrative review, we focus on various synthetic nanoparticles that have been studied to deliver ASMs. Furthermore, the benefits and limitations of each nano-delivery system have been discussed. Finally, we discuss exosomes as potentially promising delivery tools for treating epilepsy., (© 2023 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
39. Acetyl-11-Keto-Beta-Boswellic Acid Has Therapeutic Benefits for NAFLD Rat Models That Were Given a High Fructose Diet by Ameliorating Hepatic Inflammation and Lipid Metabolism.
- Author
-
Kachouei RA, Doagoo A, Jalilzadeh M, Khatami SH, Rajaei S, Jahan-Abad AJ, Salmani F, Pakrad R, Baram SM, Nourbakhsh M, Abdollahifar MA, Abbaszadeh HA, Noori S, Rezaei M, Mahdavi M, Shahmohammadi MR, and Karima S
- Subjects
- Rats, Male, Animals, AMP-Activated Protein Kinases metabolism, Inflammasomes metabolism, Fructose metabolism, Fructose pharmacology, Fructose therapeutic use, Lipid Metabolism, Peroxisome Proliferator-Activated Receptors metabolism, Rats, Wistar, Liver metabolism, Diet, Inflammation metabolism, Non-alcoholic Fatty Liver Disease drug therapy, Non-alcoholic Fatty Liver Disease metabolism
- Abstract
Acetyl-11-keto-beta-boswellic acid (AKBA), a potent anti-inflammatory compound purified from Boswellia species, was investigated in a preclinical study for its potential in preventing and treating non-alcoholic fatty liver disease (NAFLD), the most common chronic inflammatory liver disorder. The study involved thirty-six male Wistar rats, equally divided into prevention and treatment groups. In the prevention group, rats were given a high fructose diet (HFrD) and treated with AKBA for 6 weeks, while in the treatment group, rats were fed HFrD for 6 weeks and then given a normal diet with AKBA for 2 weeks. At the end of the study, various parameters were analyzed including liver tissues and serum levels of insulin, leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta (TGF-β), interferon gamma (INF-ϒ), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). Additionally, the expression levels of genes related to the inflammasome complex and peroxisome proliferator-activated receptor gamma (PPAR-ϒ), as well as the levels of phosphorylated and non-phosphorylated AMP-activated protein kinase alpha-1 (AMPK-α1) protein, were measured. The results showed that AKBA improved NAFLD-related serum parameters and inflammatory markers and suppressed PPAR-ϒ and inflammasome complex-related genes involved in hepatic steatosis in both groups. Additionally, AKBA prevented the reduction of the active and inactive forms of AMPK-α1 in the prevention group, which is a cellular energy regulator that helps suppress NAFLD progression. In conclusion, AKBA has a beneficial effect on preventing and avoiding the progression of NAFLD by preserving lipid metabolism, improving hepatic steatosis, and suppressing liver inflammation., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
40. LYZ2-SH3b as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus.
- Author
-
Asadi M, Taheri-Anganeh M, Ranjbar M, Khatami SH, Maleksabet A, Mostafavi-Pour Z, Ghasemi Y, Keshavarzi A, and Savardashtaki A
- Subjects
- Escherichia coli genetics, Anti-Bacterial Agents pharmacology, Vancomycin, Methicillin-Resistant Staphylococcus aureus genetics, Bacteriophages
- Abstract
Background: Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain for its antibacterial activity against MRSA., Methods: This study designed a chimeric exolysin by fusing the Cell-binding domain (SH3b) from Lysostaphin with the lytic domain (LYZ2) from the gp61 enzyme. Subsequently, LYZ2-SH3b was cloned and expressed in Escherichia coli (E. coli). Finally, the antibacterial effects of LYZ2-SH3b compared with LYZ2 and vancomycin against reference and clinical isolates of MRSA were measured using the disc diffusion method, the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) assays., Results: Analysis of bioinformatics showed that LYZ2-SH3b was stable, soluble, and non-allergenic. Protein purification was performed with a 0.8 mg/ml yield for LYZ2-SH3b. The plate lysis assay results indicated that, at the same concentrations, LYZ2-SH3b has a more inhibitory effect than LYZ2. The MICs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239). This suggests a higher efficiency of LYZ2-SH3b compared to LYZ2. Furthermore, the MBCs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239), thus confirming the superior lytic activity of LYZ2-SH3b over LYZ2., Conclusions: The study suggests that phage endolysins, such as LYZ2-SH3b, may represent a promising new approach to treating MRSA infections, particularly in cases where antibiotic resistance is a concern. But further studies are needed., (© 2023. BioMed Central Ltd., part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
41. The relationship between long non-coding RNAs and Wnt/β-catenin signaling pathway in the pathogenesis of Alzheimer's disease.
- Author
-
Ghasemi A, Qaffaripour Z, Tourani M, Saleki K, Rahmani-Kukia N, Khatami SH, and Taheri-Anganeh M
- Subjects
- Humans, beta Catenin genetics, beta Catenin metabolism, Cell Cycle, Wnt Signaling Pathway genetics, Alzheimer Disease metabolism, RNA, Long Noncoding genetics, RNA, Long Noncoding metabolism
- Abstract
Long non-coding RNAs (lncRNAs) cannot be coded to proteins; however, they can display important functions in several aspects of cell biology. Their abnormal expression is verified in various disorders, including neurodegenerative diseases, especially Alzheimer's disease (AD). By acting as a cell cycle suppressor or promotor, lncRNAs mediate some signaling pathways, which in turn lead to exacerbation or improvement of AD. Wnt/β-catenin signaling pathway, as an important pathway in the pathogenesis of AD, can extremely be affected by lncRNAs. This pathway participates in various biological processes, such as embryogenesis and tissue homeostasis, and is involved in expanding the central nervous system, such as synaptogenesis, plasticity, and hippocampal neurogenesis. lncRNAs can regulate the expression of Wnt pathway target genes by interacting with various components of this pathway. This article discusses lncRNAs and their associated mechanisms in the alteration of Wnt/β-catenin signaling, which can be regarded as a new aspect of diagnosing and treating AD., Competing Interests: Declaration of Competing Interest There is no conflict of interests., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
42. Exosomes: Promising Delivery Tools for Overcoming Blood-Brain Barrier and Glioblastoma Therapy.
- Author
-
Khatami SH, Karami N, Taheri-Anganeh M, Taghvimi S, Tondro G, Khorsand M, Soltani Fard E, Sedighimehr N, Kazemi M, Rahimi Jaberi K, Moradi M, Nafisi Fard P, Darvishi MH, and Movahedpour A
- Subjects
- Humans, Blood-Brain Barrier pathology, Drug Delivery Systems methods, Glioblastoma drug therapy, Glioblastoma pathology, Exosomes pathology, Brain Neoplasms pathology
- Abstract
Gliomas make up virtually 80% of all lethal primary brain tumors and are categorized based on their cell of origin. Glioblastoma is an astrocytic tumor that has an inferior prognosis despite the ongoing advances in treatment modalities. One of the main reasons for this shortcoming is the presence of the blood-brain barrier and blood-brain tumor barrier. Novel invasive and non-invasive drug delivery strategies for glioblastoma have been developed to overcome both the intact blood-brain barrier and leverage the disrupted nature of the blood-brain tumor barrier to target cancer cells after resection-the first treatment stage of glioblastoma. Exosomes are among non-invasive drug delivery methods and have emerged as a natural drug delivery vehicle with high biological barrier penetrability. There are various exosome isolation methods from different origins, and the intended use of the exosomes and starting materials defines the choice of isolation technique. In the present review, we have given an overview of the structure of the blood-brain barrier and its disruption in glioblastoma. This review provided a comprehensive insight into novel passive and active drug delivery techniques to overcome the blood-brain barrier, emphasizing exosomes as an excellent emerging drug, gene, and effective molecule delivery vehicle used in glioblastoma therapy., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
43. MicroRNA electrochemical biosensors for pancreatic cancer.
- Author
-
Rahdan F, Bina F, Norouz Dolatabadi E, Shaterabadi D, Khatami SH, Karami Y, Dorosti N, Taheri-Anganeh M, Asadi P, Soltani R, Pashaei MR, and Movahedpour A
- Subjects
- Humans, Electrochemical Techniques methods, MicroRNAs genetics, Biosensing Techniques methods, Pancreatic Neoplasms diagnosis, Pancreatic Neoplasms genetics, Nanostructures
- Abstract
Pancreatic cancer (PC) is one of the deadliest cancers worldwide. MicroRNAs (miRs) are sensitive molecular diagnostic tools that can serve as highly accurate biomarkers in many disease states in general and cancer specifically. MiR-based electrochemical biosensors can be easily and inexpensively manufactured, making them suitable for clinical use and mass production for point-of-care use. This paper reviews nanomaterial-enhanced miR-based electrochemical biosensors in pancreatic cancer detection, analyzing both labeled and label-free approaches, as well as enzyme-based and enzyme-free methods., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
44. A review of highly sensitive electrochemical genosensors for microRNA detection: A novel diagnostic platform for neurodegenerative diseases diagnostics.
- Author
-
Azimi Sanavi M, Mahdavian F, Dorosti N, Karami N, Karami S, Khatami SH, Vakili O, Taheri-Anganeh M, Karima S, and Movahedpour A
- Subjects
- Humans, Electrochemical Techniques, Biomarkers, MicroRNAs genetics, Neurodegenerative Diseases diagnosis, Neurodegenerative Diseases genetics, Biosensing Techniques
- Abstract
The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair., (© 2022 International Union of Biochemistry and Molecular Biology, Inc.)
- Published
- 2023
- Full Text
- View/download PDF
45. Liposomal delivery system/adjuvant for tuberculosis vaccine.
- Author
-
Moradi M, Vahedi F, Abbassioun A, Ramezanpour Shahi A, Sholeh M, Taheri-Anganeh M, Dargahi Z, Ghanavati R, Khatami SH, and Movahedpour A
- Subjects
- Humans, Adjuvants, Immunologic, Vaccination, Tuberculosis Vaccines
- Abstract
As reported by the World Health Organization, about 10 million individuals were infected with tuberculosis (TB) worldwide. Moreover, approximately 1.5 million people died of TB, of which 214,000 were infected with HIV simultaneously. Due to the high infection rate, the need for effective TB vaccination is highly felt. Until now, various methodologies have been proposed for the development of a protein subunit vaccine for TB. These vaccines have shown higher protection than other vaccines, particularly the Bacillus culture vaccine. The delivery system and safety regulator are common characteristics of effective adjuvants in TB vaccines and the clinical trial stage. The present study investigates the current state of TB adjuvant research focusing on the liposomal adjuvant system. Based on our findings, the liposomal system is a safe and efficient adjuvant from nanosize to microsize for vaccinations against TB, other intracellular infections, and malignancies. Clinical studies can provide valuable feedback for developing novel TB adjuvants, which ultimately enhance the impact of adjuvants on next-generation TB vaccines., (© 2023 The Authors. Immunity, Inflammation and Disease published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
46. MicroRNA biosensors for detection of gastrointestinal cancer.
- Author
-
Dorosti N, Khatami SH, Karami N, Taheri-Anganeh M, Mahhengam N, Rajabvand N, Asadi P, Movahedpour A, and Ghasemi H
- Subjects
- Humans, Nanotechnology, Electrochemical Techniques, MicroRNAs, Nanostructures chemistry, Gastrointestinal Neoplasms, Biosensing Techniques
- Abstract
Gastrointestinal (GI) cancers are one of the most common causes of cancer-related mortality. The discovery of microRNAs (miRs) and their unique role in cancer and other diseases has prompted the development of highly sensitive molecular diagnostic tools using nanomaterials as sensitive and specific biosensors. Among these, electrochemical biosensors, which are based on a simple and inexpensive design, make them desirable in clinical applications as well as a mass-produced point-of-care device. We review miR-based electrochemical biosensors in GI cancer and examine the use of nanoparticles in the evolving development of miR-based biosensors. Among these, a number of approaches including redox labeled probes, catalysts, redox intercalating agents and free redox indicators are highlighted for use in electrochemical biosensor technology., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
47. Review of electrochemical and optical biosensors for testosterone measurement.
- Author
-
Nikkhah M, Karami S, Khatami SH, Taheri-Anganeh M, Savardashtaki A, Mahmoodzadeh A, Shabaninejad Z, Vakili O, Mousavi P, Ghanizadeh Gerayeli F, Behrouj H, Ghasemi H, and Movahedpour A
- Subjects
- Humans, Male, Female, Testosterone, Semen, Biosensing Techniques
- Abstract
Testosterone is an anabolic steroid and a major sex hormone in males. It plays vital roles, including developing the testis, penis, and prostate, increasing muscle and bone, and sperm production. In both men and women, testosterone levels should be in normal ranges. Besides, testosterone and its analogs are major global contributors to doping in sport. Due to the importance of testosterone testing, novel, accurate biosensors have been developed. This review summarizes the various methods for testosterone measurement. Also, recent optical and electrochemical approaches for the detection of testosterone and its analogs have been discussed., (© 2022 International Union of Biochemistry and Molecular Biology, Inc.)
- Published
- 2023
- Full Text
- View/download PDF
48. Exosomal lncRNAs in gastrointestinal cancer.
- Author
-
Vosough P, Khatami SH, Hashemloo A, Tajbakhsh A, Karimi-Fard F, Taghvimi S, Taheri-Anganeh M, Soltani Fard E, Savardashtaki A, and Movahedpour A
- Subjects
- Humans, Biomarkers, Tumor genetics, Gene Expression Regulation, Neoplastic, RNA, Long Noncoding genetics, Gastrointestinal Neoplasms diagnosis, Gastrointestinal Neoplasms genetics, Exosomes genetics
- Abstract
Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
49. Laccase: Various types and applications.
- Author
-
Khatami SH, Vakili O, Movahedpour A, Ghesmati Z, Ghasemi H, and Taheri-Anganeh M
- Subjects
- Biotechnology, Fungi, Biodegradation, Environmental, Laccase chemistry, Environmental Pollutants
- Abstract
Laccase belongs to the polyphenol oxidase family and is very important in removing environmental pollutants due to its structural and functional properties. Recently, the ability of laccase to oxidize phenolic and nonphenolic substances has been considered by many researchers. This enzyme's application scope includes a broad range of chemical processes and industrial usages, such as bioremediation, nanobiotechnology, woodworking industries, bleaching of paper pulp, dyeing in the textile industry, biotechnological uses in food industries, biorefining, detoxification from wastewater, production of organic matter from phenolic and amine substrates, and biofuels. Although filamentous fungi produce large amounts of laccase, high-yield industrial-scale production of laccase is still faced with many problems. At present, researchers are trying to increase the efficiency and productivity and reduce the final price of laccase by finding suitable microorganisms and improving the process of production and purification of laccase. This article reviews the introduction of laccase, its properties, production processes, and the effect of various factors on the enzyme's stability and activity, and some of its applications in various industries., (© 2022 International Union of Biochemistry and Molecular Biology, Inc.)
- Published
- 2022
- Full Text
- View/download PDF
50. Aptamer-based biosensors for Pseudomonas aeruginosa detection.
- Author
-
Khatami SH, Karami S, Siahkouhi HR, Taheri-Anganeh M, Fathi J, Aghazadeh Ghadim MB, Taghvimi S, Shabaninejad Z, Tondro G, Karami N, Dolatshah L, Soltani Fard E, Movahedpour A, and Darvishi MH
- Subjects
- Pseudomonas aeruginosa, Antibodies, Aptamers, Nucleotide chemistry, Biosensing Techniques methods
- Abstract
Pseudomonas aeruginosa possesses innate antibiotic resistance mechanisms, and carbapenem-resistant Pseudomonas aeruginosa has been considered the number one priority in the 2017 WHO list of antimicrobial-resistant crucial hazards. Early detection of Pseudomonas aeruginosa can circumvent treatment challenges. Various techniques have been developed for the detection of P. aeruginosa detection. Biosensors have recently attracted unprecedented attention in the field of point-of-care diagnostics due to their easy operation, rapid, low cost, high sensitivity, and selectivity. Biosensors can convert the specific interaction between bioreceptors (antibodies, aptamers) and pathogens into optical, electrical, and other signal outputs. Aptamers are novel and promising alternatives to antibodies as biorecognition elements mainly synthesized by systematic evolution of ligands by exponential enrichment and have predictable secondary structures. They have comparable affinity and specificity for binding to their target to antibody recognition. Since 2015, there have been about 2000 journal articles published in the field of aptamer biosensors, of which 30 articles were on the detection of P. aeruginosa. Here, we have focused on outlining the recent progress in the field of aptamer-based biosensors for P. aeruginosa detection based on optical, electrochemical, and piezoelectric signal transduction methods., Competing Interests: Declaration of competing interest There is no conflict of interests., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.