30 results on '"Kim Lyerly, H."'
Search Results
2. An unbiased in vivo functional genomics screening approach in mice identifies novel tumor cell-based regulators of immune rejection
- Author
-
Shuptrine, Casey W., Ajina, Reham, Fertig, Elana J., Jablonski, Sandra A., Kim Lyerly, H., Hartman, Zachary C., and Weiner, Louis M.
- Published
- 2017
- Full Text
- View/download PDF
3. Dendritic Cell-based Immunization for Cancer Therapy
- Author
-
Morse, Michael A., Kim Lyerly, H., and Habib, Nagy A., editor
- Published
- 2002
- Full Text
- View/download PDF
4. Identification of a novel Smoothened antagonist that potently suppresses Hedgehog signaling
- Author
-
Wang, Jiangbo, Mook, Robert A., Jr., Lu, Jiuyi, Gooden, David M., Ribeiro, Anthony, Guo, Anchen, Barak, Larry S., Kim Lyerly, H., and Chen, Wei
- Published
- 2012
- Full Text
- View/download PDF
5. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead
- Author
-
Goodson, William H., III, Lowe, Leroy, Carpenter, David O., Gilbertson, Michael, Manaf Ali, Abdul, Lopez de Cerain Salsamendi, Adela, Lasfar, Ahmed, Carnero, Amancio, Azqueta, Amaya, Amedei, Amedeo, Charles, Amelia K., Collins, Andrew R., Ward, Andrew, Salzberg, Anna C., Colacci, Annamaria, Olsen, Ann-Karin, Berg, Arthur, Barclay, Barry J., Zhou, Binhua P., Blanco-Aparicio, Carmen, Baglole, Carolyn J., Dong, Chenfang, Mondello, Chiara, Hsu, Chia-Wen, Naus, Christian C., Yedjou, Clement, Curran, Colleen S., Laird, Dale W., Koch, Daniel C., Carlin, Danielle J., Felsher, Dean W., Roy, Debasish, Brown, Dustin G., Ratovitski, Edward, Ryan, Elizabeth P., Corsini, Emanuela, Rojas, Emilio, Moon, Eun-Yi, Laconi, Ezio, Marongiu, Fabio, Al-Mulla, Fahd, Chiaradonna, Ferdinando, Darroudi, Firouz, Martin, Francis L., Van Schooten, Frederik J., Goldberg, Gary S., Wagemaker, Gerard, Nangami, Gladys, Calaf, Gloria M., Williams, Graeme, Wolf, Gregory T., Koppen, Gudrun, Brunborg, Gunnar, Kim Lyerly, H., Krishnan, Harini, Ab Hamid, Hasiah, Yasaei, Hemad, Sone, Hideko, Kondoh, Hiroshi, Salem, Hosni K., Hsu, Hsue-Yin, Park, Hyun Ho, Koturbash, Igor, Miousse, Isabelle R., Scovassi, A.Ivana, Klaunig, James E., Vondráček, Jan, Raju, Jayadev, Roman, Jesse, Wise, John Pierce, Sr., Whitfield, Jonathan R., Woodrick, Jordan, Christopher, Joseph A., Ochieng, Josiah, Martinez-Leal, Juan Fernando, Weisz, Judith, Kravchenko, Julia, Sun, Jun, Prudhomme, Kalan R., Narayanan, Kannan Badri, Cohen-Solal, Karine A., Moorwood, Kim, Gonzalez, Laetitia, Soucek, Laura, Jian, Le, D’Abronzo, Leandro S., Lin, Liang-Tzung, Li, Lin, Gulliver, Linda, McCawley, Lisa J., Memeo, Lorenzo, Vermeulen, Louis, Leyns, Luc, Zhang, Luoping, Valverde, Mahara, Khatami, Mahin, Romano, Maria Fiammetta, Chapellier, Marion, Williams, Marc A., Wade, Mark, Manjili, Masoud H., Lleonart, Matilde, Xia, Menghang, Gonzalez, Michael J., Karamouzis, Michalis V., Kirsch-Volders, Micheline, Vaccari, Monica, Kuemmerle, Nancy B., Singh, Neetu, Cruickshanks, Nichola, Kleinstreuer, Nicole, van Larebeke, Nik, Ahmed, Nuzhat, Ogunkua, Olugbemiga, Krishnakumar, P.K., Vadgama, Pankaj, Marignani, Paola A., Ghosh, Paramita M., Ostrosky-Wegman, Patricia, Thompson, Patricia, Dent, Paul, Heneberg, Petr, Darbre, Philippa, Sing Leung, Po, Nangia-Makker, Pratima, Cheng, Qiang (Shawn), Robey, R.Brooks, Al-Temaimi, Rabeah, Roy, Rabindra, Andrade-Vieira, Rafaela, Sinha, Ranjeet K., Mehta, Rekha, Vento, Renza, Di Fiore, Riccardo, Ponce-Cusi, Richard, Dornetshuber-Fleiss, Rita, Nahta, Rita, Castellino, Robert C., Palorini, Roberta, Abd Hamid, Roslida, Langie, Sabine A.S., Eltom, Sakina, Brooks, Samira A., Ryeom, Sandra, Wise, Sandra S., Bay, Sarah N., Harris, Shelley A., Papagerakis, Silvana, Romano, Simona, Pavanello, Sofia, Eriksson, Staffan, Forte, Stefano, Casey, Stephanie C., Luanpitpong, Sudjit, Lee, Tae-Jin, Otsuki, Takemi, Chen, Tao, Massfelder, Thierry, Sanderson, Thomas, Guarnieri, Tiziana, Hultman, Tove, Dormoy, Valérian, Odero-Marah, Valerie, Sabbisetti, Venkata, Maguer-Satta, Veronique, Rathmell, W.Kimryn, Engström, Wilhelm, Decker, William K., Bisson, William H., Rojanasakul, Yon, Luqmani, Yunus, Chen, Zhenbang, and Hu, Zhiwei
- Published
- 2015
- Full Text
- View/download PDF
6. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and antitumor effects
- Author
-
Osada, Takuya, Berglund, Peter, Morse, Michael A., Hubby, Bolyn, Lewis, Whitney, Niedzwiecki, Donna, Yang, Xiao Yi, Hobeika, Amy, Burnett, Bruce, Devi, Gayathri R., Clay, Timothy M., Smith, Jonathan, and Kim Lyerly, H.
- Published
- 2012
- Full Text
- View/download PDF
7. Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines
- Author
-
Clay, Timothy M., Osada, Takuya, Hartman, Zachary C., Hobeika, Amy, Devi, Gayathri, Morse, Michael A., and Kim Lyerly, H.
- Published
- 2011
- Full Text
- View/download PDF
8. The History, Evolution, and Clinical use of Dendritic Cell-Based Immunization Strategies in the Therapy of Brain Tumors
- Author
-
Fecci, Peter E., Mitchell, Duane A., Archer, Gary E., Morse, Michael A., Kim Lyerly, H., Bigner, Darell D., and Sampson, John H.
- Published
- 2003
- Full Text
- View/download PDF
9. Royal academy of medicine in Ireland section of surgery: Proceedings of registrar’s prize meeting held 22nd January, 1996
- Author
-
Kennedy, J. G., Kasser, J. R., Glimcher, M. J., Salih, E. J., Neary, P., Condon, C., Kilbaugh, T., Redmond, H. P., Bouchier-Hayes, D., Fulton, G. J., Davies, M. G., Svendsen, E., Lefkowitz, R. J., Koch, W. J., Hagen, P -O., Fulton, G. J., Davies, M. G., Svendsen, E., Lefkowitz, R. J., Koch, W. J., Hagen, P -O., Johnston, S. M., Lipsett, P. A., Fox-Talbot, K. M., Lillemoe, K. D., Pitt, H. A., Kelly, J. L., O’Suilleabhain, C. B., Horgan, A. F., O’Riordain, M. G., Mannick, J. A., Rodrick, M. L., Chen, G., Kelly, C., Leahy, A., Bouchier-Hayes, D. J., Kelly, P., O’Riordain, D. S., Horgan, P. G., Keane, F. B., Tanner, W. A., Rothwell, J. F., Staunton, M. J., O’Mahony, L., Gaffney, E. F., Mealy, K., Hennessy, T. P. J., Coveney, E., Clary, B., Philip, R., and Kim Lyerly, H.
- Published
- 1998
- Full Text
- View/download PDF
10. Sylvester o’halloran surgical scientific meeting: Proceedings of meeting held 7th & 8th March 1997 in Charles parsons theatre, university of Limerick
- Author
-
Fulton, G. J., Davies, M. G., O’Hagen, P., Rasheed, A., Kelly, C., Kay, E., Fitzgerald, S., Bouchier-Hayes, D., Leahy, A., Fennessy, F., Kelly, C., Fitzgerald, P., Bouchier-Hayes, D., Khosraviani, K., Weir, H. P., Williamson, K., Wilson, R., Moorehead, R. J., Rowlands, B. J., Morrissey, D., O’Connell, J., Lynch, D., O’Sullivan, C., Shanahan, F., Collins, J. K., Kelly, J. L., Soberg, C. C., Lyons, A., Mannick, J. A., Lederer, J. A., Chen, C., Kelly, C., Leahy, A., Bouchier-Hayes, D. J., Fitzsimons, H., O’Hanlon, D. M., Curran, C., Canney, M., Morris, S., Clinton, O., Given, H. F., Coveney, E., Lyerly, H. K., Murphy, F. L., Kelly, C. J., Osborne, D. H., Kelly, P., O’Riordan, D. S., Horgan, P. G., Keane, F. B. V., Tanner, W. A., Kilmartin, P., Delaney, C. P., Johnston, S. M., Fitzpatrick, J. M., Gorey, T. F., Mehigan, J., O/rsRiordan, M. G., Shines, N., Hill, A., Tanner, W. A., McDonnell, C. O., Coveney, E., Murphy, F., Javadpour, S. M., Alhadi, Y., Leahy, A., Waldron, R., Watson, R. G., Tarrant, A., Neelamekam, T. K., Mathias, J., Geoghegan, J., Boyle, T., Traynor, O., Hayes, S., O’Donovan, B., Ajmal, N., McCann, J., Corrigan, N. T., O’Riordan, M. G., Ross, P., O’Donohoe, M., Bresnihan, M., Feeley, T. M., Fiuza-Castineira, C., Coleman, D., Fisher, H., Butt, A., Ghumman, E., Grace, P., Burke, P., Johnston, S. M., Martin, S. A., Fox-Talbot, M. K., Lipsett, P. A., Lillemoe, K. D., Pitt, H. A., O’Keeffe, D. A., Hill, A. D. K., Sheahan, K., Ryan, F., Barton, D., Fitzgerald, R., McDermott, E. W., O’Higgins, N. J., Kavanagh, E., Kiely, P., O’Driscoll, D., Ramesh, M., Kirwan, W. O., Winter, D. C., Nally, K., O’Callaghan, J., Matthews, J. B., Harvey, B. J., O’Sullivan, G. C., Shanahan, F., Young, L. S., Regan, M. C., Sweeney, P., Bouchier-Hayes, D. M., Fitzpatrick, J. M., Dardis, R., Kelly, C., Broe, P., Bouchier-Hayes, D., O’Brien, M. G., Collins, J. K., Shanahan, F., O’Sullivan, G. C., Neary, P., Ridgeway, P., Condron, C., Wang, J. H., Redmond, H. P., Bouchier-Hayes, D., Redfern, D. R. M., Strachan, R. K. S., Hollingdale, J. M., Grace, P. A., Acheson, A., Graham, A., Weir, C., Lee, B., O’Donnell, C., Buckley, D., O’Donnell, J. A., Purcell, E., O’Donoghue, M., Sultan, S., Colgan, M., Molloy, M., Moore, D., Shanik, G., McCollum, P. T., Raza, Z., Naidu, S., Stonebridge, P. A., Colgan, M. P., Moore, D. J., Shanik, D. G., Dowdall, J., Hill, A. D. K., Williams, C., Shering, S. G., Duffy, G., McDermott, E. W., O’Higgins, N. J., Coveney, E., Greengrass, R., Iglehart, D., Little, G., Kim Lyerly, H., Fynes, M., Cahill, A., O’Herlihy, C., O’Connell, P. R., Ahmad, I., Etisham, M., Drumm, J., Flood, H., Mulhall, K., Murray, K., O’Rian, S., Garvey, N., Johnston, J., Waldron, R., McGreal, G. T., Kelly, J. L., O’Donnell, J. A., Kirwan, W. O., Brady, M. P., Duffy, M. M., Regan, M., Harrington, M. G., O’Connell, P. R., Fitzpatrick, J. M., Javadpour, M., Coveney, E., McDonnell, C., Watson, R. G., Eguare, E., Barry, M. C., Ghumman, E., Grace, P. A., O’Donovan, B., Hayes, S., Ajmal, N., McCann, J., O’Toole, G. C., O’Higgins, N., McDermott, E., Brady, C. M., Sultan, S. A., O’Donoghue, M. K., Molloy, M. P., Colgan, M. P., Moore, D. J., Shanik, G. D., McCollum, P. T., Holdsworth, R. J., Naidu, S., Raza, Z., Fehily, M., Hill, A. D. K., Doran, C., O’Riordan, M. G., O’Donoghue, M., Keane, F., Tanner, W. A., Rothwell, J. F., Staunton, M. J., O’Mahony, L., Gaffney, E. F., Mealy, K., Hennessy, T. P. J., Winter, D. C., O’Sullivan, G. C., Harvey, B. J., and Geibel, J.
- Published
- 1998
- Full Text
- View/download PDF
11. T cells or active epstein-barr virus infection in the development of lymphoproliferative disease in human B cell-injected severe combined immunodeficient mice
- Author
-
Coles, Robert E., Boyle, Terrence J., DiMaio, J. Michael, Berend, Keith R., Via, Dan F., and Kim Lyerly, H.
- Published
- 1994
- Full Text
- View/download PDF
12. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: The challenge ahead
- Author
-
Goodson, W.H., III Lowe, L. Carpenter, D.O. Gilbertson, M. Ali, A.M. de Cerain Salsamendi, A.L. Lasfar, A. Carnero, A. Azqueta, A. Amedei, A. Charles, A.K. Collins, A.R. Ward, A. Salzberg, A.C. Colacci, A. Olsen, A.-K. Berg, A. Barclay, B.J. Zhou, B.P. Blanco-Aparicio, C. Baglole, C.J. Dong, C. Mondello, C. Hsu, C.-W. Naus, C.C. Yedjou, C. Curran, C.S. Laird, D.W. Koch, D.C. Carlin, D.J. Felsher, D.W. Roy, D. Brown, D.G. Ratovitski, E. Ryan, E.P. Corsini, E. Rojas, E. Moon, E.-Y. Laconi, E. Marongiu, F. Al-Mulla, F. Chiaradonna, F. Darroudi, F. Martin, F.L. Van Schooten, F.J. Goldberg, G.S. Wagemaker, G. Nangami, G. Calaf, G.M. Williams, G. Wolf, G.T. Koppen, G. Brunborg, G. Kim Lyerly, H. Krishnan, H. Hamid, H.A. Yasaei, H. Sone, H. Kondoh, H. Salem, H.K. Hsu, H.-Y. Park, H.H. Koturbash, I. Miousse, I.R. Ivana Scovassi, A. Klaunig, J.E. Vondráček, J. Raju, J. Roman, J. Wise, J.P., Sr. Whitfield, J.R. Woodrick, J. Christopher, J.A. Ochieng, J. Martinez-Leal, J.F. Weisz, J. Kravchenko, J. Sun, J. Prudhomme, K.R. Narayanan, K.B. Cohen-Solal, K.A. Moorwood, K. Gonzalez, L. Soucek, L. Jian, L. D'Abronzo, L.S. Lin, L.-T. Li, L. Gulliver, L. McCawley, L.J. Memeo, L. Vermeulen, L. Leyns, L. Zhang, L. Valverde, M. Khatami, M. Romano, M.F. Chapellier, M. Williams, M.A. Wade, M. Manjili, M.H. Lleonart, M. Xia, M. Gonzalez, M.J. Karamouzis, M.V. Kirsch-Volders, M. Vaccari, M. Kuemmerle, N.B. Singh, N. Cruickshanks, N. Kleinstreuer, N. Van Larebeke, N. Ahmed, N. Ogunkua, O. Krishnakumar, P.K. Vadgama, P. Marignani, P.A. Ghosh, P.M. Ostrosky-Wegman, P. Thompson, P. Dent, P. Heneberg, P. Darbre, P. Leung, P.S. Nangia-Makker, P. Cheng, Q.S. Brooks Robey, R. Al-Temaimi, R. Roy, R. Andrade-Vieira, R. Sinha, R.K. Mehta, R. Vento, R. Di Fiore, R. Ponce-Cusi, R. Dornetshuber-Fleiss, R. Nahta, R. Castellino, R.C. Palorini, R. Hamid, R.A. Langie, S.A.S. Eltom, S. Brooks, S.A. Ryeom, S. Wise, S.S. Bay, S.N. Harris, S.A. Papagerakis, S. Romano, S. Pavanello, S. Eriksson, S. Forte, S. Casey, S.C. Luanpitpong, S. Lee, T.-J. Otsuki, T. Chen, T. Massfelder, T. Sanderson, T. Guarnieri, T. Hultman, T. Dormoy, V. Odero-Marah, V. Sabbisetti, V. Maguer-Satta, V. Kimryn Rathmell, W. Engström, W. Decker, W.K. Bisson, W.H. Rojanasakul, Y. Luqmani, Y. Chen, Z. Hu, Z.
- Abstract
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/ mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. © The Author 2015.
- Published
- 2015
13. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone
- Author
-
Price, Trevor T., primary, Burness, Monika L., additional, Sivan, Ayelet, additional, Warner, Matthew J., additional, Cheng, Renee, additional, Lee, Clara H., additional, Olivere, Lindsey, additional, Comatas, Karrie, additional, Magnani, John, additional, Kim Lyerly, H., additional, Cheng, Qing, additional, McCall, Chad M., additional, and Sipkins, Dorothy A., additional
- Published
- 2016
- Full Text
- View/download PDF
14. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: The challenge ahead
- Author
-
Goodson, W, Lowe, L, Carpenter, D, Gilbertson, M, Ali, A, de Cerain Salsamendi, A, Lasfar, A, Carnero, A, Azqueta, A, Amedei, A, Charles, A, Collins, A, Ward, A, Salzberg, A, Colacci, A, Olsen, A, Berg, A, Barclay, B, Zhou, B, Blanco Aparicio, C, Baglole, C, Dong, C, Mondello, C, Hsu, C, Naus, C, Yedjou, C, Curran, C, Laird, D, Koch, D, Carlin, D, Felsher, D, Roy, D, Brown, D, Ratovitski, E, Ryan, E, Corsini, E, Rojas, E, Moon, E, Laconi, E, Marongiu, F, Al Mulla, F, Chiaradonna, F, Darroudi, F, Martin, F, Van Schooten, F, Goldberg, G, Wagemaker, G, Nangami, G, Calaf, G, Williams, G, Wolf, G, Koppen, G, Brunborg, G, Kim Lyerly, H, Krishnan, H, Hamid, H, Yasaei, H, Sone, H, Kondoh, H, Salem, H, Hsu, H, Park, H, Koturbash, I, Miousse, I, Ivana Scovassi, A, Klaunig, J, Vondráček, J, Raju, J, Roman, J, Wise, J, Whitfield, J, Woodrick, J, Christopher, J, Ochieng, J, Martinez Leal, J, Weisz, J, Kravchenko, J, Sun, J, Prudhomme, K, Narayanan, K, Cohen Solal, K, Moorwood, K, Gonzalez, L, Soucek, L, Jian, L, D'Abronzo, L, Lin, L, Li, L, Gulliver, L, Mccawley, L, Memeo, L, Vermeulen, L, Leyns, L, Zhang, L, Valverde, M, Khatami, M, Romano, M, Chapellier, M, Williams, M, Wade, M, Manjili, M, Lleonart, M, Xia, M, Gonzalez, M, Karamouzis, M, Kirsch Volders, M, Vaccari, M, Kuemmerle, N, Singh, N, Cruickshanks, N, Kleinstreuer, N, Van Larebeke, N, Ahmed, N, Ogunkua, O, Krishnakumar, P, Vadgama, P, Marignani, P, Ghosh, P, Ostrosky Wegman, P, Thompson, P, Dent, P, Heneberg, P, Darbre, P, Leung, P, Nangia Makker, P, Cheng, Q, Brooks Robey, R, Al Temaimi, R, Roy, R, Andrade Vieira, R, Sinha, R, Mehta, R, Vento, R, Di Fiore, R, Ponce Cusi, R, Dornetshuber Fleiss, R, Nahta, R, Castellino, R, Palorini, R, Hamid, R, Langie, S, Eltom, S, Brooks, S, Ryeom, S, Wise, S, Bay, S, Harris, S, Papagerakis, S, Romano, S, Pavanello, S, Eriksson, S, Forte, S, Casey, S, Luanpitpong, S, Lee, T, Otsuki, T, Chen, T, Massfelder, T, Sanderson, T, Guarnieri, T, Hultman, T, Dormoy, V, Odero Marah, V, Sabbisetti, V, Maguer Satta, V, Kimryn Rathmell, W, Engström, W, Decker, W, Bisson, W, Rojanasakul, Y, Luqmani, Y, Chen, Z, Hu, Z, CHIARADONNA, FERDINANDO, PALORINI, ROBERTA, Hu, Z., Goodson, W, Lowe, L, Carpenter, D, Gilbertson, M, Ali, A, de Cerain Salsamendi, A, Lasfar, A, Carnero, A, Azqueta, A, Amedei, A, Charles, A, Collins, A, Ward, A, Salzberg, A, Colacci, A, Olsen, A, Berg, A, Barclay, B, Zhou, B, Blanco Aparicio, C, Baglole, C, Dong, C, Mondello, C, Hsu, C, Naus, C, Yedjou, C, Curran, C, Laird, D, Koch, D, Carlin, D, Felsher, D, Roy, D, Brown, D, Ratovitski, E, Ryan, E, Corsini, E, Rojas, E, Moon, E, Laconi, E, Marongiu, F, Al Mulla, F, Chiaradonna, F, Darroudi, F, Martin, F, Van Schooten, F, Goldberg, G, Wagemaker, G, Nangami, G, Calaf, G, Williams, G, Wolf, G, Koppen, G, Brunborg, G, Kim Lyerly, H, Krishnan, H, Hamid, H, Yasaei, H, Sone, H, Kondoh, H, Salem, H, Hsu, H, Park, H, Koturbash, I, Miousse, I, Ivana Scovassi, A, Klaunig, J, Vondráček, J, Raju, J, Roman, J, Wise, J, Whitfield, J, Woodrick, J, Christopher, J, Ochieng, J, Martinez Leal, J, Weisz, J, Kravchenko, J, Sun, J, Prudhomme, K, Narayanan, K, Cohen Solal, K, Moorwood, K, Gonzalez, L, Soucek, L, Jian, L, D'Abronzo, L, Lin, L, Li, L, Gulliver, L, Mccawley, L, Memeo, L, Vermeulen, L, Leyns, L, Zhang, L, Valverde, M, Khatami, M, Romano, M, Chapellier, M, Williams, M, Wade, M, Manjili, M, Lleonart, M, Xia, M, Gonzalez, M, Karamouzis, M, Kirsch Volders, M, Vaccari, M, Kuemmerle, N, Singh, N, Cruickshanks, N, Kleinstreuer, N, Van Larebeke, N, Ahmed, N, Ogunkua, O, Krishnakumar, P, Vadgama, P, Marignani, P, Ghosh, P, Ostrosky Wegman, P, Thompson, P, Dent, P, Heneberg, P, Darbre, P, Leung, P, Nangia Makker, P, Cheng, Q, Brooks Robey, R, Al Temaimi, R, Roy, R, Andrade Vieira, R, Sinha, R, Mehta, R, Vento, R, Di Fiore, R, Ponce Cusi, R, Dornetshuber Fleiss, R, Nahta, R, Castellino, R, Palorini, R, Hamid, R, Langie, S, Eltom, S, Brooks, S, Ryeom, S, Wise, S, Bay, S, Harris, S, Papagerakis, S, Romano, S, Pavanello, S, Eriksson, S, Forte, S, Casey, S, Luanpitpong, S, Lee, T, Otsuki, T, Chen, T, Massfelder, T, Sanderson, T, Guarnieri, T, Hultman, T, Dormoy, V, Odero Marah, V, Sabbisetti, V, Maguer Satta, V, Kimryn Rathmell, W, Engström, W, Decker, W, Bisson, W, Rojanasakul, Y, Luqmani, Y, Chen, Z, Hu, Z, CHIARADONNA, FERDINANDO, PALORINI, ROBERTA, and Hu, Z.
- Abstract
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/ mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
- Published
- 2015
15. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: The challenge ahead
- Author
-
Goodson, W., Lowe, L., Carpenter, D., Gilbertson, M., Ali, A., de Cerain Salsamendi, A., Lasfar, A., Carnero, A., Azqueta, A., Amedei, A., Charles, A., Collins, A., Ward, A., Salzberg, A., Colacci, A., Olsen, A., Berg, A., Barclay, B., Zhou, B., Blanco-Aparicio, C., Baglole, C., Dong, C., Mondello, C., Hsu, C., Naus, C., Yedjou, C., Curran, C., Laird, D., Koch, D., Carlin, D., Felsher, D., Roy, D., Brown, D., Ratovitski, E., Ryan, E., Corsini, E., Rojas, E., Moon, E., Laconi, E., Marongiu, F., Al-Mulla, F., Chiaradonna, F., Darroudi, F., Martin, F., Van Schooten, F., Goldberg, G., Wagemaker, G., Nangami, G., Calaf, G., Williams, G., Wolf, G., Koppen, G., Brunborg, G., Kim Lyerly, H., Krishnan, H., Hamid, H., Yasaei, H., Sone, H., Kondoh, H., Salem, H., Hsu, H., Park, H., Koturbash, I., Miousse, I., Ivana Scovassi, A., Klaunig, J., Vondrácek, J., Raju, J., Roman, J., Wise, J., Whitfield, J., Woodrick, J., Christopher, J., Ochieng, J., Martinez-Leal, J., Weisz, J., Kravchenko, J., Sun, J., Prudhomme, K., Narayanan, K., Cohen-Solal, K., Moorwood, K., Gonzalez, L., Soucek, L., Jian, Le, D'Abronzo, L., Lin, L., Li, L., Gulliver, L., McCawley, L., Memeo, L., Vermeulen, L., Leyns, L., Zhang, L., Goodson, W., Lowe, L., Carpenter, D., Gilbertson, M., Ali, A., de Cerain Salsamendi, A., Lasfar, A., Carnero, A., Azqueta, A., Amedei, A., Charles, A., Collins, A., Ward, A., Salzberg, A., Colacci, A., Olsen, A., Berg, A., Barclay, B., Zhou, B., Blanco-Aparicio, C., Baglole, C., Dong, C., Mondello, C., Hsu, C., Naus, C., Yedjou, C., Curran, C., Laird, D., Koch, D., Carlin, D., Felsher, D., Roy, D., Brown, D., Ratovitski, E., Ryan, E., Corsini, E., Rojas, E., Moon, E., Laconi, E., Marongiu, F., Al-Mulla, F., Chiaradonna, F., Darroudi, F., Martin, F., Van Schooten, F., Goldberg, G., Wagemaker, G., Nangami, G., Calaf, G., Williams, G., Wolf, G., Koppen, G., Brunborg, G., Kim Lyerly, H., Krishnan, H., Hamid, H., Yasaei, H., Sone, H., Kondoh, H., Salem, H., Hsu, H., Park, H., Koturbash, I., Miousse, I., Ivana Scovassi, A., Klaunig, J., Vondrácek, J., Raju, J., Roman, J., Wise, J., Whitfield, J., Woodrick, J., Christopher, J., Ochieng, J., Martinez-Leal, J., Weisz, J., Kravchenko, J., Sun, J., Prudhomme, K., Narayanan, K., Cohen-Solal, K., Moorwood, K., Gonzalez, L., Soucek, L., Jian, Le, D'Abronzo, L., Lin, L., Li, L., Gulliver, L., McCawley, L., Memeo, L., Vermeulen, L., Leyns, L., and Zhang, L.
- Abstract
© The Author 2015. Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/ mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
- Published
- 2015
16. The prognostic values of CYP2B6 genetic polymorphisms and metastatic sites for advanced breast cancer patients treated with docetaxel and thiotepa
- Author
-
Song, Qingkun, primary, Zhou, Xinna, additional, Yu, Jing, additional, Dong, Ningning, additional, Wang, Xiaoli, additional, Yang, Huabing, additional, Ren, Jun, additional, and Kim Lyerly, H, additional
- Published
- 2015
- Full Text
- View/download PDF
17. Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines
- Author
-
Clay, Timothy M., primary, Osada, Takuya, additional, Hartman, Zachary C., additional, Hobeika, Amy, additional, Devi, Gayathri, additional, Morse, Michael A., additional, and Kim Lyerly, H., additional
- Published
- 2010
- Full Text
- View/download PDF
18. Maximizing the retention of antigen specific lymphocyte function after cryopreservation
- Author
-
Disis, Mary L., primary, dela Rosa, Corazon, additional, Goodell, Vivian, additional, Kuan, Ling-Yu, additional, Chang, Jennie C.C., additional, Kuus-Reichel, Kristina, additional, Clay, Timothy M., additional, Kim Lyerly, H., additional, Bhatia, Sonny, additional, Ghanekar, Smita A., additional, Maino, Vernon C., additional, and Maecker, Holden T., additional
- Published
- 2006
- Full Text
- View/download PDF
19. Handbook of cancer vaccines
- Author
-
Morse, Michael A., primary, Clay, Timothy M., additional, Kim Lyerly, H., additional, and Riley, Patrick A., additional
- Published
- 2004
- Full Text
- View/download PDF
20. CURRENT STATUS OF DENDRITIC CELL IMMUNOTHERAPY OF MALIGNANCIES
- Author
-
MOSCA, PAUL J., primary, CLAY, TIMOTHY M., additional, KIM LYERLY, H., additional, and MORSE, MICHAEL A., additional
- Published
- 2003
- Full Text
- View/download PDF
21. Induction of Tumor-Specific Cytotoxic T Lymphocytes in Cancer Patients by Autologous Tumor RNA-Transfected Dendritic Cells
- Author
-
Nair, Smita K., primary, Morse, Michael, additional, Boczkowski, David, additional, Ian Cumming, R., additional, Vasovic, Ljiljana, additional, Gilboa, Eli, additional, and Kim Lyerly, H., additional
- Published
- 2002
- Full Text
- View/download PDF
22. Gene modification of primary tumor cells for active immunotherapy of human breast and ovarian cancer
- Author
-
Philip, Ramila, primary, Brunette, Elisa, additional, Clary, Bryan, additional, Kilinski, Lydia, additional, Murugesh, Deepa, additional, Sorich, Martin, additional, Yau, Josephine, additional, Lebkowski, Jane, additional, Kim Lyerly, H., additional, and Philip, Mohan, additional
- Published
- 1995
- Full Text
- View/download PDF
23. Histological and Molecular Evaluation of Patient-Derived Colorectal Cancer Explants.
- Author
-
Uronis, Joshua M., Osada, Takuya, McCall, Shannon, Xiao Yi Yang, Mantyh, Christopher, Morse, Michael A., Kim Lyerly, H., Clary, Bryan M., and Hsu, David S.
- Subjects
CANCER patients ,ETIOLOGY of diseases ,CANCER treatment ,GENE expression ,GENETIC mutation - Abstract
Mouse models have been developed to investigate colorectal cancer etiology and evaluate new anti-cancer therapies. While genetically engineered and carcinogen-induced mouse models have provided important information with regard to the mechanisms underlying the oncogenic process, tumor xenograft models remain the standard for the evaluation of new chemotherapy and targeted drug treatments for clinical use. However, it remains unclear to what extent explanted colorectal tumor tissues retain inherent pathological features over time. In this study, we have generated a panel of 27 patient-derived colorectal cancer explants (PDCCEs) by direct transplantation of human colorectal cancer tissues into NODSCID mice. Using this panel, we performed a comparison of histology, gene expression and mutation status between PDCCEs and the original human tissues from which they were derived. Our findings demonstrate that PDCCEs maintain key histological features, basic gene expression patterns and KRAS/BRAF mutation status through multiple passages. Altogether, these findings suggest that PDCCEs maintain similarity to the patient tumor from which they are derived and may have the potential to serve as a reliable preclinical model that can be incorporated into future strategies to optimize individual therapy for patients with colorectal cancer [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
24. Evaluating the Number of Stages in Development of Squamous Cell and Adenocarcinomas across Cancer Sites Using Human Population-Based Cancer Modeling.
- Author
-
Kravchenko, Julia, Akushevich, Igor, Abernethy, Amy P., and Kim Lyerly, H.
- Subjects
SQUAMOUS cell carcinoma ,ADENOCARCINOMA ,CARCINOGENESIS ,WEIBULL distribution ,DISTRIBUTION (Probability theory) ,GENETIC toxicology ,SENSITIVITY analysis - Abstract
Background: Adenocarcinomas (ACs) and squamous cell carcinomas (SCCs) differ by clinical and molecular characteristics. We evaluated the characteristics of carcinogenesis by modeling the age patterns of incidence rates of ACs and SCCs of various organs to test whether these characteristics differed between cancer subtypes. Methodology/Principal Findings: Histotype-specific incidence rates of 14 ACs and 12 SCCs from the SEER Registry (1973- 2003) were analyzed by fitting several biologically motivated models to observed age patterns. A frailty model with the Weibull baseline was applied to each age pattern to provide the best fit for the majority of cancers. For each cancer, model parameters describing the underlying mechanisms of carcinogenesis including the number of stages occurring during an individual's life and leading to cancer (m-stages) were estimated. For sensitivity analysis, the age-period-cohort model was incorporated into the carcinogenesis model to test the stability of the estimates. For the majority of studied cancers, the numbers of m-stages were similar within each group (i.e., AC and SCC). When cancers of the same organs were compared (i.e., lung, esophagus, and cervix uteri), the number of m-stages were more strongly associated with the AC/SCC subtype than with the organ: 9.79±0.09, 9.93±0.19 and 8.80±0.10 for lung, esophagus, and cervical ACs, compared to 11.41±0.10, 12.86±0.34 and 12.01±0.51 for SCCs of the respective organs (p<0.05 between subtypes). Most SCCs had more than ten mstages while ACs had fewer than ten m-stages. The sensitivity analyses of the model parameters demonstrated the stability of the obtained estimates. Conclusions/Significance: A model containing parameters capable of representing the number of stages of cancer development occurring during individual's life was applied to the large population data on incidence of ACs and SCCs. The model revealed that the number of m-stages differed by cancer subtype being more strongly associated with ACs/SCCs histotype than with organ/site. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
25. Chapter 11 - RNA-Transfected Dendritic Cells as Immunogens
- Author
-
Morse, Michael A., Nair, Smita K., and Kim Lyerly, H.
- Published
- 2002
- Full Text
- View/download PDF
26. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead
- Author
-
Wade, Mark, Gonzalez, Michael J., Brooks, Samira A., Gonzalez, Laetitia, Sabbisetti, Venkata, Weisz, Judith, Felsher, Dean W., Odero-Marah, Valerie, Sone, Hideko, Goldberg, Gary S., Ivana Scovassi, A., Hsu, Hsue Yin, Wolf, Gregory T., Kim Lyerly, H., Eltom, Sakina, Hamid, Roslida Abd, Prudhomme, Kalan R., Chiaradonna, Ferdinando, Calaf, Gloria M., Al-Temaimi, Rabeah, Miousse, Isabelle R., Krishnan, Harini, Kravchenko, Julia, Engström, Wilhelm, Ogunkua, Olugbemiga, Van Larebeke, Nik, Rojas, Emilio, Collins, Andrew R., Ryan, Elizabeth P., Bay, Sarah N., Martinez-Leal, Juan Fernando, Darroudi, Firouz, Vento, Renza, Nangia-Makker, Pratima, Charles, Amelia K., Lowe, Leroy, Van Schooten, Frederik J., Goodson, William H., Eriksson, Staffan, Woodrick, Jordan, Sun, Jun, Ghosh, Paramita M., Carlin, Danielle J., Ochieng, Josiah, Hamid, Hasiah Ab, Rojanasakul, Yon, Manjili, Masoud H., Vadgama, Pankaj, Lee, Tae Jin, Carnero, Amancio, Martin, Francis L., Castellino, Robert C., Carpenter, David O., Valverde, Mahara, Christopher, Joseph A., Kimryn Rathmell, W., Ryeom, Sandra, Cruickshanks, Nichola, Koch, Daniel C., Ponce-Cusi, Richard, Heneberg, Petr, Brown, Dustin G., Dormoy, Valérian, Gilbertson, Michael, Langie, Sabine A.S., Koturbash, Igor, Otsuki, Takemi, Naus, Christian C., Mehta, Rekha, Chen, Zhenbang, Ostrosky-Wegman, Patricia, Massfelder, Thierry, Zhou, Binhua P., McCawley, Lisa J., Harris, Shelley A., Casey, Stephanie C., Xia, Menghang, Romano, Maria Fiammetta, Whitfield, Jonathan R., Laird, Dale W., Li, Lin, Dong, Chenfang, Brooks Robey, R., Pavanello, Sofia, Ratovitski, Edward, Roman, Jesse, Lleonart, Matilde, Vondráček, Jan, Narayanan, Kannan Badri, Marignani, Paola A., Brunborg, Gunnar, Laconi, Ezio, Wise, John Pierce, Nangami, Gladys, Marongiu, Fabio, Vaccari, Monica, Berg, Arthur, Jian, Le, Curran, Colleen S., Moon, Eun Yi, Wise, Sandra S., de Cerain Salsamendi, Adela Lopez, Yasaei, Hemad, Forte, Stefano, Krishnakumar, P. K., Thompson, Patricia, Zhang, Luoping, Raju, Jayadev, Lasfar, Ahmed, Palorini, Roberta, Mondello, Chiara, Romano, Simona, Memeo, Lorenzo, Andrade-Vieira, Rafaela, Salem, Hosni K., Karamouzis, Michalis V., Dent, Paul, Blanco-Aparicio, Carmen, Baglole, Carolyn J., Kondoh, Hiroshi, Wagemaker, Gerard, Decker, William K., Cheng, Qiang Shawn, Di Fiore, Riccardo, Hultman, Tove, Ali, Abdul Manaf, Kleinstreuer, Nicole, Luanpitpong, Sudjit, Gulliver, Linda, Salzberg, Anna C., D'Abronzo, Leandro S., Chapellier, Marion, Yedjou, Clement, Kirsch-Volders, Micheline, Guarnieri, Tiziana, Nahta, Rita, Ward, Andrew, Leyns, Luc, Cohen-Solal, Karine A., Hsu, Chia Wen, Lin, Liang Tzung, Chen, Tao, Corsini, Emanuela, Maguer-Satta, Veronique, Papagerakis, Silvana, Williams, Marc A., Roy, Rabindra, Williams, Graeme, Sinha, Ranjeet K., Roy, Debasish, Klaunig, James E., Singh, Neetu, Kuemmerle, Nancy B., Park, Hyun Ho, Barclay, Barry J., Bisson, William H., Vermeulen, Louis, Soucek, Laura, Khatami, Mahin, Sanderson, Thomas, Koppen, Gudrun, Darbre, Philippa, Ahmed, Nuzhat, Amedei, Amedeo, Dornetshuber-Fleiss, Rita, Al-Mulla, Fahd, Olsen, Ann Karin, Luqmani, Yunus, Hu, Zhiwei, Azqueta, Amaya, Leung, Po Sing, Moorwood, Kim, and Colacci, Annamaria
- Subjects
1. No poverty ,3. Good health - Abstract
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
27. Prospects for development of a vaccine against HIV-related disorders
- Author
-
Matthews, Thomas J., primary, Kim Lyerly, H., additional, Weinhold, Kent J., additional, Langlois, A.J., additional, Putney, Scott D., additional, and Bolognesi, Dani P., additional
- Published
- 1987
- Full Text
- View/download PDF
28. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead
- Author
-
Dustin G. Brown, Tove Hultman, Judith Weisz, H. Kim Lyerly, Paola A. Marignani, Ann-Karin Olsen, Rabindra Roy, Kim Moorwood, Masoud H. Manjili, Monica Vaccari, Jesse Roman, Hasiah Ab Hamid, Kalan R. Prudhomme, Periyadan K. Krishnakumar, Chenfang Dong, Tiziana Guarnieri, Leandro S. D'Abronzo, Gloria M. Calaf, Amelia K Charles, Emanuela Corsini, Yunus A. Luqmani, Graeme Williams, Louis Vermeulen, Pankaj Vadgama, Sarah N Bay, Véronique Maguer-Satta, Sabine A. S. Langie, Christian C. Naus, Le Jian, Gladys N. Nangami, Lorenzo Memeo, Stephanie C. Casey, Thomas Sanderson, Takemi Otsuki, Nichola Cruickshanks, William H. Bisson, Sudjit Luanpitpong, Jonathan Whitfield, Ahmed Lasfar, Yon Rojanasakul, A. Ivana Scovassi, Shelley A. Harris, Ferdinando Chiaradonna, Richard Ponce-Cusi, Gregory T. Wolf, Valérian Dormoy, Roslida Abd Hamid, Hyun Ho Park, Matilde E. Lleonart, William K. Decker, Maria Romano, Leroy Lowe, Fabio Marongiu, Jan Vondráček, Chiara Mondello, Luc Leyns, Josiah Ochieng, Pratima Nangia-Makker, Edward A. Ratovitski, Zhiwei Hu, Jayadev Raju, Hemad Yasaei, Rafaela Andrade-Vieira, Jordan Woodrick, Hideko Sone, Harini Krishnan, W. Kimryn Rathmell, Andrew Collins, Luoping Zhang, Barry J. Barclay, Amaya Azqueta, Laura Soucek, Marc A. Williams, David O. Carpenter, Roberta Palorini, Rita Nahta, Juan Fernando Martinez-Leal, Firouz Darroudi, Rita Dornetshuber-Fleiss, James E. Klaunig, Elizabeth P. Ryan, Qiang Shawn Cheng, Arthur Berg, Andrew Ward, Gudrun Koppen, Tao Chen, Petr Heneberg, Michael Gilbertson, Amedeo Amedei, Sakina E. Eltom, Ezio Laconi, Joseph Christopher, Hiroshi Kondoh, Neetu Singh, Danielle J Carlin, Marion Chapellier, Michalis V. Karamouzis, Rekha Mehta, Tae-Jin Lee, Annamaria Colacci, Venkata S. Sabbisetti, Mark Wade, Micheline Kirsch-Volders, Patricia Ostrosky-Wegman, Isabelle R. Miousse, Patricia A. Thompson, Philippa D. Darbre, Frederik J. van Schooten, Sofia Pavanello, Igor Koturbash, Binhua P. Zhou, Ranjeet Kumar Sinha, Anna C. Salzberg, Mahara Valverde, Fahd Al-Mulla, Julia Kravchenko, Nicole Kleinstreuer, Carolyn J. Baglole, Menghang Xia, Samira A. Brooks, Amancio Carnero, Gunnar Brunborg, Sandra S. Wise, Daniel C. Koch, John Pierce Wise, Rabeah Al-Temaimi, Laetitia Gonzalez, Lisa J. McCawley, R. Brooks Robey, Gary S. Goldberg, Thierry Massfelder, Linda S M Gulliver, Olugbemiga Ogunkua, Emilio Rojas, Eun-Yi Moon, Lin Li, Silvana Papagerakis, Nik van Larebeke, Adela Lopez de Cerain Salsamendi, Staffan Eriksson, Simona Romano, Dean W. Felsher, Paramita M. Ghosh, Karine A. Cohen-Solal, Paul Dent, Jun Sun, Carmen Blanco-Aparicio, Riccardo Di Fiore, Chia-Wen Hsu, Mahin Khatami, Kannan Badri Narayanan, Francis Martin, Colleen S. Curran, Dale W. Laird, William H. Goodson, Abdul Manaf Ali, Valerie Odero-Marah, Michael J. Gonzalez, Renza Vento, Liang Tzung Lin, Clement G. Yedjou, Hosni Salem, Hsue-Yin Hsu, Zhenbang Chen, Nuzhat Ahmed, Gerard Wagemaker, Sandra Ryeom, Stefano Forte, Debasish Roy, Nancy B. Kuemmerle, Robert C. Castellino, Po Sing Leung, Wilhelm Engström, National Institute of Environmental Health Sciences (US), Research Council of Norway, Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, Red Temática de Investigación Cooperativa en Cáncer (España), European Commission, Junta de Andalucía, Ministerio de Educación y Ciencia (España), Ministero dell'Istruzione, dell'Università e della Ricerca, University of Oslo, Regione Emilia Romagna, National Institutes of Health (US), Consejo Nacional de Ciencia y Tecnología (México), Associazione Italiana per la Ricerca sul Cancro, National Research Foundation of Korea, Ministry of Education, Science and Technology (South Korea), Fondo Nacional de Desarrollo Científico y Tecnológico (Chile), Ministry of Education, Culture, Sports, Science and Technology (Japan), Japan Science and Technology Agency, Ministry of Science and Technology (Taiwan), Arkansas Biosciences Institute, Czech Science Foundation, Fundación Fero, Swim Across America, American Cancer Society, Research Foundation - Flanders, Austrian Science Fund, Institut National de la Santé et de la Recherche Médicale (France), Natural Sciences and Engineering Research Council of Canada, Farmacologie en Toxicologie, RS: NUTRIM - R4 - Gene-environment interaction, Goodson, William H, Lowe, Leroy, Carpenter, David O, Gilbertson, Michael, Manaf Ali, Abdul, Lopez de Cerain Salsamendi, Adela, Lasfar, Ahmed, Carnero, Amancio, Azqueta, Amaya, Amedei, Amedeo, Charles, Amelia K, Collins, Andrew R, Ward, Andrew, Salzberg, Anna C, Colacci, Annamaria, Olsen, Ann Karin, Berg, Arthur, Barclay, Barry J, Zhou, Binhua P, Blanco Aparicio, Carmen, Baglole, Carolyn J, Dong, Chenfang, Mondello, Chiara, Hsu, Chia Wen, Naus, Christian C, Yedjou, Clement, Curran, Colleen S, Laird, Dale W, Koch, Daniel C, Carlin, Danielle J, Felsher, Dean W, Roy, Debasish, Brown, Dustin G, Ratovitski, Edward, Ryan, Elizabeth P, Corsini, Emanuela, Rojas, Emilio, Moon, Eun Yi, Laconi, Ezio, Marongiu, Fabio, Al Mulla, Fahd, Chiaradonna, Ferdinando, Darroudi, Firouz, Martin, Francis L, Van Schooten, Frederik J, Goldberg, Gary S, Wagemaker, Gerard, Nangami, Gladys N, Calaf, Gloria M, Williams, Graeme, Wolf, Gregory T, Koppen, Gudrun, Brunborg, Gunnar, Lyerly, H. Kim, Krishnan, Harini, Ab Hamid, Hasiah, Yasaei, Hemad, Sone, Hideko, Kondoh, Hiroshi, Salem, Hosni K, Hsu, Hsue Yin, Park, Hyun Ho, Koturbash, Igor, Miousse, Isabelle R, Scovassi, A. Ivana, Klaunig, James E, Vondráček, Jan, Raju, Jayadev, Roman, Jesse, Wise, John Pierce, Whitfield, Jonathan R, Woodrick, Jordan, Christopher, Joseph A, Ochieng, Josiah, Martinez Leal, Juan Fernando, Weisz, Judith, Kravchenko, Julia, Sun, Jun, Prudhomme, Kalan R, Narayanan, Kannan Badri, Cohen Solal, Karine A, Moorwood, Kim, Gonzalez, Laetitia, Soucek, Laura, Jian, Le, D'Abronzo, Leandro S, Lin, Liang Tzung, Li, Lin, Gulliver, Linda, Mccawley, Lisa J, Memeo, Lorenzo, Vermeulen, Loui, Leyns, Luc, Zhang, Luoping, Valverde, Mahara, Khatami, Mahin, Romano, MARIA FIAMMETTA, Chapellier, Marion, Williams, Marc A, Wade, Mark, Manjili, Masoud H, Lleonart, Matilde E, Xia, Menghang, Gonzalez, Michael J, Karamouzis, Michalis V, Kirsch Volders, Micheline, Vaccari, Monica, Kuemmerle, Nancy B, Singh, Neetu, Cruickshanks, Nichola, Kleinstreuer, Nicole, van Larebeke, Nik, Ahmed, Nuzhat, Ogunkua, Olugbemiga, Krishnakumar, P. K, Vadgama, Pankaj, Marignani, Paola A, Ghosh, Paramita M, Ostrosky Wegman, Patricia, Thompson, Patricia A, Dent, Paul, Heneberg, Petr, Darbre, Philippa, Sing Leung, Po, Nangia Makker, Pratima, Cheng, Qiang Shawn, Robey, R. Brook, Al Temaimi, Rabeah, Roy, Rabindra, Andrade Vieira, Rafaela, Sinha, Ranjeet K, Mehta, Rekha, Vento, Renza, Di Fiore, Riccardo, Ponce Cusi, Richard, Dornetshuber Fleiss, Rita, Nahta, Rita, Castellino, Robert C, Palorini, Roberta, Abd Hamid, Roslida, Langie, Sabine A. S, Eltom, Sakina E, Brooks, Samira A, Ryeom, Sandra, Wise, Sandra S, Bay, Sarah N, Harris, Shelley A, Papagerakis, Silvana, Romano, Simona, Pavanello, Sofia, Eriksson, Staffan, Forte, Stefano, Casey, Stephanie C, Luanpitpong, Sudjit, Lee, Tae Jin, Otsuki, Takemi, Chen, Tao, Massfelder, Thierry, Sanderson, Thoma, Guarnieri, Tiziana, Hultman, Tove, Dormoy, Valérian, Odero Marah, Valerie, Sabbisetti, Venkata, Maguer Satta, Veronique, Rathmell, W. Kimryn, Engström, Wilhelm, Decker, William K, Bisson, William H, Rojanasakul, Yon, Luqmani, Yunu, Chen, Zhenbang, Hu, Zhiwei, Goodson, W., Lowe, L., Carpenter, D., Gilbertson, M., Ali, A., de Cerain Salsamendi, A., Lasfar, A., Carnero, A., Azqueta, A., Amedei, A., Charles, A., Collins, A., Ward, A., Salzberg, A., Colacci, A., Olsen, A., Berg, A., Barclay, B., Zhou, B., Blanco-Aparicio, C., Baglole, C., Dong, C., Mondello, C., Hsu, C., Naus, C., Yedjou, C., Curran, C., Laird, D., Koch, D., Carlin, D., Felsher, D., Roy, D., Brown, D., Ratovitski, E., Ryan, E., Corsini, E., Rojas, E., Moon, E., Laconi, E., Marongiu, F., Al-Mulla, F., Chiaradonna, F., Darroudi, F., Martin, F., Van Schooten, F., Goldberg, G., Wagemaker, G., Nangami, G., Calaf, G., Williams, G., Wolf, G., Koppen, G., Brunborg, G., Kim Lyerly, H., Krishnan, H., Hamid, H., Yasaei, H., Sone, H., Kondoh, H., Salem, H., Hsu, H., Park, H., Koturbash, I., Miousse, I., Ivana Scovassi, A., Klaunig, J., Vondráček, J., Raju, J., Roman, J., Wise, J., Whitfield, J., Woodrick, J., Christopher, J., Ochieng, J., Martinez-Leal, J., Weisz, J., Kravchenko, J., Sun, J., Prudhomme, K., Narayanan, K., Cohen-Solal, K., Moorwood, K., Gonzalez, L., Soucek, L., Jian, L., D'Abronzo, L., Lin, L., Li, L., Gulliver, L., Mccawley, L., Memeo, L., Vermeulen, L., Leyns, L., Zhang, L., Valverde, M., Khatami, M., Romano, M., Chapellier, M., Williams, M., Wade, M., Manjili, M., Lleonart, M., Xia, M., Gonzalez, M., Karamouzis, M., Kirsch-Volders, M., Vaccari, M., Kuemmerle, N., Singh, N., Cruickshanks, N., Kleinstreuer, N., Van Larebeke, N., Ahmed, N., Ogunkua, O., Krishnakumar, P., Vadgama, P., Marignani, P., Ghosh, P., Ostrosky-Wegman, P., Thompson, P., Dent, P., Heneberg, P., Darbre, P., Leung, P., Nangia-Makker, P., Cheng, Q., Brooks Robey, R., Al-Temaimi, R., Roy, R., Andrade-Vieira, R., Sinha, R., Mehta, R., Vento, R., Di Fiore, R., Ponce-Cusi, R., Dornetshuber-Fleiss, R., Nahta, R., Castellino, R., Palorini, R., Hamid, R., Langie, S., Eltom, S., Brooks, S., Ryeom, S., Wise, S., Bay, S., Harris, S., Papagerakis, S., Romano, S., Pavanello, S., Eriksson, S., Forte, S., Casey, S., Luanpitpong, S., Lee, T., Otsuki, T., Chen, T., Massfelder, T., Sanderson, T., Guarnieri, T., Hultman, T., Dormoy, V., Odero-Marah, V., Sabbisetti, V., Maguer-Satta, V., Kimryn Rathmell, W., Engström, W., Decker, W., Bisson, W., Rojanasakul, Y., Luqmani, Y., Chen, Z., Hu, Z., Goodson, W.H., Carpenter, D.O., Ali, A.M., de Cerain Salsamendi, A.L., Charles, A.K., Collins, A.R., Salzberg, A.C., Olsen, A.-K., Barclay, B.J., Zhou, B.P., Baglole, C.J., Hsu, C.-W., Naus, C.C., Curran, C.S., Laird, D.W., Koch, D.C., Carlin, D.J., Felsher, D.W., Brown, D.G., Ryan, E.P., Moon, E.-Y., Martin, F.L., Van Schooten, F.J., Goldberg, G.S., Calaf, G.M., Wolf, G.T., Hamid, H.A., Salem, H.K., Hsu, H.-Y., Park, H.H., Miousse, I.R., Klaunig, J.E., Vondracek, J., Wise, J.P., Whitfield, J.R., Christopher, J.A., Martinez-Leal, J.F., Prudhomme, K.R., Narayanan, K.B., Cohen-Solal, K.A., D'Abronzo, L.S., Lin, L.-T., Mccawley, L.J., Romano, M.F., Williams, M.A., Manjili, M.H., Gonzalez, M.J., Karamouzis, M.V., Kuemmerle, N.B., Krishnakumar, P.K., Marignani, P.A., Ghosh, P.M., Leung, P.S., Cheng, Q.S., Sinha, R.K., Castellino, R.C., Hamid, R.A., Langie, S.A.S., Brooks, S.A., Wise, S.S., Bay, S.N., Harris, S.A., Casey, S.C., Lee, T.-J., Engstrom, W., Decker, W.K., Bisson, W.H., sans affiliation, Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA), Institut Armand Frappier (INRS-IAF), Institut National de la Recherche Scientifique [Québec] (INRS)-Réseau International des Instituts Pasteur (RIIP), We gratefully acknowledge the support of the National Institute of Health-National Institute of Environmental Health Sciences (NIEHS) conference grant travel support (R13ES023276), Glenn Rice, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA also deserves thanks for his thoughtful feedback and inputs on the manuscript, William H.Goodson III was supported by the California Breast Cancer Research Program, Clarence Heller Foundation and California Pacific Medical Center Foundation, Abdul M.Ali would like to acknowledge the financial support of the University of Sultan Zainal Abidin, Malaysia, Ahmed Lasfar was supported by an award from the Rutgers Cancer Institute of New Jersey, Ann-Karin Olsen and Gunnar Brunborg were supported by the Research Council of Norway (RCN) through its Centres of Excellence funding scheme (223268/F50), Amancio Carnero’s lab was supported by grants from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0306-2012), Matilde E. Lleonart was supported by a trienal project grant PI12/01104 and by project CP03/00101 for personal support. Amaya Azqueta would like to thank the Ministerio de Educacion y Ciencia (‘Juande la Cierva’ programme, 2009) of the Spanish Government for personal support, Amedeo Amedei was supported by the Italian Ministry of University and Research (2009FZZ4XM_002), and the University of Florence (ex60%2012), Andrew R.Collins was supported by the University of Oslo, Annamaria Colacci was supported by the Emilia-Romagna Region - Project ‘Supersite’ in Italy, Carolyn Baglole was supported by a salary award from the Fonds de recherche du Quebec-Sante (FRQ-S), Chiara Mondello’s laboratory is supported by Fondazione Cariplo in Milan, Italy (grant n. 2011-0370), Christian C.Naus holds a Canada Research Chair, Clement Yedjou was supported by a grant from the National Institutes of Health (NIH-NIMHD grant no. G12MD007581), Daniel C.Koch is supported by the Burroughs Wellcome Fund Postdoctoral Enrichment Award and the Tumor Biology Training grant: NIH T32CA09151, Dean W. Felsher would like to acknowledge the support of United States Department of Health and Human Services, NIH grants (R01 CA170378 PQ22, R01 CA184384, U54 CA149145, U54 CA151459, P50 CA114747 and R21 CA169964), Emilio Rojas would like to thank CONACyT support 152473, Ezio Laconi was supported by AIRC (Italian Association for Cancer Research, grant no. IG 14640) and by the Sardinian Regional Government (RAS), Eun-Yi Moon was supported by grants from the Public Problem-Solving Program (NRF-015M3C8A6A06014500) and Nuclear R&D Program (#2013M2B2A9A03051296 and 2010-0018545) through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education, Science and Technology (MEST) in Korea, Fahd Al-Mulla was supported by the Kuwait Foundation for the Advancement of Sciences (2011-1302-06), Ferdinando Chiaradonna is supported by SysBioNet, a grant for the Italian Roadmap of European Strategy Forum on Research Infrastructures (ESFRI) and by AIRC (Associazione Italiana Ricerca sul Cancro, IG 15364), Francis L.Martin acknowledges funding from Rosemere Cancer Foundation, he also thanks Lancashire Teaching Hospitals NHS trust and the patients who have facilitated the studies he has undertaken over the course of the last 10 years, Gary S.Goldberg would like to acknowledge the support of the New Jersey Health Foundation, Gloria M.Calaf was supported by Fondo Nacional de Ciencia y Tecnología (FONDECYT), Ministerio de Educación de Chile (MINEDUC), Universidad de Tarapacá (UTA), Gudrun Koppen was supported by the Flemish Institute for Technological Research (VITO), Belgium, Hemad Yasaei was supported from a triennial project grant (Strategic Award) from the National Centre for the Replacement, Refinement and Reduction (NC3Rs) of animals in research (NC.K500045.1 and G0800697), Hiroshi Kondoh was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Science and Technology Agency and by JST, CREST, Hsue-Yin Hsu was supported by the Ministry of Science and Technology of Taiwan (NSC93-2314-B-320-006 and NSC94-2314-B-320-002), Hyun Ho Park was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) of the Ministry of Education, Science and Technology (2012R1A2A2A01010870) and a grant from the Korea Healthcare Technology R&D project, Ministry of Health and Welfare, Republic of Korea (HI13C1449), Igor Koturbash is supported by the UAMS/NIH Clinical and Translational Science Award (UL1TR000039 and KL2TR000063) and the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000, Jan Vondráček acknowledges funding from the Czech Science Foundation (13-07711S), Jesse Roman thanks the NIH for their support (CA116812), John Pierce Wise Sr. and Sandra S.Wise were supported by National Institute of Environmental Health Sciences (ES016893 to J.P.W.) and the Maine Center for Toxicology and Environmental Health, Jonathan Whitfield acknowledges support from the FERO Foundation in Barcelona, Spain, Joseph Christopher is funded by Cancer Research UK and the International Journal of Experimental Pathology, Julia Kravchenko is supported by a philanthropic donation by Fred and Alice Stanback, Jun Sun is supported by a Swim Across America Cancer Research Award, Karine A.Cohen-Solal is supported by a research scholar grant from the American Cancer Society (116683-RSG-09-087-01-TBE), Laetitia Gonzalez received a postdoctoral fellowship from the Fund for Scientific Research–Flanders (FWO-Vlaanderen) and support by an InterUniversity Attraction Pole grant (IAP-P7-07), Laura Soucek is supported by grant #CP10/00656 from the Miguel Servet Research Contract Program and acknowledges support from the FERO Foundation in Barcelona, Spain, Liang-Tzung Lin was supported by funding from the Taipei Medical University (TMU101-AE3-Y19), Linda Gulliver is supported by a Genesis Oncology Trust (NZ) Professional Development Grant, and the Faculty of Medicine, University of Otago, Dunedin, New Zealand, Louis Vermeulen is supported by a Fellowship of the Dutch Cancer Society (KWF, UVA2011-4969) and a grant from the AICR (14–1164), Mahara Valverde would like to thank CONACyT support 153781, Masoud H. Manjili was supported by the office of the Assistant Secretary of Defense for Health Affairs (USA) through the Breast Cancer Research Program under Award No. W81XWH-14-1-0087 Neetu Singh was supported by grant #SR/FT/LS-063/2008 from the Department of Science and Technology, Government of India, Nicole Kleinstreuer is supported by NIEHS contracts (N01-ES 35504 and HHSN27320140003C), P.K. Krishnakumar is supported by the Funding (No. T.K. 11-0629) of King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia, Paola A.Marignani is supported by the Dalhousie Medical Research Foundation, The Beatrice Hunter Cancer Institute and CIHR and the Nova Scotia Lung Association, Paul Dent is the holder of the Universal Inc.Chair in Signal Transduction Research and is supported with funds from PHS grants from the NIH (R01-CA141704, R01-CA150214, R01-DK52825 and R01-CA61774), Petr Heneberg was supported by the Charles University in Prague projects UNCE 204015 and PRVOUK P31/2012, and by the Czech Science Foundation projects P301/12/1686 and 15-03834Y, Po Sing Leung was supported by the Health and Medical Research Fund of Food and Health Bureau, Hong Kong Special Administrative Region, Ref. No: 10110021, Qiang Cheng was supported in part by grant NSF IIS-1218712, R. Brooks Robey is supported by the United States Department of Veterans Affairs, Rabindra Roy was supported by United States Public Health Service Grants (RO1 CA92306, RO1 CA92306-S1 and RO1 CA113447), Rafaela Andrade-Vieira is supported by the Beatrice Hunter Cancer Research Institute and the Nova Scotia Health Research Foundation, Renza Vento was partially funded by European Regional Development Fund, European Territorial Cooperation 2007–13 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–13) and grants from the Italian Ministry of Education, University and Research (MIUR) ex-60%, 2007, Riccardo Di Fiore was a recipient of fellowship granted by European Regional Development Fund, European Territorial Cooperation 2007–2013 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–2013), Rita Dornetshuber-Fleiss was supported by the Austrian Science Fund (FWF, project number T 451-B18) and the Johanna Mahlke, geb.-Obermann-Stiftung, Roberta Palorini is supported by a SysBioNet fellowship, Roslida Abd Hamid is supported by the Ministry of Education, Malaysia-Exploratory Research Grant Scheme-Project no: ERGS/1-2013/5527165, Sabine A.S.Langie is the beneficiary of a postdoctoral grant from the AXA Research Fund and the Cefic-LRI Innovative Science Award 2013, Sakina Eltom is supported by NIH grant SC1CA153326, Samira A.Brooks was supported by National Research Service Award (T32 ES007126) from the National Institute of Environmental Health Sciences and the HHMI Translational Medicine Fellowship, Sandra Ryeom was supported by The Garrett B. Smith Foundation and the TedDriven Foundation, Thierry Massfelder was supported by the Institut National de la Santé et de la Recherche Médicale INSERM and Université de Strasbourg, Thomas Sanderson is supported by the Canadian Institutes of Health Research (CIHR, MOP-115019), the Natural Sciences and Engineering Council of Canada (NSERC, 313313) and the California Breast Cancer Research Program (CBCRP, 17UB-8703), Tiziana Guarnieri is supported by a grant from Fundamental Oriented Research (RFO) to the Alma Mater Studiorum University of Bologna, Bologna, Italy and thanks the Fondazione Cassa di Risparmio di Bologna and the Fondazione Banca del Monte di Bologna e Ravenna for supporting the Center for Applied Biomedical Research, S.Orsola-Malpighi University Hospital, Bologna, Italy, W.Kimryn Rathmell is supported by the V Foundation for Cancer Research and the American Cancer Society, William K.Decker was supported in part by grant RP110545 from the Cancer Prevention Research Institute of Texas, William H.Bisson was supported with funding from the NIH P30 ES000210, Yon Rojanasakul was supported with NIH grant R01-ES022968, Zhenbang Chen is supported by NIH grants (MD004038, CA163069 and MD007593), Zhiwei Hu is grateful for the grant support from an institutional start-up fund from The Ohio State University College of Medicine and The OSU James Comprehensive Cancer Center (OSUCCC) and a Seed Award from the OSUCCC Translational Therapeutics Program., Sans affiliation, Courcelles, Michel, Goodson, W, Lowe, L, Carpenter, D, Gilbertson, M, Ali, A, de Cerain Salsamendi, A, Lasfar, A, Carnero, A, Azqueta, A, Amedei, A, Charles, A, Collins, A, Ward, A, Salzberg, A, Colacci, A, Olsen, A, Berg, A, Barclay, B, Zhou, B, Blanco Aparicio, C, Baglole, C, Dong, C, Mondello, C, Hsu, C, Naus, C, Yedjou, C, Curran, C, Laird, D, Koch, D, Carlin, D, Felsher, D, Roy, D, Brown, D, Ratovitski, E, Ryan, E, Corsini, E, Rojas, E, Moon, E, Laconi, E, Marongiu, F, Al Mulla, F, Chiaradonna, F, Darroudi, F, Martin, F, Van Schooten, F, Goldberg, G, Wagemaker, G, Nangami, G, Calaf, G, Williams, G, Wolf, G, Koppen, G, Brunborg, G, Kim Lyerly, H, Krishnan, H, Hamid, H, Yasaei, H, Sone, H, Kondoh, H, Salem, H, Hsu, H, Park, H, Koturbash, I, Miousse, I, Ivana Scovassi, A, Klaunig, J, Vondráček, J, Raju, J, Roman, J, Wise, J, Whitfield, J, Woodrick, J, Christopher, J, Ochieng, J, Martinez Leal, J, Weisz, J, Kravchenko, J, Sun, J, Prudhomme, K, Narayanan, K, Cohen Solal, K, Moorwood, K, Gonzalez, L, Soucek, L, Jian, L, D'Abronzo, L, Lin, L, Li, L, Gulliver, L, Mccawley, L, Memeo, L, Vermeulen, L, Leyns, L, Zhang, L, Valverde, M, Khatami, M, Romano, M, Chapellier, M, Williams, M, Wade, M, Manjili, M, Lleonart, M, Xia, M, Gonzalez, M, Karamouzis, M, Kirsch Volders, M, Vaccari, M, Kuemmerle, N, Singh, N, Cruickshanks, N, Kleinstreuer, N, Van Larebeke, N, Ahmed, N, Ogunkua, O, Krishnakumar, P, Vadgama, P, Marignani, P, Ghosh, P, Ostrosky Wegman, P, Thompson, P, Dent, P, Heneberg, P, Darbre, P, Leung, P, Nangia Makker, P, Cheng, Q, Brooks Robey, R, Al Temaimi, R, Roy, R, Andrade Vieira, R, Sinha, R, Mehta, R, Vento, R, Di Fiore, R, Ponce Cusi, R, Dornetshuber Fleiss, R, Nahta, R, Castellino, R, Palorini, R, Hamid, R, Langie, S, Eltom, S, Brooks, S, Ryeom, S, Wise, S, Bay, S, Harris, S, Papagerakis, S, Romano, S, Pavanello, S, Eriksson, S, Forte, S, Casey, S, Luanpitpong, S, Lee, T, Otsuki, T, Chen, T, Massfelder, T, Sanderson, T, Guarnieri, T, Hultman, T, Dormoy, V, Odero Marah, V, Sabbisetti, V, Maguer Satta, V, Kimryn Rathmell, W, Engström, W, Decker, W, Bisson, W, Rojanasakul, Y, Luqmani, Y, Chen, Z, and Hu, Z
- Subjects
Cancer Research ,Carcinogenesis ,[SDV]Life Sciences [q-bio] ,METHOXYCHLOR-INDUCED ALTERATIONS ,Review ,Pharmacology ,MESH: Carcinogens, Environmental ,Carcinogenic synergies ,Chemical mixtures ,Neoplasms ,MESH: Animals ,MESH: Neoplasms ,Carcinogenesi ,Risk assessment ,Cancer ,ACTIVATED PROTEIN-KINASES ,Medicine (all) ,Low dose ,1. No poverty ,Cumulative effects ,BREAST-CANCER CELLS ,General Medicine ,Environmental exposure ,MESH: Carcinogenesis ,BIO/10 - BIOCHIMICA ,EPITHELIAL-MESENCHYMAL TRANSITION ,3. Good health ,[SDV] Life Sciences [q-bio] ,Environmental Carcinogenesis ,ESTROGEN-RECEPTOR-ALPHA ,Human ,MESH: Environmental Exposure ,ENDOCRINE-DISRUPTING CHEMICALS ,TARGETING TISSUE FACTOR ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,Prototypical chemical disruptors ,Exposure ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Environmental health ,medicine ,[SDV.EE.SANT] Life Sciences [q-bio]/Ecology, environment/Health ,Carcinogen ,Environmental carcinogenesis ,[SDV.EE.SANT]Life Sciences [q-bio]/Ecology, environment/Health ,MESH: Humans ,Animal ,POLYBROMINATED DIPHENYL ETHERS ,Environmental Exposure ,medicine.disease ,MESH: Hazardous Substances ,Carcinogens, Environmental ,MIGRATION INHIBITORY FACTOR ,VASCULAR ENDOTHELIAL-CELLS ,Hazardous Substance ,Neoplasm - Abstract
Goodson, William H. et al., © The Author 2015. Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/ mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology., We gratefully acknowledge the support of the National Institute of Health-National Institute of Environmental Health Sciences (NIEHS) conference grant travel support (R13ES023276); Glenn Rice, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA also deserves thanks for his thoughtful feedback and inputs on the manuscript; William H.Goodson III was supported by the California Breast Cancer Research Program, Clarence Heller Foundation and California Pacific Medical Center Foundation; Abdul M.Ali would like to acknowledge the financial support of the University of Sultan Zainal Abidin, Malaysia; Ahmed Lasfar was supported by an award from the Rutgers Cancer Institute of New Jersey; Ann-Karin Olsen and Gunnar Brunborg were supported by the Research Council of Norway (RCN) through its Centres of Excellence funding scheme (223268/F50), Amancio Carnero’s lab was supported by grants from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0306-2012); Matilde E. Lleonart was supported by a trienal project grant PI12/01104 and by project CP03/00101 for personal support. Amaya Azqueta would like to thank the Ministerio de Educacion y Ciencia (‘Juande la Cierva’ programme, 2009) of the Spanish Government for personal support; Amedeo Amedei was supported by the Italian Ministry of University and Research (2009FZZ4XM_002), and the University of Florence (ex60%2012); Andrew R.Collins was supported by the University of Oslo; Annamaria Colacci was supported by the Emilia-Romagna Region - Project ‘Supersite’ in Italy; Carolyn Baglole was supported by a salary award from the Fonds de recherche du Quebec-Sante (FRQ-S); Chiara Mondello’s laboratory is supported by Fondazione Cariplo in Milan, Italy (grant n. 2011-0370); Christian C.Naus holds a Canada Research Chair; Clement Yedjou was supported by a grant from the National Institutes of Health (NIH-NIMHD grant no. G12MD007581); Daniel C.Koch is supported by the Burroughs Wellcome Fund Postdoctoral Enrichment Award and the Tumor Biology Training grant: NIH T32CA09151; Dean W. Felsher would like to acknowledge the support of United States Department of Health and Human Services, NIH grants (R01 CA170378 PQ22, R01 CA184384, U54 CA149145, U54 CA151459, P50 CA114747 and R21 CA169964); Emilio Rojas would like to thank CONACyT support 152473, Ezio Laconi was supported by AIRC (Italian Association for Cancer Research, grant no. IG 14640) and by the Sardinian Regional Government (RAS); Eun-Yi Moon was supported by grants from the Public Problem-Solving Program (NRF-015M3C8A6A06014500) and Nuclear R&D Program (#2013M2B2A9A03051296 and 2010-0018545) through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education, Science and Technology (MEST) in Korea; Fahd Al-Mulla was supported by the Kuwait Foundation for the Advancement of Sciences (2011-1302-06); Ferdinando Chiaradonna is supported by SysBioNet, a grant for the Italian Roadmap of European Strategy Forum on Research Infrastructures (ESFRI) and by AIRC (Associazione Italiana Ricerca sul Cancro; IG 15364); Francis L.Martin acknowledges funding from Rosemere Cancer Foundation; he also thanks Lancashire Teaching Hospitals NHS trust and the patients who have facilitated the studies he has undertaken over the course of the last 10 years; Gary S.Goldberg would like to acknowledge the support of the New Jersey Health Foundation; Gloria M.Calaf was supported by Fondo Nacional de Ciencia y Tecnología (FONDECYT), Ministerio de Educación de Chile (MINEDUC), Universidad de Tarapacá (UTA); Gudrun Koppen was supported by the Flemish Institute for Technological Research (VITO), Belgium; Hemad Yasaei was supported from a triennial project grant (Strategic Award) from the National Centre for the Replacement, Refinement and Reduction (NC3Rs) of animals in research (NC.K500045.1 and G0800697); Hiroshi Kondoh was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Science and Technology Agency and by JST, CREST; Hsue-Yin Hsu was supported by the Ministry of Science and Technology of Taiwan (NSC93-2314-B-320-006 and NSC94-2314-B-320-002); Hyun Ho Park was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) of the Ministry of Education, Science and Technology (2012R1A2A2A01010870) and a grant from the Korea Healthcare Technology R&D project, Ministry of Health and Welfare, Republic of Korea (HI13C1449); Igor Koturbash is supported by the UAMS/NIH Clinical and Translational Science Award (UL1TR000039 and KL2TR000063) and the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000; Jan Vondráček acknowledges funding from the Czech Science Foundation (13-07711S); Jesse Roman thanks the NIH for their support (CA116812), John Pierce Wise Sr. and Sandra S.Wise were supported by National Institute of Environmental Health Sciences (ES016893 to J.P.W.) and the Maine Center for Toxicology and Environmental Health; Jonathan Whitfield acknowledges support from the FERO Foundation in Barcelona, Spain; Joseph Christopher is funded by Cancer Research UK and the International Journal of Experimental Pathology; Julia Kravchenko is supported by a philanthropic donation by Fred and Alice Stanback; Jun Sun is supported by a Swim Across America Cancer Research Award; Karine A.Cohen-Solal is supported by a research scholar grant from the American Cancer Society (116683-RSG-09-087-01-TBE); Laetitia Gonzalez received a postdoctoral fellowship from the Fund for Scientific Research–Flanders (FWO-Vlaanderen) and support by an InterUniversity Attraction Pole grant (IAP-P7-07); Laura Soucek is supported by grant #CP10/00656 from the Miguel Servet Research Contract Program and acknowledges support from the FERO Foundation in Barcelona, Spain; Liang-Tzung Lin was supported by funding from the Taipei Medical University (TMU101-AE3-Y19); Linda Gulliver is supported by a Genesis Oncology Trust (NZ) Professional Development Grant, and the Faculty of Medicine, University of Otago, Dunedin, New Zealand; Louis Vermeulen is supported by a Fellowship of the Dutch Cancer Society (KWF, UVA2011-4969) and a grant from the AICR (14–1164); Mahara Valverde would like to thank CONACyT support 153781; Masoud H. Manjili was supported by the office of the Assistant Secretary of Defense for Health Affairs (USA) through the Breast Cancer Research Program under Award No. W81XWH-14-1-0087 Neetu Singh was supported by grant #SR/FT/LS-063/2008 from the Department of Science and Technology, Government of India; Nicole Kleinstreuer is supported by NIEHS contracts (N01-ES 35504 and HHSN27320140003C); P.K. Krishnakumar is supported by the Funding (No. T.K. 11-0629) of King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia; Paola A.Marignani is supported by the Dalhousie Medical Research Foundation, The Beatrice Hunter Cancer Institute and CIHR and the Nova Scotia Lung Association; Paul Dent is the holder of the Universal Inc.Chair in Signal Transduction Research and is supported with funds from PHS grants from the NIH (R01-CA141704, R01-CA150214, R01-DK52825 and R01-CA61774); Petr Heneberg was supported by the Charles University in Prague projects UNCE 204015 and PRVOUK P31/2012, and by the Czech Science Foundation projects P301/12/1686 and 15-03834Y; Po Sing Leung was supported by the Health and Medical Research Fund of Food and Health Bureau, Hong Kong Special Administrative Region, Ref. No: 10110021; Qiang Cheng was supported in part by grant NSF IIS-1218712; R. Brooks Robey is supported by the United States Department of Veterans Affairs; Rabindra Roy was supported by United States Public Health Service Grants (RO1 CA92306, RO1 CA92306-S1 and RO1 CA113447); Rafaela Andrade-Vieira is supported by the Beatrice Hunter Cancer Research Institute and the Nova Scotia Health Research Foundation, Renza Vento was partially funded by European Regional Development Fund, European Territorial Cooperation 2007–13 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–13) and grants from the Italian Ministry of Education, University and Research (MIUR) ex-60%, 2007; Riccardo Di Fiore was a recipient of fellowship granted by European Regional Development Fund, European Territorial Cooperation 2007–2013 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–2013); Rita Dornetshuber-Fleiss was supported by the Austrian Science Fund (FWF, project number T 451-B18) and the Johanna Mahlke, geb.-Obermann-Stiftung; Roberta Palorini is supported by a SysBioNet fellowship; Roslida Abd Hamid is supported by the Ministry of Education, Malaysia-Exploratory Research Grant Scheme-Project no: ERGS/1-2013/5527165; Sabine A.S.Langie is the beneficiary of a postdoctoral grant from the AXA Research Fund and the Cefic-LRI Innovative Science Award 2013; Sakina Eltom is supported by NIH grant SC1CA153326; Samira A.Brooks was supported by National Research Service Award (T32 ES007126) from the National Institute of Environmental Health Sciences and the HHMI Translational Medicine Fellowship; Sandra Ryeom was supported by The Garrett B. Smith Foundation and the TedDriven Foundation; Thierry Massfelder was supported by the Institut National de la Santé et de la Recherche Médicale INSERM and Université de Strasbourg; Thomas Sanderson is supported by the Canadian Institutes of Health Research (CIHR; MOP-115019), the Natural Sciences and Engineering Council of Canada (NSERC; 313313) and the California Breast Cancer Research Program (CBCRP; 17UB-8703); Tiziana Guarnieri is supported by a grant from Fundamental Oriented Research (RFO) to the Alma Mater Studiorum University of Bologna, Bologna, Italy and thanks the Fondazione Cassa di Risparmio di Bologna and the Fondazione Banca del Monte di Bologna e Ravenna for supporting the Center for Applied Biomedical Research, S.Orsola-Malpighi University Hospital, Bologna, Italy; W.Kimryn Rathmell is supported by the V Foundation for Cancer Research and the American Cancer Society; William K.Decker was supported in part by grant RP110545 from the Cancer Prevention Research Institute of Texas; William H.Bisson was supported with funding from the NIH P30 ES000210; Yon Rojanasakul was supported with NIH grant R01-ES022968; Zhenbang Chen is supported by NIH grants (MD004038, CA163069 and MD007593); Zhiwei Hu is grateful for the grant support from an institutional start-up fund from The Ohio State University College of Medicine and The OSU James Comprehensive Cancer Center (OSUCCC) and a Seed Award from the OSUCCC Translational Therapeutics Program.
- Published
- 2015
29. Benzimidazole inhibitors from the Niclosamide chemotype inhibit Wnt/β-catenin signaling with selectivity over effects on ATP homeostasis.
- Author
-
Jr.Mook, Robert A., Ren, Xiu-Rong, Wang, Jiangbo, Piao, Hailan, Barak, Larry S., Kim Lyerly, H., and Chen, Wei
- Subjects
- *
BENZIMIDAZOLES , *ADENOSINE triphosphate , *HOMEOSTASIS , *WNT signal transduction , *DRUG design - Abstract
The Wnt signaling pathway plays a key role in organ and tissue homeostasis, and when dysregulated, can become a major underlying mechanism of disease, particularly cancer. We reported previously that the anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. To define Niclosamide’s mechanism of Wnt/β-catenin inhibition, and to improve its selectivity and pharmacokinetic properties as an anticancer treatment, we designed a novel class of benzimidazole inhibitors of Wnt/β-catenin signaling based on SAR studies of the Niclosamide salicylanilide chemotype. Niclosamide has multiple biological activities. To address selectivity in our design, we interrogated a protonophore SAR model and used the principle of conformational restriction to identify novel Wnt/β-catenin inhibitors with less effect on ATP cellular homeostasis. These studies led to the identification of 4-chloro-2-(5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl) phenol ( 4 ) and related derivatives with greater selectivity for Wnt/β-catenin signaling inhibition vs. differential effects on cellular ATP homeostasis. This is the first report that the Wnt signaling inhibitory activity of Niclosamide can be translated into a new chemical class and to show that its effects on ATP homeostasis can be separated from its inhibitory effects on Wnt signaling. These compounds could be useful tools to elucidate the mechanism of Niclosamide’s inhibition of Wnt signaling, and aid the discovery of inhibitors with improved pharmacologic properties to treat cancer and diseases in which Niclosamide has important biological activity. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
30. Benzimidazole inhibitors from the Niclosamide chemotype inhibit Wnt/β-catenin signaling with selectivity over effects on ATP homeostasis.
- Author
-
Mook RA Jr, Ren XR, Wang J, Piao H, Barak LS, Kim Lyerly H, and Chen W
- Subjects
- Benzimidazoles chemistry, Cell Line, Tumor, HEK293 Cells, Homeostasis, Humans, Niclosamide chemistry, Structure-Activity Relationship, Adenosine Triphosphate metabolism, Benzimidazoles pharmacology, Niclosamide pharmacology, Signal Transduction drug effects, Wnt Proteins metabolism, beta Catenin metabolism
- Abstract
The Wnt signaling pathway plays a key role in organ and tissue homeostasis, and when dysregulated, can become a major underlying mechanism of disease, particularly cancer. We reported previously that the anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. To define Niclosamide's mechanism of Wnt/β-catenin inhibition, and to improve its selectivity and pharmacokinetic properties as an anticancer treatment, we designed a novel class of benzimidazole inhibitors of Wnt/β-catenin signaling based on SAR studies of the Niclosamide salicylanilide chemotype. Niclosamide has multiple biological activities. To address selectivity in our design, we interrogated a protonophore SAR model and used the principle of conformational restriction to identify novel Wnt/β-catenin inhibitors with less effect on ATP cellular homeostasis. These studies led to the identification of 4-chloro-2-(5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl) phenol (4) and related derivatives with greater selectivity for Wnt/β-catenin signaling inhibition vs. differential effects on cellular ATP homeostasis. This is the first report that the Wnt signaling inhibitory activity of Niclosamide can be translated into a new chemical class and to show that its effects on ATP homeostasis can be separated from its inhibitory effects on Wnt signaling. These compounds could be useful tools to elucidate the mechanism of Niclosamide's inhibition of Wnt signaling, and aid the discovery of inhibitors with improved pharmacologic properties to treat cancer and diseases in which Niclosamide has important biological activity., (Copyright © 2017 Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.