7 results on '"Kirilenko B"'
Search Results
2. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes
- Author
-
Toh, H., primary, Yang, C., additional, Formenti, G., additional, Raja, K., additional, Yan, L., additional, Tracey, A., additional, Chow, W., additional, Howe, K., additional, Bergeron, L.A., additional, Zhang, G., additional, Haase, B., additional, Mountcastle, J., additional, Fedrigo, O., additional, Fogg, J., additional, Kirilenko, B., additional, Munegowda, C., additional, Hiller, M., additional, Jain, A., additional, Kihara, D., additional, Rhie, A., additional, Phillippy, A.M., additional, Swanson, S., additional, Jiang, P., additional, Clegg, D.O., additional, Jarvis, E.D., additional, Thomson, J.A., additional, Stewart, R., additional, Chaisson, M.J.P., additional, and Bukhman, Y.V., additional
- Published
- 2021
- Full Text
- View/download PDF
3. Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements.
- Author
-
Wirthlin ME, Schmid TA, Elie JE, Zhang X, Kowalczyk A, Redlich R, Shvareva VA, Rakuljic A, Ji MB, Bhat NS, Kaplow IM, Schäffer DE, Lawler AJ, Wang AZ, Phan BN, Annaldasula S, Brown AR, Lu T, Lim BK, Azim E, Clark NL, Meyer WK, Pond SLK, Chikina M, Yartsev MM, Pfenning AR, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, and Zhang X
- Subjects
- Animals, Chiroptera genetics, Chiroptera physiology, Chromatin metabolism, Larynx physiology, Epigenesis, Genetic, Genome, Amino Acid Sequence, Machine Learning, Vocalization, Animal physiology, Motor Cortex cytology, Motor Cortex physiology, Enhancer Elements, Genetic, Motor Neurons physiology, Gene Expression Regulation, Evolution, Molecular, Proteins genetics, Proteins metabolism, Eutheria genetics, Eutheria physiology
- Abstract
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat ( Rousettus aegyptiacus ) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.
- Published
- 2024
- Full Text
- View/download PDF
4. Evolutionary constraint and innovation across hundreds of placental mammals.
- Author
-
Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, Sullivan PF, Hindle AG, Andrews G, Armstrong JC, Bianchi M, Breit AM, Diekhans M, Fanter C, Foley NM, Goodman DB, Goodman L, Keough KC, Kirilenko B, Kowalczyk A, Lawless C, Lind AL, Meadows JRS, Moreira LR, Redlich RW, Ryan L, Swofford R, Valenzuela A, Wagner F, Wallerman O, Brown AR, Damas J, Fan K, Gatesy J, Grimshaw J, Johnson J, Kozyrev SV, Lawler AJ, Marinescu VD, Morrill KM, Osmanski A, Paulat NS, Phan BN, Reilly SK, Schäffer DE, Steiner C, Supple MA, Wilder AP, Wirthlin ME, Xue JR, Birren BW, Gazal S, Hubley RM, Koepfli KP, Marques-Bonet T, Meyer WK, Nweeia M, Sabeti PC, Shapiro B, Smit AFA, Springer MS, Teeling EC, Weng Z, Hiller M, Levesque DL, Lewin HA, Murphy WJ, Navarro A, Paten B, Pollard KS, Ray DA, Ruf I, Ryder OA, Pfenning AR, Lindblad-Toh K, and Karlsson EK
- Subjects
- Animals, Female, Humans, Conserved Sequence genetics, Genome, Human, Eutheria genetics, Evolution, Molecular
- Abstract
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
- Published
- 2023
- Full Text
- View/download PDF
5. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes.
- Author
-
Toh H, Yang C, Formenti G, Raja K, Yan L, Tracey A, Chow W, Howe K, Bergeron LA, Zhang G, Haase B, Mountcastle J, Fedrigo O, Fogg J, Kirilenko B, Munegowda C, Hiller M, Jain A, Kihara D, Rhie A, Phillippy AM, Swanson SA, Jiang P, Clegg DO, Jarvis ED, Thomson JA, Stewart R, Chaisson MJP, and Bukhman YV
- Subjects
- Humans, Animals, Haplotypes, Murinae, Genome, Genomics, Diabetes Mellitus, Type 2 genetics
- Abstract
Background: The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic., Results: We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse., Conclusions: Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
6. Vision-related convergent gene losses reveal SERPINE3 's unknown role in the eye.
- Author
-
Indrischek H, Hammer J, Machate A, Hecker N, Kirilenko B, Roscito J, Hans S, Norden C, Brand M, and Hiller M
- Subjects
- Animals, Blindness genetics, Blindness metabolism, Genome, Humans, Mammals genetics, Mammals metabolism, Mice genetics, Mice metabolism, Retina metabolism, Vision Disorders genetics, Vision Disorders metabolism, Zebrafish genetics, Zebrafish metabolism, Zebrafish Proteins genetics, Zebrafish Proteins metabolism, Eye Proteins genetics, Eye Proteins metabolism, Vision, Ocular genetics, Vision, Ocular physiology
- Abstract
Despite decades of research, knowledge about the genes that are important for development and function of the mammalian eye and are involved in human eye disorders remains incomplete. During mammalian evolution, mammals that naturally exhibit poor vision or regressive eye phenotypes have independently lost many eye-related genes. This provides an opportunity to predict novel eye-related genes based on specific evolutionary gene loss signatures. Building on these observations, we performed a genome-wide screen across 49 mammals for functionally uncharacterized genes that are preferentially lost in species exhibiting lower visual acuity values. The screen uncovered several genes, including SERPINE3 , a putative serine proteinase inhibitor. A detailed investigation of 381 additional mammals revealed that SERPINE3 is independently lost in 18 lineages that typically do not primarily rely on vision, predicting a vision-related function for this gene. To test this, we show that SERPINE3 has the highest expression in eyes of zebrafish and mouse. In the zebrafish retina, serpine3 is expressed in Müller glia cells, a cell type essential for survival and maintenance of the retina. A CRISPR-mediated knockout of serpine3 in zebrafish resulted in alterations in eye shape and defects in retinal layering. Furthermore, two human polymorphisms that are in linkage with SERPINE3 are associated with eye-related traits. Together, these results suggest that SERPINE3 has a role in vertebrate eyes. More generally, by integrating comparative genomics with experiments in model organisms, we show that screens for specific phenotype-associated gene signatures can predict functions of uncharacterized genes., Competing Interests: HI, JH, AM, NH, BK, JR, SH, CN, MB, MH No competing interests declared, (© 2022, Indrischek et al.)
- Published
- 2022
- Full Text
- View/download PDF
7. Molecular parallelism in fast-twitch muscle proteins in echolocating mammals.
- Author
-
Lee JH, Lewis KM, Moural TW, Kirilenko B, Borgonovo B, Prange G, Koessl M, Huggenberger S, Kang C, and Hiller M
- Subjects
- Amino Acid Sequence, Amino Acid Substitution, Animals, Chiroptera, Female, Gene Expression Regulation, Mice, Sequence Homology, Whales, Adaptation, Physiological, Echolocation physiology, Evolution, Molecular, Muscle Fibers, Fast-Twitch metabolism, Muscle Proteins genetics
- Abstract
Detecting associations between genomic changes and phenotypic differences is fundamental to understanding how phenotypes evolved. By systematically screening for parallel amino acid substitutions, we detected known as well as novel cases (Strc, Tecta, and Cabp2) of parallelism between echolocating bats and toothed whales in proteins that could contribute to high-frequency hearing adaptations. Our screen also showed that echolocating mammals exhibit an unusually high number of parallel substitutions in fast-twitch muscle fiber proteins. Both echolocating bats and toothed whales produce an extremely rapid call rate when homing in on their prey, which was shown in bats to be powered by specialized superfast muscles. We show that these genes with parallel substitutions ( Casq1 , Atp2a1 , Myh2 , and Myl1 ) are expressed in the superfast sound-producing muscle of bats. Furthermore, we found that the calcium storage protein calsequestrin 1 of the little brown bat and the bottlenose dolphin functionally converged in its ability to form calcium-sequestering polymers at lower calcium concentrations, which may contribute to rapid calcium transients required for superfast muscle physiology. The proteins that our genomic screen detected could be involved in the convergent evolution of vocalization in echolocating mammals by potentially contributing to both rapid Ca
2+ transients and increased shortening velocities in superfast muscles.- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.