18 results on '"Koppens, Frank H.L."'
Search Results
2. Valley-Hybridized Gate-Tunable 1D Exciton Confinement in MoSe2
- Author
-
Heithoff, Maximilian, Moreno, Álvaro, Torre, Iacopo, Feuer, Matthew S. G., Purser, Carola M., Andolina, Gian Marcello, Calajò, Giuseppe, Watanabe, Kenji, Taniguchi, Takashi, Kara, Dhiren M., Hays, Patrick, Tongay, Seth Ariel, Fal’ko, Vladimir I., Chang, Darrick, Atatüre, Mete, Reserbat-Plantey, Antoine, and Koppens, Frank H.L.
- Abstract
Controlling excitons at the nanoscale in semiconductor materials represents a formidable challenge in the quantum photonics and optoelectronics fields. Monolayers of transition metal dichalcogenides (TMDs) offer inherent 2D confinement and possess significant exciton binding energies, making them promising candidates for achieving electric-field-based confinement of excitons without dissociation. Exploiting the valley degree of freedom associated with these confined states further broadens the prospects for exciton engineering. Here, we show electric control of light polarization emitted from one-dimensional (1D) quantum-confined states in MoSe2. Building on previous reports of tunable trapping potentials and linearly polarized emission, we extend this understanding by demonstrating how nonuniform in-plane electric fields enable in situ control of these effects and highlight the role of gate-tunable valley hybridization in these localized states. Their polarization is entirely engineered through either the 1D confinement potential’s geometry or an out-of-plane magnetic field. Controlling nonuniform in-plane electric fields in TMDs enables control of the energy (up to five times its line width), polarization state (from circular to linear), and position of 1D confined excitonic states (5 nm V–1).
- Published
- 2024
- Full Text
- View/download PDF
3. Experimental signatures of the transition from acoustic plasmon to electronic sound in graphene
- Author
-
Barcons Ruiz, David, primary, Hesp, Niels C.H., additional, Herzig Sheinfux, Hanan, additional, Ramos Marimón, Carlos, additional, Maissen, Curdin Martin, additional, Principi, Alessandro, additional, Asgari, Reza, additional, Taniguchi, Takashi, additional, Watanabe, Kenji, additional, Polini, Marco, additional, Hillenbrand, Rainer, additional, Torre, Iacopo, additional, and Koppens, Frank H.L., additional
- Published
- 2023
- Full Text
- View/download PDF
4. Spatiotemporal Electron Microscopy of Phonon Polaritons in MoO3
- Author
-
Nahari, Harel, primary, Kurman, Yaniv, additional, Dahan, Raphael, additional, Adiv, Yuval, additional, Yannai, Michael, additional, Shenfux, Hanan Herzig, additional, Koppens, Frank H.L., additional, and Kaminer, Ido, additional
- Published
- 2023
- Full Text
- View/download PDF
5. Graphene Plasmonics
- Author
-
Koppens, Frank H.L., primary, Lundeberg, Mark B., additional, Polini, Marco, additional, Low, Tony, additional, and Avouris, Phaedon, additional
- Published
- 2017
- Full Text
- View/download PDF
6. Optical nano-imaging of gate-tunable graphene plasmons
- Author
-
Chen, Jianing, Badioli, Michela, Alonso-Gonzalez, Pablo, Thongrattanasiri, Sukosin, Huth, Florian, Osmond, Johann, Spasenovic, Marko, Centeno, Alba, Pesquera, Amaia, Godignon, Philippe, Elorza, Amaia Zurutuza, Camara, Nicolas, de Abajo, F. Javier Garcia, Hillenbrand, Rainer, and Koppens, Frank H.L.
- Subjects
Plasmons (Physics) -- Electric properties -- Optical properties ,Nanotechnology -- Research ,Graphene -- Optical properties -- Electric properties ,Imaging systems -- Methods -- Technology application ,Technology application ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons [...]
- Published
- 2012
- Full Text
- View/download PDF
7. Quantum Nanophotonics in Two-Dimensional Materials
- Author
-
Reserbat-Plantey, Antoine, Epstein, Itai, Torre, Iacopo, Costa, Antonio T., Gonçalves, P. A.D., Mortensen, N. Asger, Polini, Marco, Song, Justin C.W., Peres, Nuno M.R., Koppens, Frank H.L., Reserbat-Plantey, Antoine, Epstein, Itai, Torre, Iacopo, Costa, Antonio T., Gonçalves, P. A.D., Mortensen, N. Asger, Polini, Marco, Song, Justin C.W., Peres, Nuno M.R., and Koppens, Frank H.L.
- Abstract
The field of two-dimensional (2D) materials-based nanophotonics has been growing at a rapid pace, triggered by the ability to design nanophotonic systems with in situ control, unprecedented number of degrees of freedom, and to build material heterostructures from the bottom up with atomic precision. A wide palette of polaritonic classes have been identified, comprising ultraconfined optical fields, even approaching characteristic length-scales of a single atom. These advances have been a real boost for the emerging field of quantum nanophotonics, where the quantum mechanical nature of the electrons and polaritons and their interactions become relevant. Examples include quantum nonlocal effects, ultrastrong light-matter interactions, Cherenkov radiation, access to forbidden transitions, hydrodynamic effects, single-plasmon nonlinearities, polaritonic quantization, topological effects, and so on. In addition to these intrinsic quantum nanophotonic phenomena, 2D material systems can also be used as sensitive probes for the quantum properties of the material that carries the nanophotonics modes or quantum materials in its vicinity. Here, polaritons act as a probe for otherwise invisible excitations, for example, in superconductors, or as a new tool to monitor the existence of Berry curvature in topological materials and superlattice effects in twisted 2D materials. In this Perspective, we present an overview of the emergent field of 2D-material quantum nanophotonics and provide a future perspective on the prospects of both fundamental emergent phenomena and emergent quantum technologies, such as quantum sensing, single-photon sources, and quantum emitters manipulation. We address four main implications: (i) quantum sensing, featuring polaritons to probe superconductivity and explore new electronic transport hydrodynamic behaviors, (ii) quantum technologies harnessing single-photon generation, manipulation, and detection using 2D materials, (iii) polariton engineering
- Published
- 2021
8. Quantum surface-response of metals revealed by acoustic graphene plasmons
- Author
-
Gonçalves, P.A.D., Christensen, Thomas, Peres, Nuno M.R., Jauho, Antti-Pekka, Epstein, Itai, Koppens, Frank H.L., Soljačić, Marin, Mortensen, N. Asger, Gonçalves, P.A.D., Christensen, Thomas, Peres, Nuno M.R., Jauho, Antti-Pekka, Epstein, Itai, Koppens, Frank H.L., Soljačić, Marin, and Mortensen, N. Asger
- Abstract
A quantitative understanding of the electromagnetic response of materials is essential for the precise engineering of maximal, versatile, and controllable light-matter interactions. Material surfaces, in particular, are prominent platforms for enhancing electromagnetic interactions and for tailoring chemical processes. However, at the deep nanoscale, the electromagnetic response of electron systems is significantly impacted by quantum surface-response at material interfaces, which is challenging to probe using standard optical techniques. Here, we show how ultraconfined acoustic graphene plasmons in graphene-dielectric-metal structures can be used to probe the quantum surface-response functions of nearby metals, here encoded through the so-called Feibelman d-parameters. Based on our theoretical formalism, we introduce a concrete proposal for experimentally inferring the low-frequency quantum response of metals from quantum shifts of the acoustic graphene plasmons dispersion, and demonstrate that the high field confinement of acoustic graphene plasmons can resolve intrinsically quantum mechanical electronic length-scales with subnanometer resolution. Our findings reveal a promising scheme to probe the quantum response of metals, and further suggest the utilization of acoustic graphene plasmons as plasmon rulers with ångström-scale accuracy.
- Published
- 2021
9. Grating-Graphene Metamaterial as a Platform for Terahertz Nonlinear Photonics
- Author
-
Deinert, Jan-Christoph, primary, Alcaraz Iranzo, David, additional, Pérez, Raúl, additional, Jia, Xiaoyu, additional, Hafez, Hassan A., additional, Ilyakov, Igor, additional, Awari, Nilesh, additional, Chen, Min, additional, Bawatna, Mohammed, additional, Ponomaryov, Alexey N., additional, Germanskiy, Semyon, additional, Bonn, Mischa, additional, Koppens, Frank H.L., additional, Turchinovich, Dmitry, additional, Gensch, Michael, additional, Kovalev, Sergey, additional, and Tielrooij, Klaas-Jan, additional
- Published
- 2020
- Full Text
- View/download PDF
10. Tunable free-electron X-ray radiation from van der Waals materials
- Author
-
Shentcis, Michael, Budniak, Adam K., Shi, Xihang, Dahan, Raphael, Kurman, Yaniv, Kalina, Michael, Herzig Sheinfux, Hanan, Blei, Mark, Svendsen, Mark Kamper, Amouyal, Yaron, Tongay, Sefaattin, Thygesen, Kristian Sommer, Koppens, Frank H.L., Lifshitz, Efrat, García de Abajo, F. Javier, Wong, Liang Jie, Kaminer, Ido, Shentcis, Michael, Budniak, Adam K., Shi, Xihang, Dahan, Raphael, Kurman, Yaniv, Kalina, Michael, Herzig Sheinfux, Hanan, Blei, Mark, Svendsen, Mark Kamper, Amouyal, Yaron, Tongay, Sefaattin, Thygesen, Kristian Sommer, Koppens, Frank H.L., Lifshitz, Efrat, García de Abajo, F. Javier, Wong, Liang Jie, and Kaminer, Ido
- Abstract
Tunable sources of X-ray radiation are widely used for imaging and spectroscopy in fundamental science, medicine and industry. The growing demand for highly tunable, high-brightness laboratory-scale X-ray sources motivates research into new fundamental mechanisms of X-ray generation. Here, we demonstrate the ability of van der Waals materials to serve as a platform for tunable X-ray generation when irradiated by moderately relativistic electrons available, for example, from a transmission electron microscope. The radiation spectrum can be precisely controlled by tuning the acceleration voltage of the incident electrons, as well as by our proposed approach: adjusting the lattice structure of the van der Waals material. We present experimental results for both methods, observing the energy tunability of X-ray radiation from the van der Waals materials WSe2, CrPS4, MnPS3, FePS3, CoPS3 and NiPS3. Our findings demonstrate the concept of material design at the atomic level, using van der Waals heterostructures and other atomic superlattices, for exploring novel phenomena of X-ray physics.
- Published
- 2020
11. Tunable Free-electron X-ray Radiation From van der Waals Materials
- Author
-
Shentcis, Michael, primary, Budniak, Adam K., additional, Dahan, Raphael, additional, Kurman, Yaniv, additional, Shi, Xihang, additional, Kalina, Michael, additional, Sheinfux, Hanan Herzig, additional, Blei, Mark, additional, Svendsen, Mark Kamper, additional, Amouyal, Yaron, additional, Koppens, Frank. H.L., additional, Tongay, Sefaattin, additional, Thygesen, Kristian Sommer, additional, Lifshitz, Efrat, additional, de Abajo, Javier García, additional, Wong, Liang Jie, additional, and Kaminer, Ido, additional
- Published
- 2020
- Full Text
- View/download PDF
12. Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction
- Author
-
Castilla, Sebastián, primary, Terrés, Bernat, additional, Autore, Marta, additional, Viti, Leonardo, additional, Li, Jian, additional, Nikitin, Alexey Y., additional, Vangelidis, Ioannis, additional, Watanabe, Kenji, additional, Taniguchi, Takashi, additional, Lidorikis, Elefterios, additional, Vitiello, Miriam S., additional, Hillenbrand, Rainer, additional, Tielrooij, Klaas-Jan, additional, and Koppens, Frank H.L., additional
- Published
- 2019
- Full Text
- View/download PDF
13. Grating-Graphene Metamaterial as a Platform for Terahertz Nonlinear Photonics.
- Author
-
Deinert, Jan-Christoph, Alcaraz Iranzo, David, Pérez, Raúl, Jia, Xiaoyu, Hafez, Hassan A., Ilyakov, Igor, Awari, Nilesh, Chen, Min, Bawatna, Mohammed, Ponomaryov, Alexey N., Germanskiy, Semyon, Bonn, Mischa, Koppens, Frank H.L., Turchinovich, Dmitry, Gensch, Michael, Kovalev, Sergey, and Tielrooij, Klaas-Jan
- Published
- 2021
- Full Text
- View/download PDF
14. Highly sensitive, ultrafast photo-thermoelectric graphene THz detector
- Author
-
Tielrooij, Klaas-Jan, primary, Castilla, Sebastian, additional, Terres, Bernat, additional, Autore, Marta, additional, Viti, Leonardo, additional, Li, Jian, additional, Nikitin, Alexey, additional, Vitiello, Miriam S., additional, Hillenbrand, Rainer, additional, and Koppens, Frank H.L., additional
- Published
- 2018
- Full Text
- View/download PDF
15. Dissociation of two-dimensional excitons in monolayer WSe2
- Author
-
Massicotte, Mathieu, Vialla, Fabien, Schmidt, Peter, Lundeberg, Mark B., Latini, Simone, Haastrup, Sten, Danovich, Mark, Davydovskaya, Diana, Watanabe, Kenji, Taniguchi, Takashi, Fal'ko, Vladimir I., Thygesen, Kristian Sommer, Pedersen, Thomas G., Koppens, Frank H.L., Massicotte, Mathieu, Vialla, Fabien, Schmidt, Peter, Lundeberg, Mark B., Latini, Simone, Haastrup, Sten, Danovich, Mark, Davydovskaya, Diana, Watanabe, Kenji, Taniguchi, Takashi, Fal'ko, Vladimir I., Thygesen, Kristian Sommer, Pedersen, Thomas G., and Koppens, Frank H.L.
- Abstract
Two-dimensional (2D) semiconducting materials are promising building blocks for optoelectronic applications, many of which require efficient dissociation of excitons into free electrons and holes. However, the strongly bound excitons arising from the enhanced Coulomb interaction in these monolayers suppresses the creation of free carriers. Here, we identify the main exciton dissociation mechanism through time and spectrally resolved photocurrent measurements in a monolayer WSe2 p-n junction. We find that under static inplane electric field, excitons dissociate at a rate corresponding to the one predicted for tunnel ionization of 2D Wannier-Mott excitons. This study is essential for understanding the photoresponse of 2D semiconductors and offers design rules for the realization of efficient photodetectors, valley dependent optoelectronics, and novel quantum coherent phases.
- Published
- 2018
16. Self-Aligned Local Electrolyte Gating of 2D Materials for Mid-Infrared Photodetection
- Author
-
Peng, Cheng, primary, Efetov, Dmitri K., additional, Nanot, Sebastien, additional, Shiue, Ren-Jye, additional, Grosso, Gabriele, additional, Yang, Yafang, additional, Hempel, Marek, additional, Jarillo-Herrero, Pablo, additional, Kong, Jing, additional, Koppens, Frank H.L., additional, and Englund, Dirk, additional
- Published
- 2017
- Full Text
- View/download PDF
17. Dissociation of two-dimensional excitons in monolayer WSe2.
- Author
-
Massicotte, Mathieu, Vialla, Fabien, Schmidt, Peter, Lundeberg, Mark B., Latini, Simone, Haastrup, Sten, Danovich, Mark, Davydovskaya, Diana, Kenji Watanabe, Takashi Taniguchi, Fal’ko, Vladimir I., Thygesen, Kristian S., Pedersen, Thomas G., and Koppens, Frank H.L.
- Abstract
Two-dimensional (2D) semiconducting materials are promising building blocks for optoelectronic applications, many of which require efficient dissociation of excitons into free electrons and holes. However, the strongly bound excitons arising from the enhanced Coulomb interaction in these monolayers suppresses the creation of free carriers. Here, we identify the main exciton dissociation mechanism through time and spectrally resolved photocurrent measurements in a monolayer WSe
2 p–n junction. We find that under static inplane electric field, excitons dissociate at a rate corresponding to the one predicted for tunnel ionization of 2D Wannier–Mott excitons. This study is essential for understanding the photoresponse of 2D semiconductors and offers design rules for the realization of efficient photodetectors, valley dependent optoelectronics, and novel quantum coherent phases. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
18. Integration and electrical manipulation of single-photon sources in 2-dimensional devices
- Author
-
Ciancico, Carlotta, Koppens, Frank H.L., Reserbat-Plantey, Antoine, Universitat Politècnica de Catalunya. Institut de Ciències Fotòniques, and Koppens, Frank H. L.
- Subjects
Física [Àrees temàtiques de la UPC] - Abstract
Quantum nanophotonics aims at studying the interaction between matter and single photons at the nanoscale. Nanoscopic solid state light sources can be placed in near proximity to other photonic elements to engineer their environment and modify their behaviour by near-field effects. The use of quantum emitters guarantees on-demand single photons following a non-classical statistics, therefore allowing new types of phenomena at the nanoscale. The nanometer-sized single photon sources used in this thesis are stable, bright, narrow linewidth organic molecules. They are also scalable and reproducible, making them ideal for integration into a device as well as for tuning and sensing. In this thesis, we developed an original approach to explore near-field effects by combining ultranarrow linewidth quantum emitters with 2-dimensional materials. We present the experimental setup based on confocal microscopy at cryogenic temperatures allowing us to excite and collect emission from individual elements of the hybrid device. We first introduce a geometry of a device consisting of a capacitor where the 2-dimensional material is used as a transparent, non-invasive top electrode, deposited above a layer of polymer doped with quantum emitters. This configuration enables tuning of the single-photon emission by Stark shift over a range of 10^4 times the molecule's intrinsic linewidth. Dynamical modulation of the emission at high frequency (similar to the molecule's linewidth of approximately 100 MHz) is performed revealing interesting properties of the 2-dimensional electrode. Another geometry explored in this thesis is achieved by depositing doped nanocrystals on top a graphene field-effect transistor. We study the electrostatic behaviour of the device at different locations, observing anomalies in the Stark shift of the molecules' emission at the edge of the graphene device compared to the centre. We predict the saturation of atomic-scale defect states at the edge of graphene, as supported by our electrostatic model. A technique based on electron beam lithography of polymers for deterministic positioning 3D structures aligned on quantum emitters' location is also presented. La nanofotónica cuántica tiene como objetivo estudiar la interacción entre la materia y los fotones individuales a nanoescala. Las fuentes de luz de estado sólido nanoscópicas se pueden colocar muy cerca de otros elementos fotónicos para diseñar su entorno y modificar su comportamiento mediante efectos de campo cercano. El uso de emisores cuánticos garantiza fotones individuales bajo demanda siguiendo una estadística no clásica, permitiendo así nuevos tipos de fenómenos a nanoescala. Las fuentes de fotones individuales de tamaño nanométrico utilizadas en esta tesis son moléculas orgánicas estables, brillantes y de ancho de línea estrecho. También son escalables y reproducibles, lo que los hace ideales para la integración en un dispositivo, así como para la sintonización y la detección. En esta tesis, desarrollamos un enfoque original para explorar los efectos de campo cercano mediante la combinación de emisores cuánticos de ancho de línea ultra estrecho con materiales bidimensionales. Presentamos la configuración experimental basada en microscopía confocal a temperaturas criogénicas que nos permite excitar y recolectar emisiones de elementos individuales del dispositivo híbrido. Primero presentamos una geometría de un dispositivo que consiste en un capacitor donde el material bidimensional se usa como un electrodo superior transparente y no invasivo, depositado sobre una capa de polímero dopado con emisores cuánticos. Esta configuración permite el ajuste de la emisión de un solo fotón por el cambio de Stark en un rango de 10^4 veces el ancho de línea intrínseco de la molécula. La modulación dinámica de la emisión a alta frecuencia (similar al ancho de línea de la molécula de aproximadamente 100 MHz) se realiza revelando propiedades interesantes del electrodo bidimensional. Otra geometría explorada en esta tesis se logra depositando nanocristales dopados en la parte superior de un transistor de efecto de campo de grafeno. Estudiamos el comportamiento electrostático del dispositivo en diferentes ubicaciones, observando anomalías en el cambio Stark de la emisión de moléculas en el borde del dispositivo de grafeno en comparación con el centro. Predecimos la saturación de estados de defectos a escala atómica en el borde del grafeno, como lo apoya nuestro modelo electrostático. También se presenta una técnica basada en la litografía por haz de electrones de polímeros para el posicionamiento determinista de estructuras 3D alineadas en la ubicación de los emisores cuánticos. Fotònica
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.