1. Automatic defect detection in infrared thermal images of ancient polyptychs based on numerical simulation and a new efficient channel attention mechanism aided Faster R-CNN model
- Author
-
Xin Wang, Guimin Jiang, Jue Hu, Stefano Sfarra, Miranda Mostacci, Dimitrios Kouis, Dazhi Yang, Henrique Fernandes, Nicolas P. Avdelidis, Xavier Maldague, Yonggang Gai, and Hai Zhang
- Subjects
Efficient channel attention ,Faster R-CNN ,Defect detection ,Deep learning ,Infrared thermography ,Fine Arts ,Analytical chemistry ,QD71-142 - Abstract
Abstract In recent years, the preservation and conservation of ancient cultural heritage necessitate the advancement of sophisticated non-destructive testing methodologies to minimize potential damage to artworks. Therefore, this study aims to develop an advanced method for detecting defects in ancient polyptychs using infrared thermography. The test subjects are two polyptych samples replicating a 14th-century artwork by Pietro Lorenzetti (1280/85–1348) with varied pigments and artificially induced defects. To address these challenges, an automatic defect detection model is proposed, integrating numerical simulation and image processing within the Faster R-CNN architecture, utilizing VGG16 as the backbone network for feature extraction. Meanwhile, the model innovatively incorporates the efficient channel attention mechanism after the feature extraction stage, which significantly improves the feature characterization performance of the model in identifying small defects in ancient polyptychs. During training, numerical simulation is utilized to augment the infrared thermal image dataset, ensuring the accuracy of subsequent experimental sample testing. Empirical results demonstrate a substantial improvement in detection performance, compared with the original Faster R-CNN model, with the average precision at the intersection over union = 0.5 increasing to 87.3% and the average precision for small objects improving to 54.8%. These results highlight the practicality and effectiveness of the model, marking a significant progress in defect detection capability, providing a strong technical guarantee for the continuous conservation of cultural heritage, and offering directions for future studies.
- Published
- 2024
- Full Text
- View/download PDF