1. Localized f-electron magnetism in the semimetal Ce3Bi4Au3
- Author
-
Ajeesh, M. O., Kushwaha, S. K., Thomas, S. M., Thompson, J. D., Chan, M. K., Harrison, N., Tomczak, J. M., and Rosa, P. F. S.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Ce$_{3}$Bi$_{4}$Au$_{3}$ crystallizes in the same non-centrosymmetric cubic structure as the prototypical Kondo insulator Ce$_{3}$Bi$_{4}$Pt$_{3}$. Here we report the physical properties of Ce$_{3}$Bi$_{4}$Au$_{3}$ single crystals using magnetization, thermodynamic, and electrical-transport measurements. Magnetic-susceptibility and heat-capacity data reveal antiferromagnetic (AFM) order below $T_N=3.2$ K. The magnetic entropy $S_{\rm mag}$ reaches $R$ln2 slightly above $T_N$, which suggests localized $4f$-moments in a doublet ground state. Multiple field-induced magnetic transitions are observed at temperatures below $T_N$, which indicate a complex spin structure with competing interactions. Ce$_{3}$Bi$_{4}$Au$_{3}$ shows semimetallic behavior in electrical resistivity measurements in contrast to the majority of reported Cerium-based 343 compounds. Electrical-resistivity measurements under hydrostatic pressure reveal a slight enhancement of $T_N$ under pressures up to 2.3 GPa, which supports a scenario wherein Ce$_{3}$Bi$_{4}$Au$_{3}$ belongs to the far left of the Doniach phase diagram dominated by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Using realistic many-body simulations, we confirm the semi-metallic electronic structure of Ce$_{3}$Bi$_{4}$Au$_{3}$ and quantitatively reproduce its local moment behavior in the paramagnetic state., Comment: 10 pages, 10 figures
- Published
- 2023
- Full Text
- View/download PDF