Pinterić, Marko, Lazić, Predrag, Pustogow, Andrej, Ivek, Tomislav, Milat, Ognjen, Gumhalter, Branko, Čulo, Matija, Rivas Gongora, David, Kuveždić, Marko, Basletić, Mario, Korin-Hamzić, Bojana, Dressel, Martin, Tomić, Silvia, and Natasha Kirova
Molecular solids are characterized by strong electronic correlations which may give rise to charge locali-zation. Due to an odd number of electrons per unit cell they are also considered as Mott insulators. At ambient pressure and low temperatures the antiferromagnetic ordering sets in but if the frustration due to triangular arrangement of molecular pairs is high enough, magnetic ordering is suppressed and the quantum spin liquid (QSL) ground state is expected. Three organic Mott systems with different degrees of cor-relations [1] exhibit QSL ground state: (i) kappa-(BEDT-TTF)2Cu2(CN)3, (ii) kappa-(BEDT-TTF)2 Ag2(CN)3 and (iii) beta’-EtMe3[Pd((dmit)2]2 [2]. In all of them the electrodynamic response is anomalous [3-5] and its full understanding is missing primarily due to a difficulty to reconcile the idea of exotic spin-charge coupling [10] with the experimentally evidenced absence of any considerable charge imbalance [5, 11]. In this presen¬tation we show how the dielectric, transport, optical and structural measure¬ments combined with the state-of-the-art DFT calculations provide evidence for the ground state involving several quasi-degenerate electronic states. These states reflect a random domain structure due to inherent disorder in the non-conducting anions/cations in the nominally clean single crystals of all three systems. This disorder is coupled to triangular charge and spin arrangements which give rise to the relaxor dielectric response and hopping dc transport and symmetry reduction, and thus may favour the formation of QSL. Single crystals provided by: J. Schlueter, K. Miyagawa, K. Kanoda, T. Hiramatsu, Y. Yoshida, G. Saito and R. Kato. [1] A. Pustogow et al., submitted to Science Advances (2017). [2] Y. Shimizu et al., Phys.Rev.Lett. 91, 107001 (2003) ; Phys.Rev.Lett. 117, 107203 (2016) ; T.Itou et al., Phys.Rev.B 77, 104413 (2008). [3] S. Tomic and M. Dressel, Rep. Prog. Phys. 78, 096501 (2015). [4] M.Abdel-Jawad et al., Phys.Rev.B 82, 125119 (2010) ; Phys.Rev.B 88, 075139 (2013). [5] M. Pinteric, M. Culo, O. Milat, M. Basletic, B. Korin-Hamzic, E. Tafra, A. Hamzic, T. Ivek, T. Peterseim, K. Miyagawa, K. Kanoda, J. A. Schlueter, M. Dressel, and S. Tomic, Phys.Rev.B 90, 195139 (2014). ; M. Pinteric, T. Ivek, M. Culo, O. Milat, M .Basletic, B. Korin-Hamzic, E. Tafra, A. Hamzic, M. Dressel, and S. Tomic, Physica B 460, 202 (2015) ; M. Culo, E. Tafra, M. Basletic, S.Tomic, A. Hamzic, B. Korin-Hamzic, M. Dressel, J.A. Schlueter, Physica B 460, 208 (2015). ; M. Dressel, P. Lazic, A. Pustogow, E. Zhukova, B. Gorshunov, J. A. Schlueter, O. Milat, B.Gumhalter, and S. Tomic, Phys. Rev. B 93, 081201(R) (2016) ; M. Pinteric, P. Lazic, A. Pustogow, T. Ivek, M. Kuvezdic, O. Milat, B.Gumhalter, M. Basletic, M. Culo, B. Korin-Hamzic, A. Loehle, R. Huebner, M. Sanz Alonso, T. Hiramatsu, Y.Yoshida, G.Saito, M.Dressel, and S.Tomic, Phys. Rev. B 94, 161105(R) (2016) ; M. Pinteric, P. Lazic, A. Pustogow, T. Ivek, D. Rivas Gongora, O. Milat, B.Gumhalter, M. Culo, B. Korin-Hamzic, R. Kato, M. Dressel, and S.Tomic, to be submitted (2017). [10] C. Hotta, Phys.Rev.B 82, 241104 (2010) ; S. Ishihara, J.Phys.Soc.Jpn 79, 011010 (2010). [11] K. Sedlmeier et al., Phys. Rev. B 86, 245103 (2012).