1. Effects of SiNx refractive index and SiO2 thickness on polarization‐type potential‐induced degradation in front‐emitter n‐type crystalline‐silicon photovoltaic cell modules
- Author
-
Seira Yamaguchi, Kyotaro Nakamura, Taeko Semba, Keisuke Ohdaira, Kazuhiro Marumoto, Yoshio Ohshita, and Atsushi Masuda
- Subjects
acceleration test ,n‐type crystalline‐silicon solar cell ,passivated emitter and rear totally diffused cell ,photovoltaic module ,polarization‐type potential‐induced degradation ,reliability ,Technology ,Science - Abstract
Abstract This study investigated how the SiNx refractive index (RI) and SiO2 thickness, dox, of stacked SiNx/SiO2 passivation layers of the front p+emitters of n‐type crystalline‐silicon (c‐Si) photovoltaic (PV) cells affect their polarization‐type potential‐induced degradation (PID) behaviors. We prepared six n‐type c‐Si PV cells with an RI of 2.0 or 2.2 and with dox of 9, 2, or 1 nm. Then PV modules fabricated from the cells were subjected to PID tests during which a bias of −1000 V was applied to cells with respect to the front cover glass surface. For dox of 9 or 2 nm, rapid polarization‐type PID was observed, irrespective of the RI. However, for dox of 1 nm, the RI markedly affected the degradation behavior, and cells with an RI of 2.2 showed no degradation. These findings are attributable to carrier transport between the high RI (Si‐rich) SiNx and the c‐Si substrates, which can readily occur only when the SiO2 layer is sufficiently thin for electrons to tunnel through the SiO2 layer. These results are important for elucidating polarization‐type PID mechanisms and for developing preventive measures against polarization‐type PID.
- Published
- 2022
- Full Text
- View/download PDF