732 results on '"L, Giacomelli"'
Search Results
2. The effect of virtual reality interventions on reducing pain intensity in chronic pain patients: a systematic review.
- Author
-
L. Giacomelli, C. Martin Sölch, and K. Ledermann
- Published
- 2024
- Full Text
- View/download PDF
3. Recent progress of JT-60SA project toward plasma operation
- Author
-
H. Shirai, K. Takahashi, E. Di Pietro, D. Abate, W. Abdel Maksoud, H. Abe, N. Aiba, T. Abe, M. Akimitsu, J. Ayllon-Guerola, T. Arai, J.-F. Artaud, N. Asakura, N. Ashikawa, L. Balbinot, P. Barabaschi, O. Baulaigue, E. Belonohy, A. Belpane, W. Bin, F. Bombarda, T. Bolzonella, F. Bonne, M. Bonotto, J. Botija, J. Buermans, S. Cabrera-Pérez, A. Cardella, D. Carralero, L. Carraro, J. Cavalier, M. Cavinato, M. Chernyshova, S. Chiba, S. Clement-Lorenzo, V. Cocilovo, S. Coda, R. Coelho, I. Coffey, B. Collin, V. Corato, A. Cucchiaro, T. Czarski, M. Dairaku, S. Davis, C. Day, E. Dela Luna, G. De Tommasi, P. Decool, L. Di Pace, M. Dibon, G. Disset, F. D’Lsa, A. Ejiri, Y. Endo, N. Ezumi, G. Falchetto, A. Fassina, P. Fejoz, A. Ferro, W. Fietz, L. Figini, T. Fornal, G. Frello, T. Fujita, T. Fukuda, K. Fukui, M. Fukumoto, H. Funaba, M. Furukawa, S. Futatani, L. Gabellieri, E. Gaio, K. Galazka, J. Garcia, J. Garcia-Dominguez, J. Garcia-Lopez, M. Garcia-Munoz, L. Garzotti, F. Gasparini, S. Gharafi, L. Giacomelli, G. Ginoulhiac, G. Giruzzi, L. Giudicotti, J. Gonzalez-Martin, R. Guillén-González, N. Hajnal, S. Hall, K. Hamada, K. Hanada, M. Hanada, K. Hasegawa, S. Hatakeyama, V. Hauer, N. Hayashi, T. Hayashi, R. Heller, J. Hidalgo-Salaverri, S. Higashijima, J. Hinata, S. Hiranai, J. Hiratsuka, R. Hiwatari, C. Hoa, H. Homma, A. Honda, M. Honda, K. Hoshino, H. Hurzlmeier, M. Iafrati, K. Ibano, H. Ichige, M. Ichikawa, M. Ichimura, K. Ida, S. Ide, H. Idei, M. Iguchi, T. Iijima, S. Iio, R. Ikeda, Y. Ikeda, T. Imai, R. Imazawa, S. Inagaki, M. Inomoto, S. Inoue, A. Isayama, S. Ishida, Y. Ishii, M. Isobe, F. Janky, E. Joffrin, A. Jokinen, S. Kado, S. Kajita, K. Kajiwara, Y. Kamada, I. Kamata, A. Kaminaga, K. Kamiya, D. Kanapienyte, Y. Kashiwa, M. Kashiwagi, K. Katayama, Y. Kawamata, G. Kawamura, K. Kawano, Y. Kazakov, K. Kimura, F. Kin, M. Kisaki, S. Kitajima, K. Kiyono, K. Kizu, Y. Ko, K. Kobayashi, M. Kobayashi, S. Kobayashi, Ta. Kobayashi, To. Kobayashi, G. Kocsis, A. Kojima, S. Kokusen, M. Komata, K. Komuro, S. Konishi, A. Kovacsik, I. Ksiazek, M. Kubkowska, G. Kühner, M. Kuramochi, K. Kurihara, T. Kurki-Suonio, A.B. Kurniawan, T. Kuwata, B. Lacroix, V. Lamaison, A. Lampasi, P. Lang, P. Lauber, K. Lawson, Q. LeCoz, A. Louzguiti, R. Maekawa, T. Maekawa, S. Maeyama, G. Maffia, P. Maget, J. Mailloux, I. Maione, A. Maistrello, K. Malinowski, A. Mancini, G. Marchiori, J.-L. Marechal, V. Massaut, S. Masuzaki, R. Matoike, G. Matsunaga, S. Matsunaga, A. Matsuyama, Ch Mayri, M. Mattei, M. Medrano, A. Mele, I. Meyer, F. Michel, T. Minami, Y. Miyata, J. Miyazawa, Y. Miyo, T. Mizuuchi, K. Mogaki, J. Morales, P. Moreau, T. Morisaki, S. Morishima, S. Moriyama, A. Moro, H. Murakami, M. Murayama, S. Murakami, K. Nagasaki, O. Naito, N. Nakamura, S. Nakamura, T. Nakano, Y. Nakashima, V. Nardino, E. Narita, Y. Narushima, K. Natsume, S. Nemoto, R. Neu, S. Nicollet, M. Nishikawa, S. Nishimura, T. Nishitani, M. Nishiura, T. Nishiyama, M. Nocente, Y. Nobuta, L. Novello, F. Nunio, S. Ochoa, K. Ogawa, T. Ogawa, Y. Ogawa, S. Ohdachi, Y. Ohmori, N. Ohno, Y. Ohtani, K. Ohtsu, M. Ohzeki, T. Oishi, J. Okano, K. Okano, Y. Onishi, M. Osakabe, T. Oshima, V. Ostuni, A. Owada, M. Oya, Y. Oya, T. Ozeki, M.M. Parody Guzmán, R. Pasqualotto, S. Pelli, E. Perelli, E. Peretti, G. Phillips, C. Piccinni, L. Pigatto, A. Pironti, A. Pizzuto, B. Plöckl, G. Polli, J.-M. Poncet, P. Ponsot, G. Pucella, M. Puiatti, D. Radloff, V. Raimondi, F. Ramos, P. Rancsik, D. Ricci, S. Ricciarini, N. Richermoz, E. Rincon, A. Romano, P. Rossi, P. Roussel, G. Rubino, H. Saeki, A. Sagara, S. Sakakibara, H. Sakamoto, Miki Sakamoto, Mizu Sakamoto, Y. Sakamoto, A. Sakasai, S. Sakata, R. Sakurai, B. Salanon, A. Salmi, G. Sannazzaro, R. Sano, A. Sanpei, T. Sasajima, S. Sasaki, H. Sasao, F. Sato, M. Sato, T. Sato, M. Sawahata, A. Scherber, S. Scully, J. Segado-Fernandez, M. Seki, N. Seki, S. Seki, Y. Shibama, Y. Shibata, T. Shikama, K. Shimada, M. Shimono, J. Shinde, T. Shinya, K. Shinohara, J. Shiraishi, S. Soare, A. Soleto, Y. Someya, S. Sonoda, C. Sozzi, E. Streciwilk-Kowalska, H. Strobel, M. Sueoka, A. Sukegawa, S. Sumida, H. Suzuki, Ma Suzuki, Mi Suzuki, S. Suzuki, T. Suzuki, Y. Suzuki, J. Svoboda, T. Szabolics, T. Szepesi, Y. Takase, M. Takechi, K. Takeda, Y. Takeiri, H. Takenaga, C. Taliercio, N. Tamura, Hiro Tanaka, Hito Tanaka, K. Tanaka, Y. Tanaka, K. Tani, H. Tanigawa, M. Tardocchi, A. Terakado, M. Terakado, T. Terakado, B. Teuchner, B. Tilia, H. Tobari, H. Tobita, K. Tobita, K. Toi, N. Toida, H. Tojo, M. Tokitani, T. Tokuzawa, V. Tormarchio, M. Tomine, A. Torre, T. Totsuka, K. Tsuchiya, N. Tsujii, D. Tsuru, H. Tsutsui, M. Uchida, Y. Ueda, J. Uno, H. Urano, K. Usui, H. Utoh, M. Valisa, M. Vallar, R. Vallcorba-Carbonel, J.-C. Vallet, J. Varela, J. Vega, M. Verrecchia, L. Vieillard, F. Villone, P. Vincenzi, K. Wada, R. Wada, T. Wakatsuki, M. Wanner, F. Watanabe, K. Watanabe, S. Watanabe, T. Wauters, S. Wiesen, M. Wischmeier, M. Yagi, J. Yagyu, M. Yajima, S. Yamamoto, H. Yamanaka, K. Yamauchi, Y. Yamauchi, H. Yamazaki, K. Yamazaki, R. Yamazaki, S. Yamoto, S. Yanagi, K. Yanagihara, S. Yokooka, M. Yokoyama, T. Yokoyama, M. Yoshida, M. Yoshimura, N. Yoshizawa, K. Yuinawa, L. Zani, and P. Zito
- Subjects
JT-60SA ,superconducting tokamak ,risk mitigation measures ,integrated commissioning ,maintenance and enhancement ,international collaboration ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Superconducting (SC) tokamak JT-60SA plays an essential role in fusion research and development by supporting and complementing the ITER project, providing directions to the DEMO design activity and fostering next generation scientists and engineers. Since the short circuit incident at the terminal joints of equilibrium field coil #1 during the integrated commissioning (IC) in March 2021, both EU and JA implementing agencies (IAs) have examined how to ensure safe operation of JT-60SA by mitigating the risk of possible discharge occurrence inside the cryostat. Based on the experience of the global Paschen tests, the IAs have established a strategy of risk mitigation measures, which is a combination of (i) reinforcement of insulation, (ii) avoiding unnecessary voltage application to the coil systems and (iii) immediate de-energization of the coils when deteriorated vacuum conditions are detected. Thanks to the considerable efforts of the Integrated Project Team members, the IC restarted in May 2023. After confirmation of the SC state of the coil systems (TF, EF and CS), the coil energization test and the plasma operation phase 1 (OP-1) started. The first plasma was successfully achieved on 23 October 2023 with a limited value of voltage and current applied to the coils. The plasma configuration control was also confirmed with low plasma current and low auxiliary heating power conditions. Based on the IO–F4E–QST collaboration, activities of JT-60SA have been shared with the IO and provided an important lesson for ITER assembly and commissioning, and will provide an outstanding contribution to fusion research at large. After OP-1, maintenance & enhancement phase 1 (M/E-1) starts from January 2024, in which in-vessel components are installed, and heating and diagnostic systems are extensively upgraded to allow a high power heating experiment planned in OP-2. In order to make the best use of JT-60SA, a newly organized JT-60SA experiment team will refine the research plan for the future high heating power operation phase.
- Published
- 2024
- Full Text
- View/download PDF
4. Overview of T and D–T results in JET with ITER-like wall
- Author
-
C.F. Maggi, D. Abate, N. Abid, P. Abreu, O. Adabonyan, M. Afzal, I. Ahmad, M. Akhtar, R. Albanese, S. Aleiferis, E. Alessi, P. Aleynikov, J. Alguacil, J. Alhage, M. Ali, H. Allen, M. Allinson, M. Alonzo, E. Alves, R. Ambrosino, E. Andersson Sundén, P. Andrew, M. Angelone, C. Angioni, I. Antoniou, L. Appel, C. Appelbee, C. Aramunde, M. Ariola, G. Arnoux, G. Artaserse, J.-F. Artaud, W. Arter, V. Artigues, F.J. Artola, A. Ash, O. Asztalos, D. Auld, F. Auriemma, Y. Austin, L. Avotina, J. Ayllón, E. Aymerich, A. Baciero, L. Bähner, F. Bairaktaris, I. Balboa, M. Balden, N. Balshaw, V.K. Bandaru, J. Banks, A. Banon Navarro, C. Barcellona, O. Bardsley, M. Barnes, R. Barnsley, M. Baruzzo, M. Bassan, A. Batista, P. Batistoni, L. Baumane, B. Bauvir, L. Baylor, C. Bearcroft, P. Beaumont, D. Beckett, A. Begolli, M. Beidler, N. Bekris, M. Beldishevski, E. Belli, F. Belli, S. Benkadda, J. Bentley, E. Bernard, J. Bernardo, M. Bernert, M. Berry, L. Bertalot, H. Betar, M. Beurskens, P.G. Bhat, S. Bickerton, J. Bielecki, T. Biewer, R. Bilato, P. Bílková, G. Birkenmeier, R. Bisson, J.P.S. Bizarro, P. Blatchford, A. Bleasdale, V. Bobkov, A. Boboc, A. Bock, G. Bodnar, P. Bohm, L. Bonalumi, N. Bonanomi, D. Bonfiglio, X. Bonnin, P. Bonofiglo, J. Booth, D. Borba, D. Borodin, I. Borodkina, T.O.S.J. Bosman, C. Bourdelle, M. Bowden, I. Božičević Mihalić, S.C. Bradnam, B. Breizman, S. Brezinsek, D. Brida, M. Brix, P. Brown, D. Brunetti, M. Buckley, J. Buermans, H. Bufferand, P. Buratti, A. Burckhart, A. Burgess, A. Buscarino, A. Busse, D. Butcher, G. Calabrò, L. Calacci, R. Calado, R. Canavan, B. Cannas, M. Cannon, M. Cappelli, S. Carcangiu, P. Card, A. Cardinali, S. Carli, P. Carman, D. Carnevale, B. Carvalho, I.S. Carvalho, P. Carvalho, I. Casiraghi, F.J. Casson, C. Castaldo, J.P. Catalan, N. Catarino, F. Causa, M. Cavedon, M. Cecconello, L. Ceelen, C.D. Challis, B. Chamberlain, R. Chandra, C.S. Chang, A. Chankin, B. Chapman, P. Chauhan, M. Chernyshova, A. Chiariello, G.-C. Chira, P. Chmielewski, A. Chomiczewska, L. Chone, J. Cieslik, G. Ciraolo, D. Ciric, J. Citrin, Ł. Ciupinski, R. Clarkson, M. Cleverly, P. Coates, V. Coccorese, R. Coelho, J.W. Coenen, I.H. Coffey, A. Colangeli, L. Colas, J. Collins, S. Conroy, C. Contré, N.J. Conway, D. Coombs, P. Cooper, S. Cooper, L. Cordaro, C. Corradino, Y. Corre, G. Corrigan, D. Coster, T. Craciunescu, S. Cramp, D. Craven, R. Craven, G. Croci, D. Croft, K. Crombé, T. Cronin, N. Cruz, A. Cufar, A. Cullen, A. Dal Molin, S. Dalley, P. David, A. Davies, J. Davies, S. Davies, G. Davis, K. Dawson, S. Dawson, I. Day, G. De Tommasi, J. Deane, M. Dearing, M. De Bock, J. Decker, R. Dejarnac, E. Delabie, E. de la Cal, E. de la Luna, D. Del Sarto, A. Dempsey, W. Deng, A. Dennett, G.L. Derks, G. De Temmerman, F. Devasagayam, P. de Vries, P. Devynck, A. di Siena, D. Dickinson, T. Dickson, M. Diez, P. Dinca, T. Dittmar, L. Dittrich, J. Dobrashian, T. Dochnal, A.J.H. Donné, W. Dorland, S. Dorling, S. Dormido-Canto, R. Dotse, D. Douai, S. Dowson, R. Doyle, M. Dreval, P. Drews, G. Drummond, Ph. Duckworth, H.G. Dudding, R. Dumont, P. Dumortier, D. Dunai, T. Dunatov, M. Dunne, I. Ďuran, F. Durodié, R. Dux, T. Eade, E. Eardley, J. Edwards, T. Eich, A. Eksaeva, H. El-Haroun, R.D. Ellis, G. Ellwood, C. Elsmore, S. Emery, G. Ericsson, B. Eriksson, F. Eriksson, J. Eriksson, L.G. Eriksson, S. Ertmer, G. Evans, S. Evans, E. Fable, D. Fagan, M. Faitsch, D. Fajardo Jimenez, M. Falessi, A. Fanni, T. Farmer, I. Farquhar, B. Faugeras, S. Fazinić, N. Fedorczak, K. Felker, R. Felton, H. Fernandes, D.R. Ferreira, J. Ferreira, G. Ferrò, J. Fessey, O. Février, O. Ficker, A.R. Field, A. Figueiredo, J. Figueiredo, A. Fil, N. Fil, P. Finburg, U. Fischer, G. Fishpool, L. Fittill, M. Fitzgerald, D. Flammini, J. Flanagan, S. Foley, N. Fonnesu, M. Fontana, J.M. Fontdecaba, L. Fortuna, E. Fortuna-Zalesna, M. Fortune, C. Fowler, P. Fox, O. Franklin, E. Fransson, L. Frassinetti, R. Fresa, D. Frigione, T. Fülöp, M. Furseman, S. Gabriellini, D. Gadariya, S. Gadgil, K. Gál, S. Galeani, A. Galkowski, D. Gallart, M. Gambrioli, T. Gans, J. Garcia, M. García-Muñoz, L. Garzotti, J. Gaspar, R. Gatto, P. Gaudio, D. Gear, T. Gebhart, S. Gee, M. Gelfusa, R. George, S.N. Gerasimov, R. Gerru, G. Gervasini, M. Gethins, Z. Ghani, M. Gherendi, P.-I. Gherghina, F. Ghezzi, L. Giacomelli, C. Gibson, L. Gil, M.R. Gilbert, A. Gillgren, E. Giovannozzi, C. Giroud, G. Giruzzi, J. Goff, V. Goloborodko, R. Gomes, J.-F. Gomez, B. Gonçalves, M. Goniche, J. Gonzalez-Martin, A. Goodyear, S. Gore, G. Gorini, T. Görler, N. Gotts, E. Gow, J.P. Graves, J. Green, H. Greuner, E. Grigore, F. Griph, W. Gromelski, M. Groth, C. Grove, R. Grove, N. Gupta, S. Hacquin, L. Hägg, A. Hakola, M. Halitovs, J. Hall, C.J. Ham, M. Hamed, M.R. Hardman, Y. Haresawa, G. Harrer, J.R. Harrison, D. Harting, D.R. Hatch, T. Haupt, J. Hawes, N.C. Hawkes, J. Hawkins, S. Hazael, J. Hearmon, P. Heesterman, P. Heinrich, M. Held, W. Helou, O. Hemming, S.S. Henderson, R. Henriques, R.B. Henriques, D. Hepple, J. Herfindal, G. Hermon, J.C. Hillesheim, K. Hizanidis, A. Hjalmarsson, A. Ho, J. Hobirk, O. Hoenen, C. Hogben, A. Hollingsworth, S. Hollis, E. Hollmann, M. Hölzl, M. Hook, M. Hoppe, J. Horáček, N. Horsten, A. Horton, L.D. Horton, L. Horvath, S. Hotchin, Z. Hu, Z. Huang, E. Hubenov, A. Huber, V. Huber, T. Huddleston, G.T.A. Huijsmans, Y. Husain, P. Huynh, A. Hynes, D. Iglesias, M.V. Iliasova, M. Imríšek, J. Ingleby, P. Innocente, V. Ioannou-Sougleridis, N. Isernia, I. Ivanova-Stanik, E. Ivings, S. Jachmich, T. Jackson, A.S. Jacobsen, P. Jacquet, H. Järleblad, A. Järvinen, F. Jaulmes, N. Jayasekera, F. Jenko, I. Jepu, E. Joffrin, T. Johnson, J. Johnston, C. Jones, E. Jones, G. Jones, L. Jones, T.T.C. Jones, A. Joyce, M. Juvonen, A. Kallenbach, P. Kalnina, D. Kalupin, P. Kanth, A. Kantor, A. Kappatou, O. Kardaun, J. Karhunen, E. Karsakos, Ye.O. Kazakov, V. Kazantzidis, D.L. Keeling, W. Kelly, M. Kempenaars, D. Kennedy, K. Khan, E. Khilkevich, C. Kiefer, H.-T. Kim, J. Kim, S.H. Kim, D.B. King, D.J. Kinna, V.G. Kiptily, A. Kirjasuo, K.K. Kirov, A. Kirschner, T. Kiviniemi, G. Kizane, C. Klepper, A. Klix, G. Kneale, M. Knight, P. Knight, R. Knights, S. Knipe, U. Knoche, M. Knolker, M. Kocan, F. Köchl, G. Kocsis, J.T.W. Koenders, Y. Kolesnichenko, Y. Kominis, M. Kong, B. Kool, V. Korovin, S.B. Korsholm, B. Kos, D. Kos, M. Koubiti, Y. Kovtun, E. Kowalska-Strzęciwilk, K. Koziol, Y. Krasikov, A. Krasilnikov, V. Krasilnikov, M. Kresina, A. Kreter, K. Krieger, A. Krivska, U. Kruezi, I. Książek, H. Kumpulainen, B. Kurzan, S. Kwak, O.J. Kwon, B. Labit, M. Lacquaniti, A. Lagoyannis, L. Laguardia, A. Laing, V. Laksharam, N. Lam, H.T. Lambertz, B. Lane, M. Langley, E. Lascas Neto, E. Łaszyńska, K.D. Lawson, A. Lazaros, E. Lazzaro, G. Learoyd, C. Lee, K. Lee, S. Leerink, T. Leeson, X. Lefebvre, H.J. Leggate, J. Lehmann, M. Lehnen, D. Leichtle, F. Leipold, I. Lengar, M. Lennholm, E. Leon Gutierrez, L.A. Leppin, E. Lerche, A. Lescinskis, S. Lesnoj, L. Lewin, J. Lewis, J. Likonen, Ch. Linsmeier, X. Litaudon, E. Litherland-Smith, F. Liu, T. Loarer, A. Loarte, R. Lobel, B. Lomanowski, P.J. Lomas, J. Lombardo, R. Lorenzini, S. Loreti, V.P. Loschiavo, M. Loughlin, T. Lowe, C. Lowry, T. Luce, R. Lucock, T. Luda Di Cortemiglia, M. Lungaroni, C.P. Lungu, T. Lunt, V. Lutsenko, B. Lyons, J. Macdonald, E. Macusova, R. Mäenpää, H. Maier, J. Mailloux, S. Makarov, P. Manas, A. Manning, P. Mantica, M.J. Mantsinen, J. Manyer, A. Manzanares, Ph. Maquet, M. Maraschek, G. Marceca, G. Marcer, C. Marchetto, O. Marchuk, A. Mariani, G. Mariano, M. Marin, A. Marin Roldan, M. Marinelli, T. Markovič, L. Marot, C. Marren, S. Marsden, S. Marsen, J. Marsh, R. Marshall, L. Martellucci, A.J. Martin, C. Martin, R. Martone, S. Maruyama, M. Maslov, M. Mattei, G.F. Matthews, D. Matveev, E. Matveeva, A. Mauriya, F. Maviglia, M. Mayer, M.-L. Mayoral, S. Mazzi, C. Mazzotta, R. McAdams, P.J. McCarthy, P. McCullen, R. McDermott, D.C. McDonald, D. McGuckin, V. McKay, L. McNamee, A. McShee, D. Mederick, M. Medland, S. Medley, K. Meghani, A.G. Meigs, S. Meitner, S. Menmuir, K. Mergia, S. Mianowski, P. Middleton, J. Mietelski, K. Mikszuta-Michalik, D. Milanesio, E. Milani, E. Militello-Asp, F. Militello, J. Milnes, A. Milocco, S. Minucci, I. Miron, J. Mitchell, J. Mlynář, V. Moiseenko, P. Monaghan, I. Monakhov, A. Montisci, S. Moon, R. Mooney, S. Moradi, R.B. Morales, L. Morgan, F. Moro, J. Morris, T. Mrowetz, L. Msero, S. Munot, A. Muñoz-Perez, M. Muraglia, A. Murari, A. Muraro, B. N’Konga, Y.S. Na, F. Nabais, R. Naish, F. Napoli, E. Nardon, V. Naulin, M.F.F. Nave, R. Neu, S. Ng, M. Nicassio, D. Nicolai, A.H. Nielsen, S.K. Nielsen, D. Nina, C. Noble, C.R. Nobs, M. Nocente, H. Nordman, S. Nowak, H. Nyström, J. O’Callaghan, M. O’Mullane, C. O’Neill, C. Olde, H.J.C. Oliver, R. Olney, J. Ongena, G.P. Orsitto, A. Osipov, R. Otin, N. Pace, L.W. Packer, E. Pajuste, D. Palade, J. Palgrave, O. Pan, N. Panadero, T. Pandya, E. Panontin, A. Papadopoulos, G. Papadopoulos, G. Papp, V.V. Parail, A. Parsloe, K. Paschalidis, M. Passeri, A. Patel, A. Pau, G. Pautasso, R. Pavlichenko, A. Pavone, E. Pawelec, C. Paz-Soldan, A. Peacock, M. Pearce, I.J. Pearson, E. Peluso, C. Penot, K. Pepperell, A. Perdas, T. Pereira, E. Perelli Cippo, C. Perez von Thun, D. Perry, P. Petersson, G. Petravich, N. Petrella, M. Peyman, L. Pigatto, M. Pillon, S. Pinches, G. Pintsuk, C. Piron, A. Pironti, F. Pisano, R. Pitts, U. Planck, N. Platt, V. Plyusnin, M. Podesta, G. Pokol, F.M. Poli, O.G. Pompilian, M. Poradzinski, M. Porkolab, C. Porosnicu, G. Poulipoulis, A.S. Poulsen, I. Predebon, A. Previti, D. Primetzhofer, G. Provatas, G. Pucella, P. Puglia, K. Purahoo, O. Putignano, T. Pütterich, A. Quercia, G. Radulescu, V. Radulovic, R. Ragona, M. Rainford, P. Raj, M. Rasinski, D. Rasmussen, J. Rasmussen, J.J. Rasmussen, A. Raso, G. Rattá, S. Ratynskaia, R. Rayaprolu, M. Rebai, A. Redl, D. Rees, D. Réfy, R. Reichle, H. Reimerdes, B.C.G. Reman, C. Reux, S. Reynolds, D. Rigamonti, E. Righi, F.G. Rimini, J. Risner, J.F. Rivero-Rodriguez, C.M. Roach, J. Roberts, R. Robins, S. Robinson, D. Robson, S. Rode, P. Rodrigues, P. Rodriguez-Fernandez, S. Romanelli, J. Romazanov, E. Rose, C. Rose-Innes, R. Rossi, S. Rowe, D. Rowlands, C. Rowley, M. Rubel, G. Rubinacci, G. Rubino, M. Rud, J. Ruiz Ruiz, F. Ryter, S. Saarelma, A. Sahlberg, M. Salewski, A. Salmi, R. Salmon, F. Salzedas, F. Sanchez, I. Sanders, D. Sandiford, F. Sanni, O. Sauter, P. Sauvan, G. Schettini, A. Shevelev, A.A. Schekochihin, K. Schmid, B.S. Schmidt, S. Schmuck, M. Schneider, P.A. Schneider, N. Schoonheere, R. Schramm, D. Scoon, S. Scully, M. Segato, J. Seidl, L. Senni, J. Seo, G. Sergienko, M. Sertoli, S.E. Sharapov, R. Sharma, A. Shaw, R. Shaw, H. Sheikh, U. Sheikh, N. Shi, P. Shigin, D. Shiraki, G. Sias, M. Siccinio, B. Sieglin, S.A. Silburn, A. Silva, C. Silva, J. Silva, D. Silvagni, D. Simfukwe, J. Simpson, P. Sirén, A. Sirinelli, H. Sjöstrand, N. Skinner, J. Slater, T. Smart, R.D. Smirnov, N. Smith, P. Smith, T. Smith, J. Snell, L. Snoj, E.R. Solano, V. Solokha, C. Sommariva, K. Soni, M. Sos, J. Sousa, C. Sozzi, T. Spelzini, F. Spineanu, L. Spolladore, D. Spong, C. Srinivasan, G. Staebler, A. Stagni, I. Stamatelatos, M.F. Stamp, Ž. Štancar, P.A. Staniec, G. Stankūnas, M. Stead, B. Stein-Lubrano, A. Stephen, J. Stephens, P. Stevenson, C. Steventon, M. Stojanov, D.A. St-Onge, P. Strand, S. Strikwerda, C.I. Stuart, S. Sturgeon, H.J. Sun, S. Surendran, W. Suttrop, J. Svensson, J. Svoboda, R. Sweeney, G. Szepesi, M. Szoke, T. Tadić, B. Tal, T. Tala, P. Tamain, K. Tanaka, W. Tang, G. Tardini, M. Tardocchi, D. Taylor, A.S. Teimane, G. Telesca, A. Teplukhina, A. Terra, D. Terranova, N. Terranova, D. Testa, B. Thomas, V.K. Thompson, A. Thorman, A.S. Thrysoe, W. Tierens, R.A. Tinguely, A. Tipton, H. Todd, M. Tomeš, A. Tookey, P. Tsavalas, D. Tskhakaya, L.-P. Turică, A. Turner, I. Turner, M. Turner, M.M. Turner, G. Tvalashvili, A. Tykhyy, S. Tyrrell, A. Uccello, V. Udintsev, A. Vadgama, D.F. Valcarcel, A. Valentini, M. Valisa, M. Vallar, M. Valovic, M. Van Berkel, K.L. van de Plassche, M. van Rossem, D. Van Eester, J. Varela, J. Varje, T. Vasilopoulou, G. Vayakis, M. Vecsei, J. Vega, M. Veis, P. Veis, S. Ventre, M. Veranda, G. Verdoolaege, C. Verona, G. Verona Rinati, E. Veshchev, N. Vianello, E. Viezzer, L. Vignitchouk, R. Vila, R. Villari, F. Villone, P. Vincenzi, A. Vitins, Z. Vizvary, M. Vlad, I. Voldiner, U. Von Toussaint, P. Vondráček, B. Wakeling, M. Walker, R. Walker, M. Walsh, R. Walton, E. Wang, F. Warren, R. Warren, J. Waterhouse, C. Watts, T. Webster, M. Weiland, H. Weisen, M. Weiszflog, N. Wendler, A. West, M. Wheatley, S. Whetham, A. Whitehead, D. Whittaker, A. Widdowson, S. Wiesen, M. Willensdorfer, J. Williams, I. Wilson, T. Wilson, M. Wischmeier, A. Withycombe, D. Witts, A. Wojcik-Gargula, E. Wolfrum, R. Wood, R. Woodley, R. Worrall, I. Wyss, T. Xu, D. Yadykin, Y. Yakovenko, Y. Yang, V. Yanovskiy, R. Yi, I. Young, R. Young, B. Zaar, R.J. Zabolockis, L. Zakharov, P. Zanca, A. Zarins, D. Zarzoso Fernandez, K.-D. Zastrow, Y. Zayachuk, M. Zerbini, W. Zhang, B. Zimmermann, M. Zlobinski, A. Zocco, V.K. Zotta, M. Zuin, W. Zwingmann, and I. Zychor
- Subjects
magnetic fusion ,JET-ILW ,D–T ,tritium ,alpha particles ,fusion prediction ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
In 2021 JET exploited its unique capabilities to operate with T and D–T fuel with an ITER-like Be/W wall (JET-ILW). This second major JET D–T campaign (DTE2), after DTE1 in 1997, represented the culmination of a series of JET enhancements—new fusion diagnostics, new T injection capabilities, refurbishment of the T plant, increased auxiliary heating, in-vessel calibration of 14 MeV neutron yield monitors—as well as significant advances in plasma theory and modelling in the fusion community. DTE2 was complemented by a sequence of isotope physics campaigns encompassing operation in pure tritium at high T-NBI power. Carefully conducted for safe operation with tritium, the new T and D–T experiments used 1 kg of T (vs 100 g in DTE1), yielding the most fusion reactor relevant D–T plasmas to date and expanding our understanding of isotopes and D–T mixture physics. Furthermore, since the JET T and DTE2 campaigns occurred almost 25 years after the last major D–T tokamak experiment, it was also a strategic goal of the European fusion programme to refresh operational experience of a nuclear tokamak to prepare staff for ITER operation. The key physics results of the JET T and DTE2 experiments, carried out within the EUROfusion JET1 work package, are reported in this paper. Progress in the technological exploitation of JET D–T operations, development and validation of nuclear codes, neutronic tools and techniques for ITER operations carried out by EUROfusion (started within the Horizon 2020 Framework Programme and continuing under the Horizon Europe FP) are reported in (Litaudon et al Nucl. Fusion accepted), while JET experience on T and D–T operations is presented in (King et al Nucl. Fusion submitted).
- Published
- 2024
- Full Text
- View/download PDF
5. JET machine operations in T&D-T
- Author
-
The JET Operations Team (presented by D.B. King), E. Abdelrahman, A. Abdul Hamid, N. Abid, K. Abraham, O. Adabonyan, C. Adlam, M. Afzal, M. Akhtar, V. Aldred, S. Aldworth, S. Aleiferis, M. Ali, R. Alie, R. Allan, H. Allen, E. Alli, M. Allinson, P. Almond, J. Angus, K. Antcliffe, I. Antoniou, L. Appel, C. Appelbee, C. Aramunde, N. Archer, S. Aria, H. Arkuszynski, M. Arshad, G. Artaserse, A. Ash, C. Ashe, T. Aue, D. Auld, B. Austin, Y. Austin, C. Ayres, R.B. Morales, S. Baker, S. Bakes, I. Balboa, C. Balshaw, N. Balshaw, J. Banks, J. Banner, A. Barnard, M. Barnard, M. Baruzzo, C. Basagiannis, S. Bathe Hariyanandan, P. Batistoni, R. Baughan, P. Beaumont, D. Beckett, A. Begolli, M. Beldishevski, K. Bell, E. Belonohy, J. Bentley, J. Bernardo, M. Berry, J. Bhatt, S. Bickerton, J. Bielecki, W. Bird, D. Blackett, K. Blackman, S. Blake, P. Blatchford, A. Bleasdale, A. Boboc, J. Booth, P. Boulting, M. Bowden, C. Boyd, K. Boyd, R. Bracey, D. Brennan, A. Brett, M. Bright, M. Brix, I. Brooks, B. Brown, P. Brown, M. Brown, P. Brummitt, B. Viola, A. Buckingham, M. Buckley, J. Bumpass, M. Burford, A. Burgess, J. Burton-Sweeten, A. Busse, D. Butcher, P. Cahill, P. Camp, I. Campbell, R. Canavan, J. Cane, M. Cannon, N. Canterbury, A. Carberry, P. Card, M. Carlick, M. Carlo, P. Carman, A. Carruthers, S. Carter, I.S. Carvalho, P. Carvalho, F. Casson, D. Chalk, B. Chamberlain, P. Chauhan, A. Chow, A. Churchman, D. Ciric, M. Clark, J. Clarkson, R. Clarkson, T. Clayton, M. Cleverly, P. Coates, I. Coffey, J. Collins, S. Conroy, N.J. Conway, R. Conway, J. Cook, M. Cooke, D. Coombs, P. Cooper, S. Cooper, G. Corrigan, R. Cotterell, A. Coulson, M. Cox, S. Cox, S. Cramp, D. Craven, R. Craven, M. Crick, D. Croft, T. Cronin, Z. Cui, A. Cullen, R. Cumming, C. Cummings, A. Dal Molin, P. Dalgliesh, S. Dalley, A. Danquah, S. Davies, G. Davis, H. Dawson, K. Dawson, S. Dawson, I. Day, L. de Caires, E. de la Luna, K. Deakin, J. Deane, M. Dearing, A. Dennett, T. Dickson, J. Dobrashian, T. Dochnal, S. Dorling, D. Douai, S. Dowson, J. Drewitt, G. Drummond, P. Dumortier, R. Eade, R. Eastham, K. Eden, J. Edmond, J. Edwards, P. Edwards, H. Elamin, S. Elford, H. El-Haroun, P. Ellis, C. Elsmore, S. Emery, G. Evans, S. Evans, D. Fagan, T. Farmer, I. Farquhar, R. Felton, F. Ferner, J. Fessey, P. Finburg, G. Fishpool, L. Fittill, J. Flanagan, K. Flinders, S. Foley, M. Fontana, M. Fortune, J. Foster, C. Fowler, P. Fox, O. Franklin, R. Franklin, R. Fraser, S. French, M. Furseman, A. Gabbidon, L. Garcia, J. Garcia, M. Gardener, D. Gear, T. Gedling, S. Gee, P. Gell, R. George, S. Gerasimov, M. Gethins, Z. Ghani, L. Giacomelli, C. Gibson, V. Gilsenan, C. Giroud, R. Glen, J. Goff, C. Goodman, A. Goodyear, A. Gordon, S. Gore, S. Gosden, N. Gotts, E. Gow, W. Graham, G. Graham, M. Green, R. Gregory, R. Griffiths, T. Griffiths, F. Griph, C. Grundy, T. Grundy, D. Guard, D. Guest, C. Gurl, S. Hacquin, A. Hakola, K. Hammond, H. Harmer, P. Harper, S. Harris, D. Hart, D. Hattan, A. Haupt, J. Hawes, N. Hawkes, J. Hawkins, P. Hawkins, S. Hayes, S. Hazael, D. Heads, P. Heesterman, O. Hemming, R.B. Henriques, G. Hermon, G. Hewson, T. Hibberd, M. Hill, J. Hillesheim, I. Hirb, K. Ho, C. Hogben, A. Hollingsworth, S. Hollis, M. Hook, D. Hopley, N. Horsten, A. Horton, L.D. Horton, L. Horvath, S. Hotchin, Z. Huang, E. Hubenov, V. Huber, A. Huber, C. Huddart, T. Huddleston, T. Hunter, Y. Husain, A. Hynes, J. Ingleby, S. Ives, E. Ivings, S. Jackson, T. Jackson, P. Jacquet, N. Jayasekera, I. Jepu, D. Jezzard, E. Joffrin, R. Johnson, J. Johnston, C. Jones, E. Jones, G. Jones, L. Jones, S. Jones, T. Jones, M. Jones, A. Joyce, M. Juvonen, A. Kantor, A. Kappatou, G. Karajgikar, J. Karhunen, I. Karnowska-Paterski, E. Karsakos, G. Kaveney, G. Kay, D. Keeling, T. Keenan, R. Kelly, W. Kelly, D. Kennedy, R. Kennedy, O. Kent, K. Khan, D. King, D. Kinna, V. Kiptily, K. Kirov, G. Kneale, M. Knight, P. Knight, J. Knipe, R. Knipe, S. Knipe, P. Kochanski, D. Kos, M. Kovari, E. Kowalska-Strzęciwilk, N. Kraus, M. Kresina, B. Labit, A. Laing, V. Laksharam, N. Lam, B. Lane, C. Lane, T. Lavender, A. Lawson, K. Lawson, G. Learoyd, T. Leeson, X. Lefebvre, J. Lehmann, M. Lennholm, K. Lennon, E. Lerche, S. Lesnoj, E. Letellier, L. Lewin, J. Lewis, J. Li, G. Liddiard, E. Litherland-Smith, F. Liu, R. Lobel, J. Logan, P. Lomas, C. Long, U. Losada, C. Loveridge, T. Lowe, C. Lowry, R. Lucock, G. Lyons, J. Macdonald, P. Macheta, T. Madden, J. Maddock, C.F. Maggi, J. Mailloux, A. Manning, C. Manning, N. Mantel, A. Manzanares, S. Marsden, J. Marsh, R. Marshall, A. Martin, M. Maslov, G. Matthews, N. Mayfield, M. Mayoral, R. McAdams, L. McCafferty, P. McCullen, D. McDonald, A. McDonnell, D. McGuckin, T. McIver, V. McKay, R. McKean, L. McNamee, A. McShee, R. Meadows, D. Mederick, M. Medland, K. Meghani, A. Meigs, S. Menmuir, I. Merrigan, S. Mianowski, P. Middleton, C. Miles, J. Milnes, A. Milocco, J. Mitchell, P. Mitchell, P. Monaghan, I. Monakhov, P. Moody, R. Mooney, C. Moore, N. Mooring, L. Morgan, R. Morgan, J. Morris, O. Morton, S. Morton, P. Mulvana, S. Munot, R. Munro-Smith, K. Musgrave, R. Naish, N. Neethiraj, J. Neilson, A. Newman, S. Ng, M. Nicassio, K. Nicholls, M. Nightingale, C. Noble, R. Normington, C. Nygaard, J. O’Callaghan, R. Olney, B. O’Meara, M. O’Mullane, C. O’Neill, C. Opara, K. O’Rourke, J. Ottley, K. Otu, A. Owen, N. Pace, K. Palamartchouk, D. Paley, J. Palgrave, G. Papadopoulos, V. Parail, A. Parrott, A. Parsloe, L. Parsons, R. Parsons, A. Patel, J. Patel, A. Peacock, M. Pearce, T. Pearce, I. Pearson, J. Penzo, A. Perdas, T. Pereira, C. Perez Von Thun, D. Perry, N. Petrella, M. Peyman, N. Platt, M. Poradzinski, M. Porter, M. Porton, C. Powell, J. Pozzi, M. Price, L. Price, P. Puglia, D. Pulley, K. Purahoo, M. Rainford, A. Raj, S. Randhawa, S. Rapa, K. Ravisankar, C. Rayner, A. Read, C. Reux, S. Reynolds, V. Riccardo, L. Richiusa, D. Rigamonti, F. Rimini, J. Roberts, R. Robins, S. Robinson, T. Robinson, D. Robson, S. Romanelli, F. Rose, C. Rose-Innes, D. Rouse, S. Rowe, N. Rowland, D. Rowlands, M. Rubel, K. Sabin, R. Salmon, H. Salter, A. Sanders, E. Sanders, I. Sanders, D. Sandiford, F. Sanni, R. Sarwar, R. Sayles, C. Scaysbrook, G. Scott, D. Scraggs, S. Scully, R. Sealey, E. Searle, M. Segato, M. Sertoli, C. Shanks, R. Sharma, A. Shaw, K. Sheahan, H. Sheikh, D. Shrestha, R. Siddiqui, S. Silburn, J. Silva, D. Simfukwe, J. Simpson, M. Sinclair, A. Sips, P. Sirén, S. Skeats, N. Skinner, B. Slade, J. Slater, T. Smart, G. Smith, J. Smith, N. Smith, P. Smith, T. Smith, F. P. Smith, J. Snell, K. Snelling, K. Soare, E. Solano, A. Spelzini, C. Srinivasan, Z. Stancar, P.A. Staniec, M. Stead, R. Steadman, L. Steel, D. Steele, A. Stephen, J. Stephens, L. Stevenson, P. Stevenson, C. Steventon, L. Sticklen, M. Stojanov, S. Strikwerda, C. Stuart, G. Stubbs, N. Studd, W. Studholme, H. Sun, S. Surendran, G. Szepesi, M. Szoke, H. Tan, A. Taylor, D. Taylor, K. Taylor, A. Thingore, B. Thomas, J. Thomas, A. Thorman, A. Tilley, A. Tipton, N. Tipton, H. Todd, P. Tonner, A. Tookey, M. Towndrow, M. Tsang, E. Tsitrone, I. Turner, M. Turner, G. Tvalashvili, S. Tyrrell, A. Vadgama, D. Valcarcel, Q. Van Der Westhuizen, J. Verdon, N. Vianello, A. Vittal, Z. Vizvary, B. Wakeling, M. Walker, R. Walker, T. Wall, M. Walsh, T. Walsh, J. Walters, J. Walton, R. Walton, S. Warder, F. Warren, R. Warren, J. Waterhouse, T. Webster, G. Wells, C. Wellstood, A. West, M. Wheatley, S. Whiffin, A. Whitehead, C. Whitehead, D. Whittaker, A. Widdowson, J. Wilcox, D. Wilkins, R. Wilkins, J. Williams, M. Williams, D. Willoughby, A. Wilson, I. Wilson, T. Wilson, M. Wischmeier, P. Wise, G. Withenshaw, A. Withycombe, D. Witts, J. Witts, R. Wood, L. Woodham, C. Woodley, J. Woodley, R. Woodley, B. Woods, S. Wray, T. Xu, I. Young, R. Young, K-D. Zastrow, Y. Zayachuk, and M. Zerbini
- Subjects
JET ,tritium ,operations ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
JET, the world’s largest operating tokamak with unique Be/W wall and tritium handling capability, completed a Deuterium-Tritium (D-T) campaign in 2021 (Maggi et al 29th Fusion Energy Conf. ) following a decade of preparatory experiments, dedicated enhancements, technical rehearsals and training (Horton et al 2016 Fusion Eng. Des. 109–111 925). Operation with tritium raises significant technical, safety and scientific challenges not encountered in standard protium or deuterium operation. This contribution describes the tritium operational requirements, pulses and technical preparations, new operating procedures, lessons learned and details on the achieved operational availability and performance. The preparation and execution of the recent JET tritium experiments benefitted from the previous experience in 1991 (Preliminary Tritium Experiment), 1997 (DTE1 campaign) and 2003 (Trace Tritium Campaigns) and consisted of the following five phases: technical rehearsals and scenario preparation, tritium commissioning, 100% tritium campaign, D-T campaign (DTE2), tritium clean-up. Following the clean-up JET resumed normal operation and is currently undertaking a further D-T campaign (DTE3).
- Published
- 2024
- Full Text
- View/download PDF
6. On the convergence of nonlinear averaging dynamics with three-body interactions on hypergraphs.
- Author
-
Emilio Cruciani, Emanuela L. Giacomelli, and Jinyeop Lee
- Published
- 2023
- Full Text
- View/download PDF
7. The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
- Author
-
J. Hobirk, C.D. Challis, A. Kappatou, E. Lerche, D. Keeling, D. King, S. Aleiferis, E. Alessi, C. Angioni, F. Auriemma, M. Baruzzo, É. Belonohy, J. Bernardo, A. Boboc, I.S. Carvalho, P. Carvalho, F.J. Casson, A. Chomiczewska, J. Citrin, I.H. Coffey, N.J. Conway, D. Douai, E. Delabie, B. Eriksson, J. Eriksson, O. Ficker, A.R. Field, M. Fontana, J.M. Fontdecaba, L. Frassinetti, D. Frigione, D. Gallart, J. Garcia, M. Gelfusa, Z. Ghani, L. Giacomelli, E. Giovannozzi, C. Giroud, M. Goniche, W. Gromelski, S. Hacquin, C. Ham, N.C. Hawkes, R.B. Henriques, J.C. Hillesheim, A. Ho, L. Horvath, I. Ivanova-Stanik, P. Jacquet, F. Jaulmes, E. Joffrin, H.T. Kim, V. Kiptily, K. Kirov, D. Kos, E. Kowalska-Strzeciwilk, H. Kumpulainen, K. Lawson, M. Lennholm, X. Litaudon, E. Litherland-Smith, P.J. Lomas, E. de la Luna, C.F. Maggi, J. Mailloux, M.J. Mantsinen, M. Maslov, G. Matthews, K.G. McClements, A.G. Meigs, S. Menmuir, A. Milocco, I.G. Miron, S. Moradi, R.B. Morales, S. Nowak, F. Orsitto, A. Patel, L. Piron, C. Prince, G. Pucella, E. Peluso, C. Perez von Thun, E. Rachlew, C. Reux, F. Rimini, S. Saarelma, P. A Schneider, S. Scully, M. Sertoli, S. Sharapov, A. Shaw, S. Silburn, A. Sips, P. Siren, C. Sozzi, E.R. Solano, Z. Stancar, G. Stankunas, C. Stuart, H.J. Sun, G. Szepesi, D. Valcarcel, M. Valisa, G. Verdoolaege, B. Viola, N. Wendler, M. Zerbini, and JET Contributors
- Subjects
magnetic fusion ,hybrid scenario ,Tritium ,D-T ,isotope effects ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge T _i gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
- Published
- 2023
- Full Text
- View/download PDF
8. The single crystal diamond-based diagnostic suite of the JET tokamak for 14 MeV neutron counting and spectroscopy measurements in DT plasmas
- Author
-
D. Rigamonti, A. Dal Molin, A. Muraro, M. Rebai, L. Giacomelli, G. Gorini, M. Nocente, E. Perelli Cippo, S. Conroy, G. Ericsson, J. Eriksson, V. Kiptily, Z. Ghani, Ž. Štancar, M. Tardocchi, and JET Contributors
- Subjects
nuclear diagnostics ,neutron spectroscopy ,single crystal diamond detectors ,tokamaks ,nuclear fusion diagnostics ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The Joint European Torus (JET) has recently conducted its second deuterium–tritium (DT) experimental campaign DTE2, providing unique opportunity for studying both physics and engineering aspects of nuclear fusion plasmas. This also allowed the exploitation of new diagnostics and technologies that were not available during the first JET DT campaign held in 1997. Among these new instruments, the enhancement projects of the JET nuclear diagnostics lead to the development and installation of synthetic single crystal diamond detectors along different collimated line of sights. This paper describes the single crystal diamond-based diagnostic suite of the JET tokamak and the enhanced 14 MeV neutron diagnostic capabilities in terms of neutron yield and high resolution neutron spectroscopy. The diamond characterization measurements and the calibration procedure at JET are shown, together with performance of the diamond based neutron spectrometer as 14 MeV neutron yield monitor which allows the separation of 2.5 MeV and 14 MeV neutrons in trace tritium plasmas. The first high-resolution 14 MeV neutron spectroscopy measurements in neutral beam injection-heated DT plasmas are presented, allowing thermal and non-thermal neutron component separation. Prospects for the diagnose of DT burning plasmas such as ITER and SPARC will be presented.
- Published
- 2023
- Full Text
- View/download PDF
9. Almost flat angles in surface superconductivity
- Author
-
Michele Correggi and Emanuela L. Giacomelli
- Subjects
Superconductivity ,Surface (mathematics) ,Conjecture ,Partial differential equation ,Condensed Matter - Superconductivity ,Applied Mathematics ,Mathematical analysis ,FOS: Physical sciences ,General Physics and Astronomy ,Order (ring theory) ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Magnetic field ,Superconductivity (cond-mat.supr-con) ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,Ginzburg–Landau theory ,Ground state ,Mathematical Physics ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
Type-II superconductivity is known to persist close to the sample surface in presence of a strong magnetic field. As a consequence, the ground state energy in the Ginzburg-Landau theory is approximated by an effective one-dimensional model. As shown in [CG2], the presence of corners on the surface affects the energy of the sample with a non-trivial contribution. In [CG2], the two-dimensional model problem providing the corner energy is implicitly identified and, although no explicit dependence of the energy on the corner opening angle is derived, a conjecture about its form is proposed. We study here such a conjecture and confirm it, at least to leading order, for corners with almost flat opening angle., Comment: 22 pages, pdfLaTex
- Published
- 2021
- Full Text
- View/download PDF
10. Global scaling of the heat transport in fusion plasmas
- Author
-
Sara Moradi, Johan Anderson, Michele Romanelli, Hyun-Tae Kim, JET contributors, X. Litaudon, S. Abduallev, M. Abhangi, P. Abreu, M. Afzal, K. M. Aggarwal, T. Ahlgren, J. H. Ahn, L. Aho-Mantila, N. Aiba, M. Airila, R. Albanese, V. Aldred, D. Alegre, E. Alessi, P. Aleynikov, A. Alfier, A. Alkseev, M. Allinson, B. Alper, E. Alves, G. Ambrosino, R. Ambrosino, L. Amicucci, V. Amosov, E. Andersson Sundén, M. Angelone, M. Anghel, C. Angioni, L. Appel, C. Appelbee, P. Arena, M. Ariola, H. Arnichand, S. Arshad, A. Ash, N. Ashikawa, V. Aslanyan, O. Asunta, F. Auriemma, Y. Austin, L. Avotina, M. D. Axton, C. Ayres, M. Bacharis, A. Baciero, D. Baião, S. Bailey, A. Baker, I. Balboa, M. Balden, N. Balshaw, R. Bament, J. W. Banks, Y. F. Baranov, M. A. Barnard, D. Barnes, M. Barnes, R. Barnsley, A. Baron Wiechec, L. Barrera Orte, M. Baruzzo, V. Basiuk, M. Bassan, R. Bastow, A. Batista, P. Batistoni, R. Baughan, B. Bauvir, L. Baylor, B. Bazylev, J. Beal, P. S. Beaumont, M. Beckers, B. Beckett, A. Becoulet, N. Bekris, M. Beldishevski, K. Bell, F. Belli, M. Bellinger, É. Belonohy, N. Ben Ayed, N. A. Benterman, H. Bergsȧker, J. Bernardo, M. Bernert, M. Berry, L. Bertalot, C. Besliu, M. Beurskens, B. Bieg, J. Bielecki, T. Biewer, M. Bigi, P. Bìlkovà, F. Binda, A. Bisoffi, J. P. S. Bizarro, C. Björkas, J. Blackburn, K. Blackman, T. R. Blackman, P. Blanchard, P. Blatchford, V. Bobkov, A. Boboc, G. Bodnàr, O. Bogar, I. Bolshakova, T. Bolzonella, N. Bonanomi, F. Bonelli, J. Boom, J. Booth, D. Borba, D. Borodin, I. Borodkina, A. Botrugno, C. Bottereau, P. Boulting, C. Bourdelle, M. Bowden, C. Bower, C. Bowman, T. Boyce, C. Boyd, H. J. Boyer, J. M. A. Bradshaw, V. Braic, R. Bravanec, B. Breizman, S. Bremond, P. D. Brennan, S. Breton, A. Brett, S. Brezinsek, M. D. J. Bright, M. Brix, W. Broeckx, M. Brombin, A. Brosawski, D. P. D. Brown, M. Brown, E. Bruno, J. Bucalossi, J. Buch, J. Buchanan, M. A. Buckley, R. Budny, H. Bufferand, M. Bulman, N. Bulmer, P. Bunting, P. Buratti, A. Burckhart, A. Buscarino, A. Busse, N. K. Butler, I. Bykov, J. Byrne, P. Cahyna, G. Calabrò, I. Calvo, Y. Camenen, P. Camp, D. C. Campling, J. Cane, B. Cannas, A. J. Capel, P. J. Card, A. Cardinali, P. Carman, M. Carr, D. Carralero, L. Carraro, B. B. Carvalho, I. Carvalho, P. Carvalho, F. J. Casson, C. Castaldo, N. Catarino, J. Caumont, F. Causa, R. Cavazzana, K. Cave-Ayland, M. Cavinato, M. Cecconello, S. Ceccuzzi, E. Cecil, A. Cenedese, R. Cesario, C. D. Challis, M. Chandler, D. Chandra, C. S. Chang, A. Chankin, I. T. Chapman, S. C. Chapman, M. Chernyshova, G. Chitarin, G. Ciraolo, D. Ciric, J. Citrin, F. Clairet, E. Clark, M. Clark, R. Clarkson, D. Clatworthy, C. Clements, M. Cleverly, J. P. Coad, P. A. Coates, A. Cobalt, V. Coccorese, V. Cocilovo, S. Coda, R. Coelho, J. W. Coenen, I. Coffey, L. Colas, S. Collins, D. Conka, S. Conroy, N. Conway, D. Coombs, D. Cooper, S. R. Cooper, C. Corradino, Y. Corre, G. Corrigan, S. Cortes, D. Coster, A. S. Couchman, M. P. Cox, T. Craciunescu, S. Cramp, R. Craven, F. Crisanti, G. Croci, D. Croft, K. Crombé, R. Crowe, N. Cruz, G. Cseh, A. Cufar, A. Cullen, M. Curuia, A. Czarnecka, H. Dabirikhah, P. Dalgliesh, S. Dalley, J. Dankowski, D. Darrow, O. Davies, W. Davis, C. Day, I. E. Day, M. De Bock, A. de Castro, E. de la Cal, E. de la Luna, G. De Masi, J. L. de Pablos, G. De Temmerman, G. De Tommasi, P. de Vries, K. Deakin, J. Deane, F. Degli Agostini, R. Dejarnac, E. Delabie, N. den Harder, R. O. Dendy, J. Denis, P. Denner, S. Devaux, P. Devynck, F. Di Maio, A. Di Siena, C. Di Troia, P. Dinca, R. Dinca, B. Ding, T. Dittmar, H. Doerk, R. P. Doerner, T. Donné, S. E. Dorling, S. Dormido-Canto, S. Doswon, D. Douai, P. T. Doyle, A. Drenik, P. Drewelow, P. Drews, Ph. Duckworth, R. Dumont, P. Dumortier, D. Dunai, M. Dunne, I. Duran, F. Durodié, P. Dutta, B. P. Duval, R. Dux, K. Dylst, N. Dzysiuk, P. V. Edappala, J. Edmond, A. M. Edwards, J. Edwards, Th. Eich, A. Ekedahl, R. El-Jorf, C. G. Elsmore, M. Enachescu, G. Ericsson, F. Eriksson, J. Eriksson, L. G. Eriksson, B. Esposito, S. Esquembri, H. G. Esser, D. Esteve, B. Evans, G. E. Evans, G. Evison, G. D. Ewart, D. Fagan, M. Faitsch, D. Falie, A. Fanni, A. Fasoli, J. M. Faustin, N. Fawlk, L. Fazendeiro, N. Fedorczak, R. C. Felton, K. Fenton, A. Fernades, H. Fernandes, J. Ferreira, J. A. Fessey, O. Février, O. Ficker, A. Field, S. Fietz, A. Figueiredo, J. Figueiredo, A. Fil, P. Finburg, M. Firdaouss, U. Fischer, L. Fittill, M. Fitzgerald, D. Flammini, J. Flanagan, C. Fleming, K. Flinders, N. Fonnesu, J. M. Fontdecaba, A. Formisano, L. Forsythe, L. Fortuna, E. Fortuna-Zalesna, M. Fortune, S. Foster, T. Franke, T. Franklin, M. Frasca, L. Frassinetti, M. Freisinger, R. Fresa, D. Frigione, V. Fuchs, D. Fuller, S. Futatani, J. Fyvie, K. Gàl, D. Galassi, K. Galazka, J. Galdon-Quiroga, J. Gallagher, D. Gallart, R. Galvão, X. Gao, Y. Gao, J. Garcia, A. Garcia-Carrasco, M. Garca-Munoz, J.-L. Gardarein, L. Garzotti, P. Gaudio, E. Gauthier, D. F. Gear, S. J. Gee, B. Geiger, M. Gelfusa, S. Gerasimov, G. Gervasini, M. Gethins, Z. Ghani, M. Ghate, M. Gherendi, J. C. Giacalone, L. Giacomelli, C. S. Gibson, T. Giegerich, C. Gil, L. Gil, S. Gilligan, D. Gin, E. Giovannozzi, J. B. Girardo, C. Giroud, G. Giruzzi, S. Glöggler, J. Godwin, J. Goff, P. Gohil, V. Goloborod'ko, R. Gomes, B. Goncalves, M. Goniche, M. Goodliffe, A. Goodyear, G. Gorini, M. Gosk, R. Goulding, A. Goussarov, R. Gowland, B. Graham, M. E. Graham, J. P. Graves, N. Grazier, P. Grazier, N. R. Green, H. Greuner, B. Grierson, F. S. Griph, C. Grisolia, D. Grist, M. Groth, R. Grove, C. N. Grundy, J. Grzonka, D. Guard, C. Guérard, C. Guillemaut, R. Guirlet, C. Gurl, H. H. Utoh, L. J. Hackett, S. Hacquin, A. Hagar, R. Hager, A. Hakola, M. Halitovs, S. J. Hall, S. P. Hallworth Cook, C. Hamlyn-Harris, K. Hammond, C. Harrington, J. Harrison, D. Harting, F. Hasenbeck, Y. Hatano, D. R. Hatch, T. D. V. Haupt, J. Hawes, N. C. Hawkes, J. Hawkins, P. Hawkins, P. W. Haydon, N. Hayter, S. Hazel, P. J. L. Heesterman, K. Heinola, C. Hellesen, T. Hellsten, W. Helou, O. N. Hemming, T. C. Hender, M. Henderson, S. S. Henderson, R. Henriques, D. Hepple, G. Hermon, P. Hertout, C. Hidalgo, E. G. Highcock, M. Hill, J. Hillairet, J. Hillesheim, D. Hillis, K. Hizanidis, A. Hjalmarsson, J. Hobirk, E. Hodille, C. H. A. Hogben, G. M. D. Hogeweij, A. Hollingsworth, S. Hollis, D. A. Homfray, J. Horàcek, G. Hornung, A. R. Horton, L. D. Horton, L. Horvath, S. P. Hotchin, M. R. Hough, P. J. Howarth, A. Hubbard, A. Huber, V. Huber, T. M. Huddleston, M. Hughes, G. T. A. Huijsmans, C. L. Hunter, P. Huynh, A. M. Hynes, D. Iglesias, N. Imazawa, F. Imbeaux, M. Imrìŝek, M. Incelli, P. Innocente, M. Irishkin, I. Ivanova-Stanik, S. Jachmich, A. S. Jacobsen, P. Jacquet, J. Jansons, A. Jardin, A. Järvinen, F. Jaulmes, S. Jednoróq, I. Jenkins, C. Jeong, I. Jepu, E. Joffrin, R. Johnson, T. Johnson, Jane Johnston, L. Joita, G. Jones, T. T. C. Jones, K. K. Hoshino, A. Kallenbach, K. Kamiya, J. Kaniewski, A. Kantor, A. Kappatou, J. Karhunen, D. Karkinsky, I. Karnowska, M. Kaufman, G. Kaveney, Y. Kazakov, V. Kazantzidis, D. L. Keeling, T. Keenan, J. Keep, M. Kempenaars, C. Kennedy, D. Kenny, J. Kent, O. N. Kent, E. Khilkevich, H. T. Kim, H. S. Kim, A. Kinch, C. King, D. King, R. F. King, D. J. Kinna, V. Kiptily, A. Kirk, K. Kirov, A. Kirschner, G. Kizane, C. Klepper, A. Klix, P. Knight, S. J. Knipe, S. Knott, T. Kobuchi, F. Köchl, G. Kocsis, I. Kodeli, L. Kogan, D. Kogut, S. Koivuranta, Y. Kominis, M. Köppen, B. Kos, T. Koskela, H. R. Koslowski, M. Koubiti, M. Kovari, E. Kowalska-Strzeciwilk, A. Krasilnikov, V. Krasilnikov, N. Krawczyk, M. Kresina, K. Krieger, A. Krivska, U. Kruezi, I. Ksiazek, A. Kukushkin, A. Kundu, T. Kurki-Suonio, S. Kwak, R. Kwiatkowski, O. J. Kwon, L. Laguardia, A. Lahtinen, A. Laing, N. Lam, H. T. Lambertz, C. Lane, P. T. Lang, S. Lanthaler, J. Lapins, A. Lasa, J. R. Last, E. Laszynska, R. Lawless, A. Lawson, K. D. Lawson, A. Lazaros, E. Lazzaro, J. Leddy, S. Lee, X. Lefebvre, H. J. Leggate, J. Lehmann, M. Lehnen, D. Leichtle, P. Leichuer, F. Leipold, I. Lengar, M. Lennholm, E. Lerche, A. Lescinskis, S. Lesnoj, E. Letellier, M. Leyland, W. Leysen, L. Li, Y. Liang, J. Likonen, J. Linke, Ch. Linsmeier, B. Lipschultz, G. Liu, Y. Liu, V. P. Lo Schiavo, T. Loarer, A. Loarte, R. C. Lobel, B. Lomanowski, P. J. Lomas, J. Lönnroth, J. M. López, J. López-Razola, R. Lorenzini, U. Losada, J. J. Lovell, A. B. Loving, C. Lowry, T. Luce, R. M. A. Lucock, A. Lukin, C. Luna, M. Lungaroni, C. P. Lungu, M. Lungu, A. Lunniss, I. Lupelli, A. Lyssoivan, N. Macdonald, P. Macheta, K. Maczewa, B. Magesh, P. Maget, C. Maggi, H. Maier, J. Mailloux, T. Makkonen, R. Makwana, A. Malaquias, A. Malizia, P. Manas, A. Manning, M. E. Manso, P. Mantica, M. Mantsinen, A. Manzanares, Ph. Maquet, Y. Marandet, N. Marcenko, C. Marchetto, O. Marchuk, M. Marinelli, M. Marinucci, T. Markovic, D. Marocco, L. Marot, C. A. Marren, R. Marshal, A. Martin, Y. Martin, A. Martín de Aguilera, F. J. Martínez, J. R. Martín-Solís, Y. Martynova, S. Maruyama, A. Masiello, M. Maslov, S. Matejcik, M. Mattei, G. F. Matthews, F. Maviglia, M. Mayer, M. L. Mayoral, T. May-Smith, D. Mazon, C. Mazzotta, R. McAdams, P. J. McCarthy, K. G. McClements, O. McCormack, P. A. McCullen, D. McDonald, S. McIntosh, R. McKean, J. McKehon, R. C. Meadows, A. Meakins, F. Medina, M. Medland, S. Medley, S. Meigh, A. G. Meigs, G. Meisl, S. Meitner, L. Meneses, S. Menmuir, K. Mergia, I. R. Merrigan, Ph. Mertens, S. Meshchaninov, A. Messiaen, H. Meyer, S. Mianowski, R. Michling, D. Middleton-Gear, J. Miettunen, F. Militello, E. Militello-Asp, G. Miloshevsky, F. Mink, S. Minucci, Y. Miyoshi, J. Mlynàr, D. Molina, I. Monakhov, M. Moneti, R. Mooney, S. Moradi, S. Mordijck, L. Moreira, R. Moreno, F. Moro, A. W. Morris, J. Morris, L. Moser, S. Mosher, D. Moulton, A. Murari, A. Muraro, S. Murphy, N. N. Asakura, Y. S. Na, F. Nabais, R. Naish, T. Nakano, E. Nardon, V. Naulin, M. F. F. Nave, I. Nedzelski, G. Nemtsev, F. Nespoli, A. Neto, R. Neu, V. S. Neverov, M. Newman, K. J. Nicholls, T. Nicolas, A. H. Nielsen, P. Nielsen, E. Nilsson, D. Nishijima, C. Noble, M. Nocente, D. Nodwell, K. Nordlund, H. Nordman, R. Nouailletas, I. Nunes, M. Oberkofler, T. Odupitan, M. T. Ogawa, T. O'Gorman, M. Okabayashi, R. Olney, O. Omolayo, M. O'Mullane, J. Ongena, F. Orsitto, J. Orszagh, B. I. Oswuigwe, R. Otin, A. Owen, R. Paccagnella, N. Pace, D. Pacella, L. W. Packer, A. Page, E. Pajuste, S. Palazzo, S. Pamela, S. Panja, P. Papp, R. Paprok, V. Parail, M. Park, F. Parra Diaz, M. Parsons, R. Pasqualotto, A. Patel, S. Pathak, D. Paton, H. Patten, A. Pau, E. Pawelec, C. Paz Soldan, A. Peackoc, I. J. Pearson, S.-P. Pehkonen, E. Peluso, C. Penot, A. Pereira, R. Pereira, P. P. Pereira Puglia, C. Perez von Thun, S. Peruzzo, S. Peschanyi, M. Peterka, P. Petersson, G. Petravich, A. Petre, N. Petrella, V. Petrzilka, Y. Peysson, D. Pfefferlé, V. Philipps, M. Pillon, G. Pintsuk, P. Piovesan, A. Pires dos Reis, L. Piron, A. Pironti, F. Pisano, R. Pitts, F. Pizzo, V. Plyusnin, N. Pomaro, O. G. Pompilian, P. J. Pool, S. Popovichev, M. T. Porfiri, C. Porosnicu, M. Porton, G. Possnert, S. Potzel, T. Powell, J. Pozzi, V. Prajapati, R. Prakash, G. Prestopino, D. Price, M. Price, R. Price, P. Prior, R. Proudfoot, G. Pucella, P. Puglia, M. E. Puiatti, D. Pulley, K. Purahoo, Th. Pütterich, E. Rachlew, M. Rack, R. Ragona, M. S. J. Rainford, A. Rakha, G. Ramogida, S. Ranjan, C. J. Rapson, J. J. Rasmussen, K. Rathod, G. Rattà, S. Ratynskaia, G. Ravera, C. Rayner, M. Rebai, D. Reece, A. Reed, D. Réfy, B. Regan, J. Regana, M. Reich, N. Reid, F. Reimold, M. Reinhart, M. Reinke, D. Reiser, D. Rendell, C. Reux, S. D. A. Reyes Cortes, S. Reynolds, V. Riccardo, N. Richardson, K. Riddle, D. Rigamonti, F. G. Rimini, J. Risner, M. Riva, C. Roach, R. J. Robins, S. A. Robinson, T. Robinson, D. W. Robson, R. Roccella, R. Rodionov, P. Rodrigues, J. Rodriguez, V. Rohde, F. Romanelli, M. Romanelli, S. Romanelli, J. Romazanov, S. Rowe, M. Rubel, G. Rubinacci, G. Rubino, L. Ruchko, M. Ruiz, C. Ruset, J. Rzadkiewicz, S. Saarelma, R. Sabot, E. Safi, P. Sagar, G. Saibene, F. Saint-Laurent, M. Salewski, A. Salmi, R. Salmon, F. Salzedas, D. Samaddar, U. Samm, D. Sandiford, P. Santa, M. I. K. Santala, B. Santos, A. Santucci, F. Sartori, R. Sartori, O. Sauter, R. Scannell, T. Schlummer, K. Schmid, V. Schmidt, S. Schmuck, M. Schneider, K. Schöpf, D. Schwörer, S. D. Scott, G. Sergienko, M. Sertoli, A. Shabbir, S. E. Sharapov, A. Shaw, R. Shaw, H. Sheikh, A. Shepherd, A. Shevelev, A. Shumack, G. Sias, M. Sibbald, B. Sieglin, S. Silburn, A. Silva, C. Silva, P. A. Simmons, J. Simpson, J. Simpson-Hutchinson, A. Sinha, S. K. Sipilä, A. C. C. Sips, P. Sirén, A. Sirinelli, H. Sjöstrand, M. Skiba, R. Skilton, K. Slabkowska, B. Slade, N. Smith, P. G. Smith, R. Smith, T. J. Smith, M. Smithies, L. Snoj, S. Soare, E. R. Solano, A. Somers, C. Sommariva, P. Sonato, A. Sopplesa, J. Sousa, C. Sozzi, S. Spagnolo, T. Spelzini, F. Spineanu, G. Stables, I. Stamatelatos, M. F. Stamp, P. Staniec, G. Stankunas, C. Stan-Sion, M. J. Stead, E. Stefanikova, I. Stepanov, A. V. Stephen, M. Stephen, A. Stevens, B. D. Stevens, J. Strachan, P. Strand, H. R. Strauss, P. Ström, G. Stubbs, W. Studholme, F. Subba, H. P. Summers, J. Svensson, L. Swiderski, T. Szabolics, M. Szawlowski, G. Szepesi, T. T. Suzuki, B. Tàl, T. Tala, A. R. Talbot, S. Talebzadeh, C. Taliercio, P. Tamain, C. Tame, W. Tang, M. Tardocchi, L. Taroni, D. Taylor, K. A. Taylor, D. Tegnered, G. Telesca, N. Teplova, D. Terranova, D. Testa, E. Tholerus, J. Thomas, J. D. Thomas, P. Thomas, A. Thompson, C.-A. Thompson, V. K. Thompson, L. Thorne, A. Thornton, A. S. Thrysoe, P. A. Tigwell, N. Tipton, I. Tiseanu, H. Tojo, M. Tokitani, P. Tolias, M. Tomes, P. Tonner, M. Towndrow, P. Trimble, M. Tripsky, M. Tsalas, P. Tsavalas, D. Tskhakaya jun, I. Turner, M. M. Turner, M. Turnyanskiy, G. Tvalashvili, S. G. J. Tyrrell, A. Uccello, Z. Ul-Abidin, J. Uljanovs, D. Ulyatt, H. Urano, I. Uytdenhouwen, A. P. Vadgama, D. Valcarcel, M. Valentinuzzi, M. Valisa, P. Vallejos Olivares, M. Valovic, M. Van De Mortel, D. Van Eester, W. Van Renterghem, G. J. van Rooij, J. Varje, S. Varoutis, S. Vartanian, K. Vasava, T. Vasilopoulou, J. Vega, G. Verdoolaege, R. Verhoeven, C. Verona, G. Verona Rinati, E. Veshchev, N. Vianello, J. Vicente, E. Viezzer, S. Villari, F. Villone, P. Vincenzi, I. Vinyar, B. Viola, A. Vitins, Z. Vizvary, M. Vlad, I. Voitsekhovitch, P. Vondràcek, N. Vora, T. Vu, W. W. Pires de Sa, B. Wakeling, C. W. F. Waldon, N. Walkden, M. Walker, R. Walker, M. Walsh, E. Wang, N. Wang, S. Warder, R. J. Warren, J. Waterhouse, N. W. Watkins, C. Watts, T. Wauters, A. Weckmann, J. Weiland, H. Weisen, M. Weiszflog, C. Wellstood, A. T. West, M. R. Wheatley, S. Whetham, A. M. Whitehead, B. D. Whitehead, A. M. Widdowson, S. Wiesen, J. Wilkinson, J. Williams, M. Williams, A. R. Wilson, D. J. Wilson, H. R. Wilson, J. Wilson, M. Wischmeier, G. Withenshaw, A. Withycombe, D. M. Witts, D. Wood, R. Wood, C. Woodley, S. Wray, J. Wright, J. C. Wright, J. Wu, S. Wukitch, A. Wynn, T. Xu, D. Yadikin, W. Yanling, L. Yao, V. Yavorskij, M. G. Yoo, C. Young, D. Young, I. D. Young, R. Young, J. Zacks, R. Zagorski, F. S. Zaitsev, R. Zanino, A. Zarins, K. D. Zastrow, M. Zerbini, W. Zhang, Y. Zhou, E. Zilli, V. Zoita, S. Zoletnik, and I. Zychor
- Subjects
Physics ,QC1-999 - Abstract
A global heat flux model based on a fractional derivative of plasma pressure is proposed for the heat transport in fusion plasmas. The degree of the fractional derivative of the heat flux, α, is defined through the power balance analysis of the steady state. The model was used to obtain the experimental values of α for a large database of the Joint European Torus (JET) carbon-wall as well as ITER like-wall plasmas. The fractional degrees of the electron heat flux are found to be α
- Published
- 2020
- Full Text
- View/download PDF
11. Lessons learned after three years of SPIDER operation and the first MITICA integrated tests
- Author
-
D. Marcuzzi, V. Toigo, M. Boldrin, G. Chitarin, S. Dal Bello, L. Grando, A. Luchetta, R. Pasqualotto, M. Pavei, G. Serianni, L. Zanotto, R. Agnello, P. Agostinetti, M. Agostini, D. Aprile, M. Barbisan, M. Battistella, G. Berton, M. Bigi, M. Brombin, V. Candela, V. Candeloro, A. Canton, R. Casagrande, C. Cavallini, R. Cavazzana, L. Cordaro, N. Cruz, M. Dalla Palma, M. Dan, A. De Lorenzi, R. Delogu, M. De Muri, M. De Nardi, S. Denizeau, M. Fadone, F. Fellin, A. Ferro, E. Gaio, C. Gasparrini, F. Gnesotto, P. Jain, A. La Rosa, D. Lopez-Bruna, R. Lorenzini, A. Maistrello, G. Manduchi, S. Manfrin, N. Marconato, I. Mario, G. Martini, R. Milazzo, T. Patton, S. Peruzzo, N. Pilan, A. Pimazzoni, C. Poggi, N. Pomaro, B. Pouradier-Duteil, M. Recchia, A. Rigoni-Garola, D. Rizzetto, A. Rizzolo, F. Santoro, E. Sartori, B. Segalini, A. Shepherd, M. Siragusa, P. Sonato, A. Sottocornola, E. Spada, S. Spagnolo, M. Spolaore, C. Taliercio, P. Tinti, P. Tomsič, L. Trevisan, M. Ugoletti, M. Valente, M. Valisa, F. Veronese, M. Vignando, P. Zaccaria, R. Zagorski, B. Zaniol, M. Zaupa, M. Zuin, M. Cavenago, D. Boilson, C. Rotti, H. Decamps, F. Geli, A. Sharma, P. Veltri, J. Zacks, M. Simon, F. Paolucci, A. Garbuglia, D. Gutierrez, A. Masiello, G. Mico, C. Labate, P. Readman, E. Bragulat, L. Bailly-Maitre, G. Gomez, G. Kouzmenko, F. Albajar, M. Kashiwagi, H. Tobari, A. Kojima, M. Murayama, S. Hatakeyama, E. Oshita, T. Maejima, N. Shibata, Y. Yamashita, K. Watanabe, N.P. Singh, M.J. Singh, H. Dhola, U. Fantz, B. Heinemann, C. Wimmer, D. Wünderlich, K. Tsumori, G. Croci, G. Gorini, A. Muraro, M. Rebai, M. Tardocchi, L. Giacomelli, D. Rigamonti, F. Taccogna, D. Bruno, M. Rutigliano, S. Longo, S. Deambrosis, E. Miorin, F. Montagner, A. Tonti, F. Panin, Marcuzzi, D, Toigo, V, Boldrin, M, Chitarin, G, Dal Bello, S, Grando, L, Luchetta, A, Pasqualotto, R, Pavei, M, Serianni, G, Zanotto, L, Agnello, R, Agostinetti, P, Agostini, M, Aprile, D, Barbisan, M, Battistella, M, Berton, G, Bigi, M, Brombin, M, Candela, V, Candeloro, V, Canton, A, Casagrande, R, Cavallini, C, Cavazzana, R, Cordaro, L, Cruz, N, Dalla Palma, M, Dan, M, De Lorenzi, A, Delogu, R, De Muri, M, De Nardi, M, Denizeau, S, Fadone, M, Fellin, F, Ferro, A, Gaio, E, Gasparrini, C, Gnesotto, F, Jain, P, La Rosa, A, Lopez-Bruna, D, Lorenzini, R, Maistrello, A, Manduchi, G, Manfrin, S, Marconato, N, Mario, I, Martini, G, Milazzo, R, Patton, T, Peruzzo, S, Pilan, N, Pimazzoni, A, Poggi, C, Pomaro, N, Pouradier-Duteil, B, Recchia, M, Rigoni-Garola, A, Rizzetto, D, Rizzolo, A, Santoro, F, Sartori, E, Segalini, B, Shepherd, A, Siragusa, M, Sonato, P, Sottocornola, A, Spada, E, Spagnolo, S, Spolaore, M, Taliercio, C, Tinti, P, Tomsic, P, Trevisan, L, Ugoletti, M, Valente, M, Valisa, M, Veronese, F, Vignando, M, Zaccaria, P, Zagorski, R, Zaniol, B, Zaupa, M, Zuin, M, Cavenago, M, Boilson, D, Rotti, C, Decamps, H, Geli, F, Sharma, A, Veltri, P, Zacks, J, Simon, M, Paolucci, F, Garbuglia, A, Gutierrez, D, Masiello, A, Mico, G, Labate, C, Readman, P, Bragulat, E, Bailly-Maitre, L, Gomez, G, Kouzmenko, G, Albajar, F, Kashiwagi, M, Tobari, H, Kojima, A, Murayama, M, Hatakeyama, S, Oshita, E, Maejima, T, Shibata, N, Yamashita, Y, Watanabe, K, Singh, N, Singh, M, Dhola, H, Fantz, U, Heinemann, B, Wimmer, C, Wunderlich, D, Tsumori, K, Croci, G, Gorini, G, Muraro, A, Rebai, M, Tardocchi, M, Giacomelli, L, Rigamonti, D, Taccogna, F, Bruno, D, Rutigliano, M, Longo, S, Deambrosis, S, Miorin, E, Montagner, F, Tonti, A, and Panin, F
- Subjects
Accelerator Physics (physics.acc-ph) ,iter ,Mechanical Engineering ,FOS: Physical sciences ,nbtf ,neutral beam injector ,mitica ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,Nuclear Energy and Engineering ,Physics - Accelerator Physics ,General Materials Science ,spider ,Civil and Structural Engineering - Abstract
ITER envisages the use of two heating neutral beam injectors plus an optional one as part of the auxiliary heating and current drive system, to reach the desired performances during its various phases of operation. The 16.5 MW expected neutral beam power per injector is several notches higher than worldwide existing facilities.In order to enable such development, a Neutral Beam Test Facility (NBTF) was established at Consorzio RFX, exploiting the synergy of two test beds, called SPIDER and MITICA. SPIDER is dedicated developing and char-acterizing large efficient negative ion sources at relevant parameters in ITER-like conditions: source and accel-erator located in the same vacuum where the beam propagates, immunity to electromagnetic interferences of multiple radio-frequency (RF) antennas, avoidance of RF-induced discharges on the outside of the source. Three years of experiments on SPIDER have addressed to the necessary design modifications to enable full perfor-mances. The source is presently under a long shut-down phase to incorporate learnings from the experimental campaign, in particular events/issues occurred during operation, which led to the identification of improvement opportunities/necessities (e.g. RF discharges, local burns, water leaks, other damages, configuration/design upgrades to maximize chances/margin to quest target parameters).Parallelly, developments on MITICA, the full-scale prototype of the ITER Neutral Beam Injector (NBI) featuring a 1 MV accelerator and ion neutralization, are underway including manufacturing of the beam source, accel-erator and the beam line components, while power supplies and auxiliary plants, already installed, are under final testing and commissioning.Integration, commissioning and tests of the 1 MV power supplies are essential for this first-of-kind system, unparalleled both in research and industry field. 1.2 MV dc insulating tests of high voltage components were successfully completed. The integrated test to confirm 1 MV output by combining invertor systems, DC gener-ators and transmission lines extracted errors/accidents in some components. To realize a concrete system for ITER, said events have been addressed and solutions for the repair and the improvement of the system were developed.Hence, NBTF is emerging as a necessary facility, due to the large gap with existing injectors, effectively dedicated to identify issues and find solutions to enable successful ITER NBI operations in a time bound fashion. The lessons learned during the implementation on NBTF and future perspectives are here discussed.
- Published
- 2023
- Full Text
- View/download PDF
12. DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
- Author
-
M. E. Fenstermacher, J. Abbate, S. Abe, T. Abrams, M. Adams, B. Adamson, N. Aiba, T. Akiyama, P. Aleynikov, E. Allen, S. Allen, H. Anand, J. Anderson, Y. Andrew, T. Andrews, D. Appelt, R. Arbon, N. Ashikawa, A. Ashourvan, M. Aslin, Y. Asnis, M. Austin, D. Ayala, J. Bak, I. Bandyopadhyay, S. Banerjee, K. Barada, L. Bardoczi, J. Barr, E. Bass, D. Battaglia, A. Battey, W. Baumgartner, L. Baylor, J. Beckers, M. Beidler, E. Belli, J. Berkery, T. Bernard, N. Bertelli, M. Beurskens, R. Bielajew, S. Bilgili, B. Biswas, S. Blondel, J. Boedo, I. Bogatu, R. Boivin, T. Bolzonella, M. Bongard, X. Bonnin, P. Bonoli, M. Bonotto, A. Bortolon, S. Bose, N. Bosviel, S. Bouwmans, M. Boyer, W. Boyes, L. Bradley, R. Brambila, D. Brennan, S. Bringuier, L. Brodsky, M. Brookman, J. Brooks, D. Brower, G. Brown, W. Brown, M. Burke, K. Burrell, K. Butler, R. Buttery, I. Bykov, P. Byrne, A. Cacheris, K. Callahan, J. Callen, G. Campbell, J. Candy, J. Canik, P. Cano-Megias, N. Cao, L. Carayannopoulos, T. Carlstrom, W. Carrig, T. Carter, W. Cary, L. Casali, M. Cengher, G. Cespedes Paz, R. Chaban, V. Chan, B. Chapman, I. Char, A. Chattopadhyay, R. Chen, J. Chen, X. Chen, M. Chen, Z. Chen, M. Choi, W. Choi, G. Choi, L. Chousal, C. Chrobak, C. Chrystal, Y. Chung, R. Churchill, M. Cianciosa, J. Clark, M. Clement, S. Coda, A. Cole, C. Collins, W. Conlin, A. Cooper, J. Cordell, B. Coriton, T. Cote, J. Cothran, A. Creely, N. Crocker, C. Crowe, B. Crowley, T. Crowley, D. Cruz-Zabala, D. Cummings, M. Curie, D. Curreli, A. Dal Molin, B. Dannels, A. Dautt-Silva, K. Davda, G. De Tommasi, P. De Vries, G. Degrandchamp, J. Degrassie, D. Demers, S. Denk, S. Depasquale, E. Deshazer, A. Diallo, S. Diem, A. Dimits, R. Ding, S. Ding, W. Ding, T. Do, J. Doane, G. Dong, D. Donovan, J. Drake, W. Drews, J. Drobny, X. Du, H. Du, V. Duarte, D. Dudt, C. Dunn, J. Duran, A. Dvorak, F. Effenberg, N. Eidietis, D. Elder, D. Eldon, R. Ellis, W. Elwasif, D. Ennis, K. Erickson, D. Ernst, M. Fasciana, D. Fedorov, E. Feibush, N. Ferraro, J. Ferreira, J. Ferron, P. Fimognari, D. Finkenthal, R. Fitzpatrick, P. Fox, W. Fox, L. Frassinetti, H. Frerichs, H. Frye, Y. Fu, K. Gage, J. Galdon Quiroga, A. Gallo, Q. Gao, A. Garcia, M. Garcia Munoz, D. Garnier, A. Garofalo, A. Gattuso, D. Geng, K. Gentle, D. Ghosh, L. Giacomelli, S. Gibson, E. Gilson, C. Giroud, F. Glass, A. Glasser, D. Glibert, P. Gohil, R. Gomez, S. Gomez, X. Gong, E. Gonzales, A. Goodman, Y. Gorelov, V. Graber, R. Granetz, T. Gray, D. Green, C. Greenfield, M. Greenwald, B. Grierson, R. Groebner, W. Grosnickle, M. Groth, H. Grunloh, S. Gu, W. Guo, H. Guo, P. Gupta, J. Guterl, W. Guttenfelder, T. Guzman, S. Haar, R. Hager, S. Hahn, M. Halfmoon, T. Hall, K. Hallatschek, F. Halpern, G. Hammett, H. Han, E. Hansen, C. Hansen, M. Hansink, J. Hanson, M. Hanson, G. Hao, A. Harris, R. Harvey, S. Haskey, E. Hassan, A. Hassanein, D. Hatch, R. Hawryluk, W. Hayashi, W. Heidbrink, J. Herfindal, J. Hicok, D. Hill, E. Hinson, C. Holcomb, L. Holland, C. Holland, E. Hollmann, J. Hollocombe, A. Holm, I. Holmes, K. Holtrop, M. Honda, R. Hong, R. Hood, A. Horton, L. Horvath, M. Hosokawa, S. Houshmandyar, N. Howard, E. Howell, D. Hoyt, W. Hu, Y. Hu, Q. Hu, J. Huang, Y. Huang, J. Hughes, T. Human, D. Humphreys, P. Huynh, A. Hyatt, C. Ibanez, L. Ibarra, R. Icasas, K. Ida, V. Igochine, Y. In, S. Inoue, A. Isayama, O. Izacard, V. Izzo, A. Jackson, G. Jacobsen, A. Jaervinen, A. Jalalvand, J. Janhunen, S. Jardin, H. Jarleblad, Y. Jeon, H. Ji, X. Jian, E. Joffrin, A. Johansen, C. Johnson, T. Johnson, C. Jones, I. Joseph, D. Jubas, B. Junge, W. Kalb, R. Kalling, C. Kamath, J. Kang, D. Kaplan, A. Kaptanoglu, S. Kasdorf, J. Kates-Harbeck, P. Kazantzidis, A. Kellman, D. Kellman, C. Kessel, K. Khumthong, E. Kim, H. Kim, J. Kim, S. Kim, K. Kim, C. Kim, W. Kimura, M. King, J. King, J. Kinsey, A. Kirk, B. Kiyan, A. Kleiner, V. Klevarova, R. Knapp, M. Knolker, W. Ko, T. Kobayashi, E. Koch, M. Kochan, B. Koel, M. Koepke, A. Kohn, R. Kolasinski, E. Kolemen, E. Kostadinova, M. Kostuk, G. Kramer, D. Kriete, L. Kripner, S. Kubota, J. Kulchar, K. Kwon, R. La Haye, F. Laggner, H. Lan, R. Lantsov, L. Lao, A. Lasa Esquisabel, C. Lasnier, C. Lau, B. Leard, J. Lee, R. Lee, M. Lee, Y. Lee, C. Lee, S. Lee, M. Lehnen, A. Leonard, E. Leppink, M. Lesher, J. Lestz, J. Leuer, N. Leuthold, X. Li, K. Li, E. Li, G. Li, L. Li, Z. Li, J. Li, Y. Li, Z. Lin, D. Lin, X. Liu, J. Liu, Y. Liu, T. Liu, C. Liu, Z. Liu, D. Liu, A. Liu, A. Loarte-Prieto, L. Lodestro, N. Logan, J. Lohr, B. Lombardo, J. Lore, Q. Luan, T. Luce, T. Luda Di Cortemiglia, N. Luhmann, R. Lunsford, Z. Luo, A. Lvovskiy, B. Lyons, X. Ma, M. Madruga, B. Madsen, C. Maggi, K. Maheshwari, A. Mail, J. Mailloux, R. Maingi, M. Major, M. Makowski, R. Manchanda, C. Marini, A. Marinoni, A. Maris, T. Markovic, L. Marrelli, E. Martin, J. Mateja, G. Matsunaga, R. Maurizio, P. Mauzey, D. Mauzey, G. Mcardle, J. Mcclenaghan, K. Mccollam, C. Mcdevitt, K. Mckay, G. Mckee, A. Mclean, V. Mehta, E. Meier, J. Menard, O. Meneghini, G. Merlo, S. Messer, W. Meyer, C. Michael, C. Michoski, P. Milne, G. Minet, A. Misleh, Y. Mitrishkin, C. Moeller, K. Montes, M. Morales, S. Mordijck, D. Moreau, S. Morosohk, P. Morris, L. Morton, A. Moser, R. Moyer, C. Moynihan, T. Mrazkova, D. Mueller, S. Munaretto, J. Munoz Burgos, C. Murphy, K. Murphy, C. Muscatello, C. Myers, A. Nagy, G. Nandipati, M. Navarro, F. Nave, G. Navratil, R. Nazikian, A. Neff, G. Neilson, T. Neiser, W. Neiswanger, D. Nelson, A. Nelson, F. Nespoli, R. Nguyen, L. Nguyen, X. Nguyen, J. Nichols, M. Nocente, S. Nogami, S. Noraky, N. Norausky, M. Nornberg, R. Nygren, T. Odstrcil, D. Ogas, T. Ogorman, S. Ohdachi, Y. Ohtani, M. Okabayashi, M. Okamoto, L. Olavson, E. Olofsson, M. Omullane, R. Oneill, D. Orlov, W. Orvis, T. Osborne, D. Pace, G. Paganini Canal, A. Pajares Martinez, L. Palacios, C. Pan, Q. Pan, R. Pandit, M. Pandya, A. Pankin, Y. Park, J. Park, S. Parker, P. Parks, M. Parsons, B. Patel, C. Pawley, C. Paz-Soldan, W. Peebles, S. Pelton, R. Perillo, C. Petty, Y. Peysson, D. Pierce, A. Pigarov, L. Pigatto, D. Piglowski, S. Pinches, R. Pinsker, P. Piovesan, N. Piper, A. Pironti, R. Pitts, J. Pizzo, U. Plank, M. Podesta, E. Poli, F. Poli, D. Ponce, Z. Popovic, M. Porkolab, G. Porter, C. Powers, S. Powers, R. Prater, Q. Pratt, I. Pusztai, J. Qian, X. Qin, O. Ra, T. Rafiq, T. Raines, R. Raman, J. Rauch, A. Raymond, C. Rea, M. Reich, A. Reiman, S. Reinhold, M. Reinke, R. Reksoatmodjo, Q. Ren, Y. Ren, J. Ren, M. Rensink, J. Renteria, T. Rhodes, J. Rice, R. Roberts, J. Robinson, P. Rodriguez Fernandez, T. Rognlien, A. Rosenthal, S. Rosiello, J. Rost, J. Roveto, W. Rowan, R. Rozenblat, J. Ruane, D. Rudakov, J. Ruiz Ruiz, R. Rupani, S. Saarelma, S. Sabbagh, J. Sachdev, J. Saenz, S. Saib, M. Salewski, A. Salmi, B. Sammuli, C. Samuell, A. Sandorfi, C. Sang, J. Sarff, O. Sauter, K. Schaubel, L. Schmitz, O. Schmitz, J. Schneider, P. Schroeder, K. Schultz, E. Schuster, J. Schwartz, F. Sciortino, F. Scotti, J. Scoville, A. Seltzman, S. Seol, I. Sfiligoi, M. Shafer, S. Sharapov, H. Shen, Z. Sheng, T. Shepard, S. Shi, Y. Shibata, G. Shin, D. Shiraki, R. Shousha, H. Si, P. Simmerling, G. Sinclair, J. Sinha, P. Sinha, G. Sips, T. Sizyuk, C. Skinner, A. Sladkomedova, T. Slendebroek, J. Slief, R. Smirnov, J. Smith, S. Smith, D. Smith, J. Snipes, G. Snoep, A. Snyder, P. Snyder, E. Solano, W. Solomon, J. Song, A. Sontag, V. Soukhanovskii, J. Spendlove, D. Spong, J. Squire, C. Srinivasan, W. Stacey, G. Staebler, L. Stagner, T. Stange, P. Stangeby, R. Stefan, R. Stemprok, D. Stephan, J. Stillerman, T. Stoltzfus-Dueck, W. Stonecipher, S. Storment, E. Strait, D. Su, L. Sugiyama, Y. Sun, P. Sun, Z. Sun, A. Sun, D. Sundstrom, C. Sung, J. Sungcoco, W. Suttrop, Y. Suzuki, T. Suzuki, A. Svyatkovskiy, C. Swee, R. Sweeney, C. Sweetnam, G. Szepesi, M. Takechi, T. Tala, K. Tanaka, X. Tang, S. Tang, Y. Tao, R. Tao, D. Taussig, T. Taylor, K. Teixeira, K. Teo, A. Theodorsen, D. Thomas, K. Thome, A. Thorman, A. Thornton, A. Ti, M. Tillack, N. Timchenko, R. Tinguely, R. Tompkins, J. Tooker, A. Torrezan De Sousa, G. Trevisan, S. Tripathi, A. Trujillo Ochoa, D. Truong, C. Tsui, F. Turco, A. Turnbull, M. Umansky, E. Unterberg, P. Vaezi, P. Vail, J. Valdez, W. Valkis, B. Van Compernolle, J. Van Galen, R. Van Kampen, M. Van Zeeland, G. Verdoolaege, N. Vianello, B. Victor, E. Viezzer, S. Vincena, M. Wade, F. Waelbroeck, J. Wai, T. Wakatsuki, M. Walker, G. Wallace, R. Waltz, W. Wampler, L. Wang, H. Wang, Y. Wang, Z. Wang, G. Wang, S. Ward, M. Watkins, J. Watkins, W. Wehner, Y. Wei, M. Weiland, D. Weisberg, A. Welander, A. White, R. White, S. Wiesen, R. Wilcox, T. Wilks, M. Willensdorfer, H. Wilson, A. Wingen, M. Wolde, M. Wolff, K. Woller, A. Wolz, H. Wong, S. Woodruff, M. Wu, Y. Wu, S. Wukitch, G. Wurden, W. Xiao, R. Xie, Z. Xing, X. Xu, C. Xu, G. Xu, Z. Yan, X. Yang, S. Yang, T. Yokoyama, R. Yoneda, M. Yoshida, K. You, T. Younkin, J. Yu, M. Yu, G. Yu, Q. Yuan, L. Zaidenberg, L. Zakharov, A. Zamengo, S. Zamperini, M. Zarnstorff, E. Zeger, K. Zeller, L. Zeng, M. Zerbini, L. Zhang, X. Zhang, R. Zhang, B. Zhang, J. Zhang, L. Zhao, B. Zhao, Y. Zheng, L. Zheng, B. Zhu, J. Zhu, Y. Zhu, M. Zsutty, M. Zuin, Fenstermacher, M. E., Abbate, J., Abe, S., Abrams, T., Adams, M., Adamson, B., Aiba, N., Akiyama, T., Aleynikov, P., Allen, E., Allen, S., Anand, H., Anderson, J., Andrew, Y., Andrews, T., Appelt, D., Arbon, R., Ashikawa, N., Ashourvan, A., Aslin, M., Asnis, Y., Austin, M., Ayala, D., Bak, J., Bandyopadhyay, I., Banerjee, S., Barada, K., Bardoczi, L., Barr, J., Bass, E., Battaglia, D., Battey, A., Baumgartner, W., Baylor, L., Beckers, J., Beidler, M., Belli, E., Berkery, J., Bernard, T., Bertelli, N., Beurskens, M., Bielajew, R., Bilgili, S., Biswas, B., Blondel, S., Boedo, J., Bogatu, I., Boivin, R., Bolzonella, T., Bongard, M., Bonnin, X., Bonoli, P., Bonotto, M., Bortolon, A., Bose, S., Bosviel, N., Bouwmans, S., Boyer, M., Boyes, W., Bradley, L., Brambila, R., Brennan, D., Bringuier, S., Brodsky, L., Brookman, M., Brooks, J., Brower, D., Brown, G., Brown, W., Burke, M., Burrell, K., Butler, K., Buttery, R., Bykov, I., Byrne, P., Cacheris, A., Callahan, K., Callen, J., Campbell, G., Candy, J., Canik, J., Cano-Megias, P., Cao, N., Carayannopoulos, L., Carlstrom, T., Carrig, W., Carter, T., Cary, W., Casali, L., Cengher, M., Cespedes Paz, G., Chaban, R., Chan, V., Chapman, B., Char, I., Chattopadhyay, A., Chen, R., Chen, J., Chen, X., Chen, M., Chen, Z., Choi, M., Choi, W., Choi, G., Chousal, L., Chrobak, C., Chrystal, C., Chung, Y., Churchill, R., Cianciosa, M., Clark, J., Clement, M., Coda, S., Cole, A., Collins, C., Conlin, W., Cooper, A., Cordell, J., Coriton, B., Cote, T., Cothran, J., Creely, A., Crocker, N., Crowe, C., Crowley, B., Crowley, T., Cruz-Zabala, D., Cummings, D., Curie, M., Curreli, D., Dal Molin, A., Dannels, B., Dautt-Silva, A., Davda, K., De Tommasi, G., De Vries, P., Degrandchamp, G., Degrassie, J., Demers, D., Denk, S., Depasquale, S., Deshazer, E., Diallo, A., Diem, S., Dimits, A., Ding, R., Ding, S., Ding, W., Do, T., Doane, J., Dong, G., Donovan, D., Drake, J., Drews, W., Drobny, J., Du, X., Du, H., Duarte, V., Dudt, D., Dunn, C., Duran, J., Dvorak, A., Effenberg, F., Eidietis, N., Elder, D., Eldon, D., Ellis, R., Elwasif, W., Ennis, D., Erickson, K., Ernst, D., Fasciana, M., Fedorov, D., Feibush, E., Ferraro, N., Ferreira, J., Ferron, J., Fimognari, P., Finkenthal, D., Fitzpatrick, R., Fox, P., Fox, W., Frassinetti, L., Frerichs, H., Frye, H., Fu, Y., Gage, K., Galdon Quiroga, J., Gallo, A., Gao, Q., Garcia, A., Garcia Munoz, M., Garnier, D., Garofalo, A., Gattuso, A., Geng, D., Gentle, K., Ghosh, D., Giacomelli, L., Gibson, S., Gilson, E., Giroud, C., Glass, F., Glasser, A., Glibert, D., Gohil, P., Gomez, R., Gomez, S., Gong, X., Gonzales, E., Goodman, A., Gorelov, Y., Graber, V., Granetz, R., Gray, T., Green, D., Greenfield, C., Greenwald, M., Grierson, B., Groebner, R., Grosnickle, W., Groth, M., Grunloh, H., Gu, S., Guo, W., Guo, H., Gupta, P., Guterl, J., Guttenfelder, W., Guzman, T., Haar, S., Hager, R., Hahn, S., Halfmoon, M., Hall, T., Hallatschek, K., Halpern, F., Hammett, G., Han, H., Hansen, E., Hansen, C., Hansink, M., Hanson, J., Hanson, M., Hao, G., Harris, A., Harvey, R., Haskey, S., Hassan, E., Hassanein, A., Hatch, D., Hawryluk, R., Hayashi, W., Heidbrink, W., Herfindal, J., Hicok, J., Hill, D., Hinson, E., Holcomb, C., Holland, L., Holland, C., Hollmann, E., Hollocombe, J., Holm, A., Holmes, I., Holtrop, K., Honda, M., Hong, R., Hood, R., Horton, A., Horvath, L., Hosokawa, M., Houshmandyar, S., Howard, N., Howell, E., Hoyt, D., Hu, W., Hu, Y., Hu, Q., Huang, J., Huang, Y., Hughes, J., Human, T., Humphreys, D., Huynh, P., Hyatt, A., Ibanez, C., Ibarra, L., Icasas, R., Ida, K., Igochine, V., In, Y., Inoue, S., Isayama, A., Izacard, O., Izzo, V., Jackson, A., Jacobsen, G., Jaervinen, A., Jalalvand, A., Janhunen, J., Jardin, S., Jarleblad, H., Jeon, Y., Ji, H., Jian, X., Joffrin, E., Johansen, A., Johnson, C., Johnson, T., Jones, C., Joseph, I., Jubas, D., Junge, B., Kalb, W., Kalling, R., Kamath, C., Kang, J., Kaplan, D., Kaptanoglu, A., Kasdorf, S., Kates-Harbeck, J., Kazantzidis, P., Kellman, A., Kellman, D., Kessel, C., Khumthong, K., Kim, E., Kim, H., Kim, J., Kim, S., Kim, K., Kim, C., Kimura, W., King, M., King, J., Kinsey, J., Kirk, A., Kiyan, B., Kleiner, A., Klevarova, V., Knapp, R., Knolker, M., Ko, W., Kobayashi, T., Koch, E., Kochan, M., Koel, B., Koepke, M., Kohn, A., Kolasinski, R., Kolemen, E., Kostadinova, E., Kostuk, M., Kramer, G., Kriete, D., Kripner, L., Kubota, S., Kulchar, J., Kwon, K., La Haye, R., Laggner, F., Lan, H., Lantsov, R., Lao, L., Lasa Esquisabel, A., Lasnier, C., Lau, C., Leard, B., Lee, J., Lee, R., Lee, M., Lee, Y., Lee, C., Lee, S., Lehnen, M., Leonard, A., Leppink, E., Lesher, M., Lestz, J., Leuer, J., Leuthold, N., Li, X., Li, K., Li, E., Li, G., Li, L., Li, Z., Li, J., Li, Y., Lin, Z., Lin, D., Liu, X., Liu, J., Liu, Y., Liu, T., Liu, C., Liu, Z., Liu, D., Liu, A., Loarte-Prieto, A., Lodestro, L., Logan, N., Lohr, J., Lombardo, B., Lore, J., Luan, Q., Luce, T., Luda Di Cortemiglia, T., Luhmann, N., Lunsford, R., Luo, Z., Lvovskiy, A., Lyons, B., Ma, X., Madruga, M., Madsen, B., Maggi, C., Maheshwari, K., Mail, A., Mailloux, J., Maingi, R., Major, M., Makowski, M., Manchanda, R., Marini, C., Marinoni, A., Maris, A., Markovic, T., Marrelli, L., Martin, E., Mateja, J., Matsunaga, G., Maurizio, R., Mauzey, P., Mauzey, D., Mcardle, G., Mcclenaghan, J., Mccollam, K., Mcdevitt, C., Mckay, K., Mckee, G., Mclean, A., Mehta, V., Meier, E., Menard, J., Meneghini, O., Merlo, G., Messer, S., Meyer, W., Michael, C., Michoski, C., Milne, P., Minet, G., Misleh, A., Mitrishkin, Y., Moeller, C., Montes, K., Morales, M., Mordijck, S., Moreau, D., Morosohk, S., Morris, P., Morton, L., Moser, A., Moyer, R., Moynihan, C., Mrazkova, T., Mueller, D., Munaretto, S., Munoz Burgos, J., Murphy, C., Murphy, K., Muscatello, C., Myers, C., Nagy, A., Nandipati, G., Navarro, M., Nave, F., Navratil, G., Nazikian, R., Neff, A., Neilson, G., Neiser, T., Neiswanger, W., Nelson, D., Nelson, A., Nespoli, F., Nguyen, R., Nguyen, L., Nguyen, X., Nichols, J., Nocente, M., Nogami, S., Noraky, S., Norausky, N., Nornberg, M., Nygren, R., Odstrcil, T., Ogas, D., Ogorman, T., Ohdachi, S., Ohtani, Y., Okabayashi, M., Okamoto, M., Olavson, L., Olofsson, E., Omullane, M., Oneill, R., Orlov, D., Orvis, W., Osborne, T., Pace, D., Paganini Canal, G., Pajares Martinez, A., Palacios, L., Pan, C., Pan, Q., Pandit, R., Pandya, M., Pankin, A., Park, Y., Park, J., Parker, S., Parks, P., Parsons, M., Patel, B., Pawley, C., Paz-Soldan, C., Peebles, W., Pelton, S., Perillo, R., Petty, C., Peysson, Y., Pierce, D., Pigarov, A., Pigatto, L., Piglowski, D., Pinches, S., Pinsker, R., Piovesan, P., Piper, N., Pironti, A., Pitts, R., Pizzo, J., Plank, U., Podesta, M., Poli, E., Poli, F., Ponce, D., Popovic, Z., Porkolab, M., Porter, G., Powers, C., Powers, S., Prater, R., Pratt, Q., Pusztai, I., Qian, J., Qin, X., Ra, O., Rafiq, T., Raines, T., Raman, R., Rauch, J., Raymond, A., Rea, C., Reich, M., Reiman, A., Reinhold, S., Reinke, M., Reksoatmodjo, R., Ren, Q., Ren, Y., Ren, J., Rensink, M., Renteria, J., Rhodes, T., Rice, J., Roberts, R., Robinson, J., Rodriguez Fernandez, P., Rognlien, T., Rosenthal, A., Rosiello, S., Rost, J., Roveto, J., Rowan, W., Rozenblat, R., Ruane, J., Rudakov, D., Ruiz Ruiz, J., Rupani, R., Saarelma, S., Sabbagh, S., Sachdev, J., Saenz, J., Saib, S., Salewski, M., Salmi, A., Sammuli, B., Samuell, C., Sandorfi, A., Sang, C., Sarff, J., Sauter, O., Schaubel, K., Schmitz, L., Schmitz, O., Schneider, J., Schroeder, P., Schultz, K., Schuster, E., Schwartz, J., Sciortino, F., Scotti, F., Scoville, J., Seltzman, A., Seol, S., Sfiligoi, I., Shafer, M., Sharapov, S., Shen, H., Sheng, Z., Shepard, T., Shi, S., Shibata, Y., Shin, G., Shiraki, D., Shousha, R., Si, H., Simmerling, P., Sinclair, G., Sinha, J., Sinha, P., Sips, G., Sizyuk, T., Skinner, C., Sladkomedova, A., Slendebroek, T., Slief, J., Smirnov, R., Smith, J., Smith, S., Smith, D., Snipes, J., Snoep, G., Snyder, A., Snyder, P., Solano, E., Solomon, W., Song, J., Sontag, A., Soukhanovskii, V., Spendlove, J., Spong, D., Squire, J., Srinivasan, C., Stacey, W., Staebler, G., Stagner, L., Stange, T., Stangeby, P., Stefan, R., Stemprok, R., Stephan, D., Stillerman, J., Stoltzfus-Dueck, T., Stonecipher, W., Storment, S., Strait, E., Su, D., Sugiyama, L., Sun, Y., Sun, P., Sun, Z., Sun, A., Sundstrom, D., Sung, C., Sungcoco, J., Suttrop, W., Suzuki, Y., Suzuki, T., Svyatkovskiy, A., Swee, C., Sweeney, R., Sweetnam, C., Szepesi, G., Takechi, M., Tala, T., Tanaka, K., Tang, X., Tang, S., Tao, Y., Tao, R., Taussig, D., Taylor, T., Teixeira, K., Teo, K., Theodorsen, A., Thomas, D., Thome, K., Thorman, A., Thornton, A., Ti, A., Tillack, M., Timchenko, N., Tinguely, R., Tompkins, R., Tooker, J., Torrezan De Sousa, A., Trevisan, G., Tripathi, S., Trujillo Ochoa, A., Truong, D., Tsui, C., Turco, F., Turnbull, A., Umansky, M., Unterberg, E., Vaezi, P., Vail, P., Valdez, J., Valkis, W., Van Compernolle, B., Van Galen, J., Van Kampen, R., Van Zeeland, M., Verdoolaege, G., Vianello, N., Victor, B., Viezzer, E., Vincena, S., Wade, M., Waelbroeck, F., Wai, J., Wakatsuki, T., Walker, M., Wallace, G., Waltz, R., Wampler, W., Wang, L., Wang, H., Wang, Y., Wang, Z., Wang, G., Ward, S., Watkins, M., Watkins, J., Wehner, W., Wei, Y., Weiland, M., Weisberg, D., Welander, A., White, A., White, R., Wiesen, S., Wilcox, R., Wilks, T., Willensdorfer, M., Wilson, H., Wingen, A., Wolde, M., Wolff, M., Woller, K., Wolz, A., Wong, H., Woodruff, S., Wu, M., Wu, Y., Wukitch, S., Wurden, G., Xiao, W., Xie, R., Xing, Z., Xu, X., Xu, C., Xu, G., Yan, Z., Yang, X., Yang, S., Yokoyama, T., Yoneda, R., Yoshida, M., You, K., Younkin, T., Yu, J., Yu, M., Yu, G., Yuan, Q., Zaidenberg, L., Zakharov, L., Zamengo, A., Zamperini, S., Zarnstorff, M., Zeger, E., Zeller, K., Zeng, L., Zerbini, M., Zhang, L., Zhang, X., Zhang, R., Zhang, B., Zhang, J., Zhao, L., Zhao, B., Zheng, Y., Zheng, L., Zhu, B., Zhu, J., Zhu, Y., Zsutty, M., Zuin, M., Fenstermacher, M, Abbate, J, Abe, S, Abrams, T, Adams, M, Adamson, B, Aiba, N, Akiyama, T, Aleynikov, P, Allen, E, Allen, S, Anand, H, Anderson, J, Andrew, Y, Andrews, T, Appelt, D, Arbon, R, Ashikawa, N, Ashourvan, A, Aslin, M, Asnis, Y, Austin, M, Ayala, D, Bak, J, Bandyopadhyay, I, Banerjee, S, Barada, K, Bardoczi, L, Barr, J, Bass, E, Battaglia, D, Battey, A, Baumgartner, W, Baylor, L, Beckers, J, Beidler, M, Belli, E, Berkery, J, Bernard, T, Bertelli, N, Beurskens, M, Bielajew, R, Bilgili, S, Biswas, B, Blondel, S, Boedo, J, Bogatu, I, Boivin, R, Bolzonella, T, Bongard, M, Bonnin, X, Bonoli, P, Bonotto, M, Bortolon, A, Bose, S, Bosviel, N, Bouwmans, S, Boyer, M, Boyes, W, Bradley, L, Brambila, R, Brennan, D, Bringuier, S, Brodsky, L, Brookman, M, Brooks, J, Brower, D, Brown, G, Brown, W, Burke, M, Burrell, K, Butler, K, Buttery, R, Bykov, I, Byrne, P, Cacheris, A, Callahan, K, Callen, J, Campbell, G, Candy, J, Canik, J, Cano-Megias, P, Cao, N, Carayannopoulos, L, Carlstrom, T, Carrig, W, Carter, T, Cary, W, Casali, L, Cengher, M, Paz, G, Chaban, R, Chan, V, Chapman, B, Char, I, Chattopadhyay, A, Chen, R, Chen, J, Chen, X, Chen, M, Chen, Z, Choi, M, Choi, W, Choi, G, Chousal, L, Chrobak, C, Chrystal, C, Chung, Y, Churchill, R, Cianciosa, M, Clark, J, Clement, M, Coda, S, Cole, A, Collins, C, Conlin, W, Cooper, A, Cordell, J, Coriton, B, Cote, T, Cothran, J, Creely, A, Crocker, N, Crowe, C, Crowley, B, Crowley, T, Cruz-Zabala, D, Cummings, D, Curie, M, Curreli, D, Dal Molin, A, Dannels, B, Dautt-Silva, A, Davda, K, De Tommasi, G, De Vries, P, Degrandchamp, G, Degrassie, J, Demers, D, Denk, S, Depasquale, S, Deshazer, E, Diallo, A, Diem, S, Dimits, A, Ding, R, Ding, S, Ding, W, Do, T, Doane, J, Dong, G, Donovan, D, Drake, J, Drews, W, Drobny, J, Du, X, Du, H, Duarte, V, Dudt, D, Dunn, C, Duran, J, Dvorak, A, Effenberg, F, Eidietis, N, Elder, D, Eldon, D, Ellis, R, Elwasif, W, Ennis, D, Erickson, K, Ernst, D, Fasciana, M, Fedorov, D, Feibush, E, Ferraro, N, Ferreira, J, Ferron, J, Fimognari, P, Finkenthal, D, Fitzpatrick, R, Fox, P, Fox, W, Frassinetti, L, Frerichs, H, Frye, H, Fu, Y, Gage, K, Quiroga, J, Gallo, A, Gao, Q, Garcia, A, Munoz, M, Garnier, D, Garofalo, A, Gattuso, A, Geng, D, Gentle, K, Ghosh, D, Giacomelli, L, Gibson, S, Gilson, E, Giroud, C, Glass, F, Glasser, A, Glibert, D, Gohil, P, Gomez, R, Gomez, S, Gong, X, Gonzales, E, Goodman, A, Gorelov, Y, Graber, V, Granetz, R, Gray, T, Green, D, Greenfield, C, Greenwald, M, Grierson, B, Groebner, R, Grosnickle, W, Groth, M, Grunloh, H, Gu, S, Guo, W, Guo, H, Gupta, P, Guterl, J, Guttenfelder, W, Guzman, T, Haar, S, Hager, R, Hahn, S, Halfmoon, M, Hall, T, Hallatschek, K, Halpern, F, Hammett, G, Han, H, Hansen, E, Hansen, C, Hansink, M, Hanson, J, Hanson, M, Hao, G, Harris, A, Harvey, R, Haskey, S, Hassan, E, Hassanein, A, Hatch, D, Hawryluk, R, Hayashi, W, Heidbrink, W, Herfindal, J, Hicok, J, Hill, D, Hinson, E, Holcomb, C, Holland, L, Holland, C, Hollmann, E, Hollocombe, J, Holm, A, Holmes, I, Holtrop, K, Honda, M, Hong, R, Hood, R, Horton, A, Horvath, L, Hosokawa, M, Houshmandyar, S, Howard, N, Howell, E, Hoyt, D, Hu, W, Hu, Y, Hu, Q, Huang, J, Huang, Y, Hughes, J, Human, T, Humphreys, D, Huynh, P, Hyatt, A, Ibanez, C, Ibarra, L, Icasas, R, Ida, K, Igochine, V, In, Y, Inoue, S, Isayama, A, Izacard, O, Izzo, V, Jackson, A, Jacobsen, G, Jaervinen, A, Jalalvand, A, Janhunen, J, Jardin, S, Jarleblad, H, Jeon, Y, Ji, H, Jian, X, Joffrin, E, Johansen, A, Johnson, C, Johnson, T, Jones, C, Joseph, I, Jubas, D, Junge, B, Kalb, W, Kalling, R, Kamath, C, Kang, J, Kaplan, D, Kaptanoglu, A, Kasdorf, S, Kates-Harbeck, J, Kazantzidis, P, Kellman, A, Kellman, D, Kessel, C, Khumthong, K, Kim, E, Kim, H, Kim, J, Kim, S, Kim, K, Kim, C, Kimura, W, King, M, King, J, Kinsey, J, Kirk, A, Kiyan, B, Kleiner, A, Klevarova, V, Knapp, R, Knolker, M, Ko, W, Kobayashi, T, Koch, E, Kochan, M, Koel, B, Koepke, M, Kohn, A, Kolasinski, R, Kolemen, E, Kostadinova, E, Kostuk, M, Kramer, G, Kriete, D, Kripner, L, Kubota, S, Kulchar, J, Kwon, K, La Haye, R, Laggner, F, Lan, H, Lantsov, R, Lao, L, Esquisabel, A, Lasnier, C, Lau, C, Leard, B, Lee, J, Lee, R, Lee, M, Lee, Y, Lee, C, Lee, S, Lehnen, M, Leonard, A, Leppink, E, Lesher, M, Lestz, J, Leuer, J, Leuthold, N, Li, X, Li, K, Li, E, Li, G, Li, L, Li, Z, Li, J, Li, Y, Lin, Z, Lin, D, Liu, X, Liu, J, Liu, Y, Liu, T, Liu, C, Liu, Z, Liu, D, Liu, A, Loarte-Prieto, A, Lodestro, L, Logan, N, Lohr, J, Lombardo, B, Lore, J, Luan, Q, Luce, T, Di Cortemiglia, T, Luhmann, N, Lunsford, R, Luo, Z, Lvovskiy, A, Lyons, B, Ma, X, Madruga, M, Madsen, B, Maggi, C, Maheshwari, K, Mail, A, Mailloux, J, Maingi, R, Major, M, Makowski, M, Manchanda, R, Marini, C, Marinoni, A, Maris, A, Markovic, T, Marrelli, L, Martin, E, Mateja, J, Matsunaga, G, Maurizio, R, Mauzey, P, Mauzey, D, Mcardle, G, Mcclenaghan, J, Mccollam, K, Mcdevitt, C, Mckay, K, Mckee, G, Mclean, A, Mehta, V, Meier, E, Menard, J, Meneghini, O, Merlo, G, Messer, S, Meyer, W, Michael, C, Michoski, C, Milne, P, Minet, G, Misleh, A, Mitrishkin, Y, Moeller, C, Montes, K, Morales, M, Mordijck, S, Moreau, D, Morosohk, S, Morris, P, Morton, L, Moser, A, Moyer, R, Moynihan, C, Mrazkova, T, Mueller, D, Munaretto, S, Burgos, J, Murphy, C, Murphy, K, Muscatello, C, Myers, C, Nagy, A, Nandipati, G, Navarro, M, Nave, F, Navratil, G, Nazikian, R, Neff, A, Neilson, G, Neiser, T, Neiswanger, W, Nelson, D, Nelson, A, Nespoli, F, Nguyen, R, Nguyen, L, Nguyen, X, Nichols, J, Nocente, M, Nogami, S, Noraky, S, Norausky, N, Nornberg, M, Nygren, R, Odstrcil, T, Ogas, D, Ogorman, T, Ohdachi, S, Ohtani, Y, Okabayashi, M, Okamoto, M, Olavson, L, Olofsson, E, Omullane, M, Oneill, R, Orlov, D, Orvis, W, Osborne, T, Pace, D, Canal, G, Martinez, A, Palacios, L, Pan, C, Pan, Q, Pandit, R, Pandya, M, Pankin, A, Park, Y, Park, J, Parker, S, Parks, P, Parsons, M, Patel, B, Pawley, C, Paz-Soldan, C, Peebles, W, Pelton, S, Perillo, R, Petty, C, Peysson, Y, Pierce, D, Pigarov, A, Pigatto, L, Piglowski, D, Pinches, S, Pinsker, R, Piovesan, P, Piper, N, Pironti, A, Pitts, R, Pizzo, J, Plank, U, Podesta, M, Poli, E, Poli, F, Ponce, D, Popovic, Z, Porkolab, M, Porter, G, Powers, C, Powers, S, Prater, R, Pratt, Q, Pusztai, I, Qian, J, Qin, X, Ra, O, Rafiq, T, Raines, T, Raman, R, Rauch, J, Raymond, A, Rea, C, Reich, M, Reiman, A, Reinhold, S, Reinke, M, Reksoatmodjo, R, Ren, Q, Ren, Y, Ren, J, Rensink, M, Renteria, J, Rhodes, T, Rice, J, Roberts, R, Robinson, J, Fernandez, P, Rognlien, T, Rosenthal, A, Rosiello, S, Rost, J, Roveto, J, Rowan, W, Rozenblat, R, Ruane, J, Rudakov, D, Ruiz, J, Rupani, R, Saarelma, S, Sabbagh, S, Sachdev, J, Saenz, J, Saib, S, Salewski, M, Salmi, A, Sammuli, B, Samuell, C, Sandorfi, A, Sang, C, Sarff, J, Sauter, O, Schaubel, K, Schmitz, L, Schmitz, O, Schneider, J, Schroeder, P, Schultz, K, Schuster, E, Schwartz, J, Sciortino, F, Scotti, F, Scoville, J, Seltzman, A, Seol, S, Sfiligoi, I, Shafer, M, Sharapov, S, Shen, H, Sheng, Z, Shepard, T, Shi, S, Shibata, Y, Shin, G, Shiraki, D, Shousha, R, Si, H, Simmerling, P, Sinclair, G, Sinha, J, Sinha, P, Sips, G, Sizyuk, T, Skinner, C, Sladkomedova, A, Slendebroek, T, Slief, J, Smirnov, R, Smith, J, Smith, S, Smith, D, Snipes, J, Snoep, G, Snyder, A, Snyder, P, Solano, E, Solomon, W, Song, J, Sontag, A, Soukhanovskii, V, Spendlove, J, Spong, D, Squire, J, Srinivasan, C, Stacey, W, Staebler, G, Stagner, L, Stange, T, Stangeby, P, Stefan, R, Stemprok, R, Stephan, D, Stillerman, J, Stoltzfus-Dueck, T, Stonecipher, W, Storment, S, Strait, E, Su, D, Sugiyama, L, Sun, Y, Sun, P, Sun, Z, Sun, A, Sundstrom, D, Sung, C, Sungcoco, J, Suttrop, W, Suzuki, Y, Suzuki, T, Svyatkovskiy, A, Swee, C, Sweeney, R, Sweetnam, C, Szepesi, G, Takechi, M, Tala, T, Tanaka, K, Tang, X, Tang, S, Tao, Y, Tao, R, Taussig, D, Taylor, T, Teixeira, K, Teo, K, Theodorsen, A, Thomas, D, Thome, K, Thorman, A, Thornton, A, Ti, A, Tillack, M, Timchenko, N, Tinguely, R, Tompkins, R, Tooker, J, De Sousa, A, Trevisan, G, Tripathi, S, Ochoa, A, Truong, D, Tsui, C, Turco, F, Turnbull, A, Umansky, M, Unterberg, E, Vaezi, P, Vail, P, Valdez, J, Valkis, W, Van Compernolle, B, Van Galen, J, Van Kampen, R, Van Zeeland, M, Verdoolaege, G, Vianello, N, Victor, B, Viezzer, E, Vincena, S, Wade, M, Waelbroeck, F, Wai, J, Wakatsuki, T, Walker, M, Wallace, G, Waltz, R, Wampler, W, Wang, L, Wang, H, Wang, Y, Wang, Z, Wang, G, Ward, S, Watkins, M, Watkins, J, Wehner, W, Wei, Y, Weiland, M, Weisberg, D, Welander, A, White, A, White, R, Wiesen, S, Wilcox, R, Wilks, T, Willensdorfer, M, Wilson, H, Wingen, A, Wolde, M, Wolff, M, Woller, K, Wolz, A, Wong, H, Woodruff, S, Wu, M, Wu, Y, Wukitch, S, Wurden, G, Xiao, W, Xie, R, Xing, Z, Xu, X, Xu, C, Xu, G, Yan, Z, Yang, X, Yang, S, Yokoyama, T, Yoneda, R, Yoshida, M, You, K, Younkin, T, Yu, J, Yu, M, Yu, G, Yuan, Q, Zaidenberg, L, Zakharov, L, Zamengo, A, Zamperini, S, Zarnstorff, M, Zeger, E, Zeller, K, Zeng, L, Zerbini, M, Zhang, L, Zhang, X, Zhang, R, Zhang, B, Zhang, J, Zhao, L, Zhao, B, Zheng, Y, Zheng, L, Zhu, B, Zhu, J, Zhu, Y, Zsutty, M, Zuin, M, Lawrence Livermore National Laboratory, Princeton Plasma Physics Laboratory, Princeton University, General Atomics, Max-Planck-Institut für Plasmaphysik, Imperial College London, National Institute for Fusion Science, Universidade de São Paulo, University of Texas at Austin, ITER, College of William and Mary, University of California Los Angeles, University of California San Diego, Columbia University, Massachusetts Institute of Technology, Oak Ridge National Laboratory, Eindhoven University of Technology, Oak Ridge Associated Universities, West Virginia University, University of Tennessee, Knoxville, National Research Council of Italy, Stony Brook University, Purdue University, University of Seville, University of Science and Technology of China, Carnegie Mellon University, Institute for Plasma Research, Peking University, University of California Davis, University of California Irvine, Commonwealth Fusion Systems, University of Liverpool, University of Illinois at Urbana-Champaign, University of Milan - Bicocca, Georgia Institute of Technology, Southwestern Institute of Physics, University of Toronto, Auburn University, Polytechnic University of Turin, Universidade Lisboa, Association CCFE, KTH Royal Institute of Technology, San Diego State University, Durham University, Lehigh University, Fusion and Plasma Physics, University of Washington, Department of Applied Physics, Sandia National Laboratories, Ghent University, Technical University of Denmark, CEA, University of Colorado Boulder, Harvard University, National Technical University of Athens, Coventry University, University of Stuttgart, Czech Academy of Sciences, Harvey Mudd College, Seoul National University, Donghua University, University of York, Dalian University of Technology, University of California Berkeley, Los Alamos National Laboratory, United States Department of Energy, University of British Columbia, Pacific Northwest National Laboratory, University of Wisconsin, Michigan State University, University of Strathclyde, Pennsylvania State University, Rensselaer Polytechnic Institute, University of Southern California, Chalmers University of Technology, University of Virginia, University of Naples Federico II, University of Oxford, VTT Technical Research Centre of Finland, National Institute of Technology, University of Connecticut, DIFFER, CIEMAT, Hanyang University, Brigham Young University, UiT The Arctic University of Norway, Australian National University, Russian Research Centre Kurchatov Institute, Forschungszentrum Jülich, Zhejiang University, The University of Tokyo, University of Michigan, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Aalto-yliopisto, Aalto University, DIII-D Team, Complex Ionized Media, Elementary Processes in Gas Discharges, Applied Physics and Science Education, Science and Technology of Nuclear Fusion, and Control Systems Technology
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Technology and Engineering ,DIII-D ,Nuclear engineering ,TOKAMAKS ,MITIGATION ,law.invention ,Plasma physics ,mitigation ,law ,plasma physic ,tokamak ,Physics ,Core-edge integration ,Basis (linear algebra) ,plasma physics ,core-edge integration ,scenarios ,Fusion power ,Condensed Matter Physics ,SCENARIOS ,fusion energy ,Fusion energy - Abstract
Funding Information: This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698 and DE-AC52-07NA27344. Publisher Copyright: © 2022 IAEA, Vienna. DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
- Published
- 2022
- Full Text
- View/download PDF
13. A new hard x-ray spectrometer for runaway electron measurements in tokamaks
- Author
-
A Dal Molin, M Nocente, M Dalla Rosa, E Panontin, D Rigamonti, M Tardocchi, A Shevelev, E Khilkevitch, M Iliasova, L Giacomelli, G Gorini, E Perelli Cippo, F D’Isa, G Pautasso, G Papp, G Tardini, E Macusova, J Cerovsky, O Ficker, M Salewski, V Kiptily, EUROfusion MST1 Team, COMPASS Team, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Applied Mathematics ,Nuclear instruments and methods for hot plasma diagnostics ,X-ray detectors ,Instrumentation ,Engineering (miscellaneous) ,Runaway electrons - Abstract
Runaway electron gamma-ray detection system, a novel hard x-ray (HXR) spectrometer optimized for bremsstrahlung radiation measurement from runaway electrons in fusion plasmas, has been developed. The detector is based on a 1‘×1’ LaBr3:Ce scintillator crystal coupled with a photomultiplier tube. The system has an energy dynamic range exceeding 20 MeV with an energy resolution of 3% at 661.7 keV. The detector gain is stable even under severe loads, with a gain shift that stays below 3% at HXR counting rates in excess of 1 MCps. The performance of the system enables unprecedented studies of the time-dependent runaway electron energy distribution function, as shown in recent runaway electron physics experiments at the ASDEX Upgrade and COMPASS tokamaks.
- Published
- 2023
- Full Text
- View/download PDF
14. Physics of runaway electrons with shattered pellet injection at JET
- Author
-
Reux, C, Paz-Soldan, C, Eidietis, N, Lehnen, M, Aleynikov, P, Silburn, S, Bandaru, V, Ficker, O, Hoelzl, M, M Hollmann, E, Jachmich, S, Joffrin, E, J Lomas, P, Rimini, F, Baylor, L, Bleasdale, A, Calacci, L, Causa, F, Carnevale, D, Coffey, I, Craven, D, Dal Molin, A, de la Luna, E, De Tommasi, G, Garcia, J, Gebhart, T, Giacomelli, L, Huber, A, Khilkevich, E, Lowry, C, Macusova, E, Manzanares, A, Nocente, M, Panontin, E, Papp, G, Pautasso, G, Peacock, A, Plyusnin, V, Shevelev, A, Shiraki, D, Sommariva, C, Sozzi, C, Sridhar, S, Sweeney, R, Szepesi, G, A Tinguely, R, Wilson, J, C Reux, C Paz-Soldan, N Eidietis, M Lehnen, P Aleynikov, S Silburn, V Bandaru, O Ficker, M Hoelzl, E M Hollmann, S Jachmich, E Joffrin, P J Lomas, F Rimini, L Baylor, A Bleasdale, L Calacci, F Causa, D Carnevale, I Coffey, D Craven, A Dal Molin, E de la Luna, G De Tommasi, J Garcia, T Gebhart, L Giacomelli, A Huber, E Khilkevich, C Lowry, E Macusova, A Manzanares, M Nocente, E Panontin, G Papp, G Pautasso, A Peacock, V Plyusnin, A Shevelev, D Shiraki, C Sommariva, C Sozzi, S Sridhar, R Sweeney, G Szepesi, R A Tinguely, J Wilson, Reux, C, Paz-Soldan, C, Eidietis, N, Lehnen, M, Aleynikov, P, Silburn, S, Bandaru, V, Ficker, O, Hoelzl, M, M Hollmann, E, Jachmich, S, Joffrin, E, J Lomas, P, Rimini, F, Baylor, L, Bleasdale, A, Calacci, L, Causa, F, Carnevale, D, Coffey, I, Craven, D, Dal Molin, A, de la Luna, E, De Tommasi, G, Garcia, J, Gebhart, T, Giacomelli, L, Huber, A, Khilkevich, E, Lowry, C, Macusova, E, Manzanares, A, Nocente, M, Panontin, E, Papp, G, Pautasso, G, Peacock, A, Plyusnin, V, Shevelev, A, Shiraki, D, Sommariva, C, Sozzi, C, Sridhar, S, Sweeney, R, Szepesi, G, A Tinguely, R, Wilson, J, C Reux, C Paz-Soldan, N Eidietis, M Lehnen, P Aleynikov, S Silburn, V Bandaru, O Ficker, M Hoelzl, E M Hollmann, S Jachmich, E Joffrin, P J Lomas, F Rimini, L Baylor, A Bleasdale, L Calacci, F Causa, D Carnevale, I Coffey, D Craven, A Dal Molin, E de la Luna, G De Tommasi, J Garcia, T Gebhart, L Giacomelli, A Huber, E Khilkevich, C Lowry, E Macusova, A Manzanares, M Nocente, E Panontin, G Papp, G Pautasso, A Peacock, V Plyusnin, A Shevelev, D Shiraki, C Sommariva, C Sozzi, S Sridhar, R Sweeney, G Szepesi, R A Tinguely, and J Wilson
- Abstract
Runaway electrons (REs) created during tokamak disruptions pose a threat to the reliable operation of future larger machines. Experiments using shattered pellet injection (SPI) have been carried out at the JET tokamak to investigate ways to prevent their generation or suppress them if avoidance is not sufficient. Avoidance is possible if the SPI contains a sufficiently low fraction of high-Z material, or if it is fired early in advance of a disruption prone to runaway generation. These results are consistent with previous similar findings obtained with Massive Gas Injection. Suppression of an already accelerated beam is not efficient using High-Z material, but deuterium leads to harmless terminations without heat loads. This effect is due to the combination of a large magnetohydrodynamic instability scattering REs on a large area and the absence of runaway regeneration during the subsequent current collapse thanks to the flushing of high-Z impurities from the runaway companion plasma. This effect also works in situations where the runaway beam moves upwards and undergoes scraping-off on the wall.
- Published
- 2022
15. Gamma-ray measurements in D fusion plasma experiments on JET
- Author
-
Iliasova, M, Shevelev, A, Khilkevich, E, Kazakov, Y, Kiptily, V, Nocente, M, Giacomelli, L, Craciunescu, T, Stancar, Z, Dal Molin, A, Rigamonti, D, Tardocchi, M, Doinikov, D, Gorini, G, Naidenov, V, Polunovsky, I, Gin, D, M. Iliasova, A. Shevelev, E. Khilkevich, Ye. Kazakov, V. Kiptily, M. Nocente, L. Giacomelli, T. Craciunescu, Z. Stancar, A. Dal Molin, D. Rigamonti, M. Tardocchi, D. Doinikov, G. Gorini, V. Naidenov, I. Polunovsky, D. Gin, Iliasova, M, Shevelev, A, Khilkevich, E, Kazakov, Y, Kiptily, V, Nocente, M, Giacomelli, L, Craciunescu, T, Stancar, Z, Dal Molin, A, Rigamonti, D, Tardocchi, M, Doinikov, D, Gorini, G, Naidenov, V, Polunovsky, I, Gin, D, M. Iliasova, A. Shevelev, E. Khilkevich, Ye. Kazakov, V. Kiptily, M. Nocente, L. Giacomelli, T. Craciunescu, Z. Stancar, A. Dal Molin, D. Rigamonti, M. Tardocchi, D. Doinikov, G. Gorini, V. Naidenov, I. Polunovsky, and D. Gin
- Abstract
Using capabilities of the gamma-ray spectrometry, fusion born alpha-particles were studied in recent D-3He plasma experiments on JET. A substantial population of the alpha-particles was generated in the He-3-rich plasma due to the He-3(D, p)He-4 reaction. Fast deuterium ions of the neutral beam injection (NBI) heating were accelerated to MeV energies with three-ion scenario D-(DNBI)-He-3 using radio frequency waves in the ion cyclotron range of frequencies (ICRF). A high reaction rate allowed to measure the alpha-particle production rate and their spatial distribution in the plasma by detecting 16.7-MeV gamma-rays from the He-3(D, y)Li-5 reaction, which is a weak branch of He-3(D, p)He-4 reaction. A branching ratio of gamma-ray transitions to the ground and the first excited states of Li-5 was obtained. Due to the beryllium is a main impurity of JET plasmas, intensive gamma-rays from the Be-9(D, ny)10B, Be-9(D, py)Be-10 and Be-9(a, ny)C-12 reactions were observed. Exploitation of the reaction cross-sections and the Doppler shape analysis (DSA) of gamma-lines in the recorded spectra provided the possibility to reconstruct distribution functions of the confined D-ions and the fusion-born alpha-particles.
- Published
- 2022
16. First measurement of neutrons produced by deuterium fusion reactions in SPIDER
- Author
-
O. McCormack, L. Giacomelli, G. Croci, A. Muraro, I. Mario, M. Zuin, L. Cordaro, G. Gorini, E.P. Cippo, G. Grosso, D. Rigamonti, M. Rebai, R. Pasqualotto, M. Tardocchi, Mccormack, O, Giacomelli, L, Croci, G, Muraro, A, Mario, I, Zuin, M, Cordaro, L, Gorini, G, Cippo, E, Grosso, G, Rigamonti, D, Rebai, M, Pasqualotto, R, and Tardocchi, M
- Subjects
Instrumentation for neutron sources ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Deuterium Fusion Reactors ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Negative Ion Source ,Scintillators scintillation and light emission processes (solid gas and liquid scintillators) ,Physics::Plasma Physics ,SPIER ,Physics::Accelerator Physics ,Instrumentation for neutron source ,Nuclear Experiment ,Instrumentation ,Mathematical Physics - Abstract
The inaugural deuterium acceleration campaign in the SPIDER negative ion source facility in Padua has recently taken place. The first neutrons generated by deuterium-deuterium beam-target fusion reactions (2.45 MeV) have been recorded, occurring from the collision of accelerated deuterium with deuterium absorbed by the calorimeter of SPIDER. A neutron detector based on a novel EJ276 plastic scintillator has been employed to successfully measure the neutron flux, which shows strong agreement with the extracted current of the acceleration grid. We have performed neutron-gamma pulse shape discrimination with the EJ276 device at SPIDER combined with direct spectroscopic comparisons of the D-D neutrons with data from the Frascati neutron generator (241AmB quasi-monoenergetic 2.5 MeV). Despite the low statistics produced in this first campaign, both pulse shape discrimination and spectral analysis of the fusion neutrons was viable. The success of these first measurements has led to the installation of an array of 6 new scintillators to be used for further physical studies in future campaigns.
- Published
- 2022
- Full Text
- View/download PDF
17. Gamma-ray measurements in D fusion plasma experiments on JET
- Author
-
M. Iliasova, A. Shevelev, E. Khilkevich, Ye. Kazakov, V. Kiptily, M. Nocente, L. Giacomelli, T. Craciunescu, Z. Stancar, A. Dal Molin, D. Rigamonti, M. Tardocchi, D. Doinikov, G. Gorini, V. Naidenov, I. Polunovsky, D. Gin, Iliasova, M, Shevelev, A, Khilkevich, E, Kazakov, Y, Kiptily, V, Nocente, M, Giacomelli, L, Craciunescu, T, Stancar, Z, Dal Molin, A, Rigamonti, D, Tardocchi, M, Doinikov, D, Gorini, G, Naidenov, V, Polunovsky, I, and Gin, D
- Subjects
Tokamak plasma ,Fusion reaction ,Fusion rate ,Gamma-ray spectrometry ,Alpha-particle - Abstract
Using capabilities of the gamma-ray spectrometry, fusion born alpha-particles were studied in recent D-3He plasma experiments on JET. A substantial population of the alpha-particles was generated in the He-3-rich plasma due to the He-3(D, p)He-4 reaction. Fast deuterium ions of the neutral beam injection (NBI) heating were accelerated to MeV energies with three-ion scenario D-(DNBI)-He-3 using radio frequency waves in the ion cyclotron range of frequencies (ICRF). A high reaction rate allowed to measure the alpha-particle production rate and their spatial distribution in the plasma by detecting 16.7-MeV gamma-rays from the He-3(D, y)Li-5 reaction, which is a weak branch of He-3(D, p)He-4 reaction. A branching ratio of gamma-ray transitions to the ground and the first excited states of Li-5 was obtained. Due to the beryllium is a main impurity of JET plasmas, intensive gamma-rays from the Be-9(D, ny)10B, Be-9(D, py)Be-10 and Be-9(a, ny)C-12 reactions were observed. Exploitation of the reaction cross-sections and the Doppler shape analysis (DSA) of gamma-lines in the recorded spectra provided the possibility to reconstruct distribution functions of the confined D-ions and the fusion-born alpha-particles.
- Published
- 2022
18. Integrated approach for the molecular characterization of edited plants obtained via Agrobacterium tumefaciens-mediated gene transfer
- Author
-
Katia Spinella, Stefano Piazza, Lorenza Dalla Costa, Mickael Malnoy, Umberto Salvagnin, L. Giacomelli, Claudio Moser, Daniela Vinciguerra, and Ugo Marchesi
- Subjects
Agrobacterium ,Cas9 ,GMO ,Copy number quantifcation ,ddPCR ,General Chemistry ,Computational biology ,Biology ,biology.organism_classification ,Biochemistry ,Genome ,Industrial and Manufacturing Engineering ,DNA sequencing ,law.invention ,qPCR ,Settore AGR/07 - GENETICA AGRARIA ,law ,NGS ,CRISPR ,Digital polymerase chain reaction ,Gene ,Polymerase chain reaction ,Food Science ,Biotechnology ,Genome editing - Abstract
Agrobacterium tumefaciens-mediated gene transfer—actually the most used method to engineer plants—may lead to integration of multiple copies of T-DNA in the plant genome, as well as to chimeric tissues composed of modified cells and wild type cells. A molecular characterization of the transformed lines is thus a good practice to select the best ones for further investigation. Nowadays, several quantitative and semi-quantitative techniques are available to estimate the copy number (CN) of the T-DNA in genetically modified plants. In this study, we compared three methods based on (1) real-time polymerase chain reaction (qPCR), (2) droplet digital PCR (ddPCR), and (3) next generation sequencing (NGS), to carry out a molecular characterization of grapevine edited lines. These lines contain a knock-out mutation, obtained via CRISPR/Cas9 technology, in genes involved in plant susceptibility to two important mildew diseases of grapevine. According to our results, qPCR and ddPCR outputs are largely in agreement in terms of accuracy, especially for low CN values, while ddPCR resulted more precise than qPCR. With regard to the NGS analysis, the CNs detected with this method were often not consistent with those calculated by qPCR and ddPCR, and NGS was not able to discriminate the integration points in three out of ten lines. Nevertheless, the NGS method can positively identify T-DNA truncations or the presence of tandem/inverted repeats, providing distinct and relevant information about the transgene integration asset. Moreover, the expression analysis of Cas9 and single guide RNA (sgRNA), and the sequencing of the target site added new information to be related to CN data. This work, by reporting a practical case-study on grapevine edited lines, explores pros and cons of the most advanced diagnostic techniques available for the precocious selection of the proper transgenic material. The results may be of interest both to scientists developing new transgenic lines, and to laboratories in charge of GMO control.
- Published
- 2022
19. Development of a concept and basis for the DEMO diagnostic and control system
- Author
-
W. Biel, M. Ariola, I. Bolshakova, K.J. Brunner, M. Cecconello, I. Duran, Th. Franke, L. Giacomelli, L. Giannone, F. Janky, A. Krimmer, R. Luis, A. Malaquias, G. Marchiori, O. Marchuk, D. Mazon, A. Pironti, A. Quercia, N. Rispoli, S. El Shawish, M. Siccinio, A. Silva, C. Sozzi, G. Tartaglione, T. Todd, W. Treutterer, H. Zohm, Biel, W., Ariola, M., Bolshakova, I., Brunner, K. J., Cecconello, M., Duran, I., Franke, T., Giacomelli, L., Giannone, L., Janky, F., Krimmer, A., Luis, R., Malaquias, A., Marchiori, G., Marchuk, O., Mazon, D., Pironti, A., Quercia, A., Rispoli, N., Shawish, S. E., Siccinio, M., Silva, A., Sozzi, C., Tartaglione, G., Todd, T., Treutterer, W., and Zohm, H.
- Subjects
Technology and Engineering ,BURN CONTROL ,SPECTROSCOPY ,Plasma diagnostic ,MAGNETIC CONTROL ,PLASMA ,Tokamak ,RESEARCH-AND-DEVELOPMENT ,Mechanical Engineering ,DENSITY-MEASUREMENTS ,ALCATOR C-MOD ,Plasma control ,Fusion, Plasma and Space Physics ,HALL SENSORS ,Plasma diagnostics ,Fusion, plasma och rymdfysik ,DESIGN ,Nuclear Energy and Engineering ,General Materials Science ,ddc:530 ,DEMO ,ITER DIAGNOSTICS ,Civil and Structural Engineering - Abstract
An initial concept for the plasma diagnostic and control (D&C) system has been developed as part of European studies towards the development of a demonstration tokamak fusion reactor (DEMO). The main objective is to develop a feasible, integrated concept design of the DEMO D&C system that can provide reliable plasma control and high performance (electricity output) over extended periods of operation. While the fusion power is maximized when operating near to the operational limits of the tokamak, the reliability of operation typically improves when choosing parameters significantly distant from these limits. In addition to these conflicting requirements, the D&C development has to cope with strong adverse effects acting on all in vessel components on DEMO (harsh neutron environment, particle fluxes, temperatures, electromagnetic forces, etc.). Moreover, space allocation and plasma access are constrained by the needs for first wall integrity and optimization of tritium breeding. Taking into account these boundary conditions, the main DEMO plasma control issues have been formulated, and a list of diagnostic systems and channels needed for plasma control has been developed, which were selected for their robustness and the required coverage of control issues. For a validation and refinement of this concept, simulation tools are being refined and applied for equilibrium, kinetic and mode control studies.
- Published
- 2022
- Full Text
- View/download PDF
20. Plasma physics and control studies planned in JT-60SA for ITER and DEMO operations and risk mitigation
- Author
-
M Yoshida, G Giruzzi, N Aiba, J F Artaud, J Ayllon-Guerola, L Balbinot, O Beeke, E Belonohy, P Bettini, W Bin, A Bierwage, T Bolzonella, M Bonotto, C Boulbe, J Buermans, M Chernyshova, S Coda, R Coelho, S Davis, C Day, G De Tommasi, M Dibon, A Ejiri, G Falchetto, A Fassina, B Faugeras, L Figini, M Fukumoto, S Futatani, K Galazka, J Garcia, M Garcia-Muñoz, L Garzotti, L Giacomelli, L Giudicotti, S Hall, N Hayashi, C Hoa, M Honda, K Hoshino, M Iafrati, A Iantchenko, S Ide, S Iio, R Imazawa, S Inoue, A Isayama, E Joffrin, K Kamiya, Y Ko, M Kobayashi, T Kobayashi, G Kocsis, A Kovacsik, T Kurki-Suonio, B Lacroix, P Lang, Ph Lauber, A Louzguiti, E de la Luna, G Marchiori, M Mattei, A Matsuyama, S Mazzi, A Mele, F Michel, Y Miyata, J Morales, P Moreau, A Moro, T Nakano, M Nakata, E Narita, R Neu, S Nicollet, M Nocente, S Nowak, F P Orsitto, V Ostuni, Y Ohtani, N Oyama, R Pasqualotto, B Pégourié, E Perelli, L Pigatto, C Piccinni, A Pironti, P Platania, B Ploeckl, D Ricci, P Roussel, G Rubino, R Sano, K Särkimäki, K Shinohara, S Soare, C Sozzi, S Sumida, T Suzuki, Y Suzuki, T Szabolics, T Szepesi, Y Takase, M Takech, N Tamura, K Tanaka, H Tanaka, M Tardocchi, A Terakado, H Tojo, T Tokuzawa, A Torre, N Tsujii, H Tsutsui, Y Ueda, H Urano, M Valisa, M Vallar, J Vega, F Villone, T Wakatsuki, T Wauters, M Wischmeier, S Yamoto, L Zani, Yoshida, M, Giruzzi, G, Aiba, N, Artaud, J F, Ayllon-Guerola, J, Balbinot, L, Beeke, O, Belonohy, E, Bettini, P, Bin, W, Bierwage, A, Bolzonella, T, Bonotto, M, Boulbe, C, Buermans, J, Chernyshova, M, Coda, S, Coelho, R, Davis, S, Day, C, De Tommasi, G, Dibon, M, Ejiri, A, Falchetto, G, Fassina, A, Faugeras, B, Figini, L, Fukumoto, M, Futatani, S, Galazka, K, Garcia, J, Garcia-Muñoz, M, Garzotti, L, Giacomelli, L, Giudicotti, L, Hall, S, Hayashi, N, Hoa, C, Honda, M, Hoshino, K, Iafrati, M, Iantchenko, A, Ide, S, Iio, S, Imazawa, R, Inoue, S, Isayama, A, Joffrin, E, Kamiya, K, Ko, Y, Kobayashi, M, Kobayashi, T, Kocsis, G, Kovacsik, A, Kurki-Suonio, T, Lacroix, B, Lang, P, Lauber, Ph, Louzguiti, A, de la Luna, E, Marchiori, G, Mattei, M, Matsuyama, A, Mazzi, S, Mele, A, Michel, F, Miyata, Y, Morales, J, Moreau, P, Moro, A, Nakano, T, Nakata, M, Narita, E, Neu, R, Nicollet, S, Nocente, M, Nowak, S, Orsitto, F P, Ostuni, V, Ohtani, Y, Oyama, N, Pasqualotto, R, Pégourié, B, Perelli, E, Pigatto, L, Piccinni, C, Pironti, A, Platania, P, Ploeckl, B, Ricci, D, Roussel, P, Rubino, G, Sano, R, Särkimäki, K, Shinohara, K, Soare, S, Sozzi, C, Sumida, S, Suzuki, T, Suzuki, Y, Szabolics, T, Szepesi, T, Takase, Y, Takech, M, Tamura, N, Tanaka, K, Tanaka, H, Tardocchi, M, Terakado, A, Tojo, H, Tokuzawa, T, Torre, A, Tsujii, N, Tsutsui, H, Ueda, Y, Urano, H, Valisa, M, Vallar, M, Vega, J, Villone, F, Wakatsuki, T, Wauters, T, Wischmeier, M, Yamoto, S, Zani, L, Artaud, J, Garcia-Munoz, M, Lauber, P, Orsitto, F, Pegourie, B, Sarkimaki, K, Control, Analysis and Simulations for TOkamak Research (CASTOR), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group, National Institutes for Quantum and Radiological Science and Technology, CEA, University of Seville, National Research Council of Italy, University of Oxford, JET, CNR-ENEA-EURATOM Association, Université Côte d'Azur, Royal Military Academy, Soltan Institute for Nuclear Studies, Swiss Federal Institute of Technology Lausanne, Universidade Lisboa, Fusion for Energy, Karlsruhe Institute of Technology, University of Naples Federico II, Max-Planck-Institut für Plasmaphysik, The University of Tokyo, BarcelonaTech, Kyoto University, Keio University, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Tokyo Institute of Technology, Nagoya University, Centre for Energy Research, Budapest University of Technology and Economics, Department of Applied Physics, CIEMAT, Physique des Interactions Ioniques et Moleculaires, National Institute for Fusion Science, University of Milan - Bicocca, Tuscia University, Institute of Cryogenics and Isotopic Technologies - ICIT, National Institutes for Quantum Science and Technology, Aalto-yliopisto, and Aalto University
- Subjects
Scenario development ,Superconductivity ,Física [Àrees temàtiques de la UPC] ,Physics ,Risk mitigation ,risk mitigation ,JT-60SA ,Condensed Matter Physics ,Plasma control ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,plasma control ,scenario development ,Nuclear Energy and Engineering ,ddc:530 ,Superconductivitat - Abstract
Alarge superconducting machine, JT-60SA has been constructed to provide major contributions to the ITER program and DEMO design. For the success of the ITER project and fusion reactor, understanding and development of plasma controllability in ITER and DEMO relevant higher beta regimes are essential. JT-60SA has focused the program on the plasma controllability for scenario development and risk mitigation in ITER as well as on investigating DEMO relevant regimes. This paper summarizes the high research priorities and strategy for the JT-60SA project. Recent works on simulation studies to prepare the plasma physics and control experiments are presented, such as plasma breakdown and equilibrium controls, hybrid and steady-state scenario development, and risk mitigation techniques. Contributions of JT-60SA to ITER and DEMOhave been clarified through those studies. Peer Reviewed Article escrit per 127 autors/autores: M Yoshida, G Giruzzi, N Aiba, J F Artaud, J Ayllon-Guerola, L Balbinot, OBeeke, E Belonohy, P Bettini, W Bin, A Bierwage, T Bolzonella, M Bonotto, CBoulbe, J Buermans, M Chernyshova, S Coda, R Coelho, S Davis, C Day, GDeTommasi, M Dibon, A Ejiri, G Falchetto, A Fassina, B Faugeras, L Figini, M Fukumoto, S Futatani, K Galazka, J Garcia, M Garcia-Muñoz, L Garzotti, L Giacomelli, L Giudicotti, S Hall, N Hayashi, C Hoa, M Honda, K Hoshino, M Iafrati, A Iantchenko, S Ide, S Iio, R Imazawa, S Inoue, A Isayama, E Joffrin, K Kamiya, Y Ko, M Kobayashi, T Kobayashi, G Kocsis, A Kovacsik, T Kurki-Suonio, B Lacroix, P Lang, Ph Lauber, A Louzguiti, E de la Luna, G Marchiori, M Mattei, A Matsuyama, S Mazzi, A Mele, F Michel, Y Miyata, J Morales, P Moreau, A Moro, T Nakano, M Nakata, E Narita, R Neu, S Nicollet, M Nocente, S Nowak, F P Orsitto, V Ostuni, Y Ohtani, N Oyama, R Pasqualotto, B Pégourié, E Perelli, L Pigatto, C Piccinni, A Pironti, P Platania, B Ploeckl, D Ricci, P Roussel, G Rubino, R Sano, K Särkimäki, K Shinohara, S Soare, C Sozzi, S Sumida, T Suzuki, Y Suzuki, T Szabolics, T Szepesi, Y Takase, M Takech, N Tamura, K Tanaka, H Tanaka, M Tardocchi, A Terakado, H Tojo, T Tokuzawa, A Torre, N Tsujii, H Tsutsui, Y Ueda, H Urano, M Valisa, M Vallar, J Vega, F Villone, T Wakatsuki, T Wauters, M Wischmeier, S Yamoto, L Zani
- Published
- 2022
- Full Text
- View/download PDF
21. On Bose-Einstein condensates in the Thomas-Fermi regime
- Author
-
Daniele Dimonte and Emanuela L. Giacomelli
- Subjects
Condensed Matter::Quantum Gases ,Quantum Gases (cond-mat.quant-gas) ,FOS: Physical sciences ,Geometry and Topology ,Mathematical Physics (math-ph) ,Condensed Matter - Quantum Gases ,Mathematical Physics - Abstract
We study a system of N trapped bosons in the Thomas–Fermi regime with an interacting pair potential of the form $$ g_N N^{3\beta -1} V(N^\beta x) $$ g N N 3 β - 1 V ( N β x ) , for some $$ \beta \in (0,1/3) $$ β ∈ ( 0 , 1 / 3 ) and $$ g_N $$ g N diverging as $$ N \rightarrow \infty $$ N → ∞ . We prove that there is complete Bose–Einstein condensation at the level of the ground state and, furthermore, that, if $$ \beta \in (0,1/6) $$ β ∈ ( 0 , 1 / 6 ) , condensation is preserved by the time evolution.
- Published
- 2021
22. Relationship Between Physicochemical Properties and Herbicidal Activity of 1,2,5-Oxadiazole N-Oxide Derivatives
- Author
-
C. Olea-Azar, M. Gonzalez, H. Cerecetto, M. Risso, J. Silber, R. Cattana, L. Giacomelli, M. Reta, M. Santo, and L. Fernandez
- Subjects
5-Oxadiazole N-oxide derivatives ,herbicides ,lipophilicity ,Organic chemistry ,QD241-441 - Abstract
The relationship between the herbicidal activity of a number of novel 1,2,5-oxadiazole N-oxides and some physicochemical properties potentially related with thisbioactivity, such as polarity, molecular volume, proton acceptor ability, lipophilicity, andreduction potential were studied. The semiempirical molecular orbital method AM1 wasused to calculate theoretical descriptors such as dipolar moment, molecular volume,Mulliken ÃŒÂs charge and the octanol/water partition coefficients (log Po/w). The values ofthe reduction potentials (Er) were obtained by cyclic voltammetry. In addition, theretention factors (log k’w) on a reversed-phase high-performance liquid chromatography(RP-HPLC) column in pure aqueous mobile phases were measured for several N-oxidederivatives. The log k’w values show good correlation with the calculated values of logPo/w, showing that the chromatographic parameter can be used as lipophilicity descriptorfor these compounds. The multiple regression analysis between the descriptors for the N-oxide derivatives and the herbicide activity indicate that the variance in the biologicalactivity can be explained by changes in the lipophilicity and in the reduction potential.
- Published
- 2005
- Full Text
- View/download PDF
23. Effects of corners in surface superconductivity
- Author
-
Michele Correggi and Emanuela L. Giacomelli
- Subjects
Computer Science::Machine Learning ,Surface (mathematics) ,Superconductivity ,Applied Mathematics ,Mathematical analysis ,FOS: Physical sciences ,Order (ring theory) ,Boundary (topology) ,Mathematical Physics (math-ph) ,State (functional analysis) ,Computer Science::Digital Libraries ,Statistics::Machine Learning ,Cross section (physics) ,Mathematics - Analysis of PDEs ,Bounded function ,FOS: Mathematics ,Computer Science::Mathematical Software ,Ground state ,Mathematical Physics ,Analysis ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
We study the Ginzburg-Landau functional describing an extreme type-II superconductor wire with cross section with finitely many corners at the boundary. We derive the ground state energy asymptotics up to $ o(1) $ errors in the surface superconductivity regime, i.e., between the second and third critical fields. We show that, compared to the case of smooth domains, each corner provides an additional contribution of order $ \mathcal{O}(1) $ depending on the corner opening angle. The corner energy is in turn obtained from an implicit model problem in an infinite wedge-like domain with fixed magnetic field. We also prove that such an auxiliary problem is well-posed and its ground state energy bounded and, finally, state a conjecture about its explicit dependence on the opening angle of the sector., Comment: revised version, presentation shortened and proof arguments streamlined; 54 pages, pdfLaTex
- Published
- 2021
- Full Text
- View/download PDF
24. Forward modeling of pile-up events in liquid scintillator detectors for neutron emission spectroscopy
- Author
-
Jet Contributors, L. Giacomelli, Linus Hägg, A. Sahlberg, F. Belli, Jacob Eriksson, Göran Ericsson, and Sean Conroy
- Subjects
Physics ,Fusion experiments ,Spectrometer ,Neutron emission ,Detector ,Monte Carlo method ,Plasma heating ,PLASMAS ,Scintillator ,Liquid scintillators ,Fusion, Plasma and Space Physics ,Computational physics ,Plasma diagnostics ,Fusion, plasma och rymdfysik ,Distortion ,Neutron spectroscopy ,Nuclear fusion ,SPECTROMETER ,Neutron ,Spectroscopy ,Instrumentation ,Tokamaks - Abstract
When using liquid scintillator detectors to measure the neutron emission spectrum from fusion plasmas, the problem of pile-up distortion can be significant. Because of the large neutron rates encountered in many fusion experiments, some pile-up distortion can remain even after applying traditional pile-up elimination methods, which alters the shape of the measured light-yield spectrum and influences the spectroscopic analysis. Particularly, pile-up events appear as a high-energy tail in the measured light-yield spectrum, which obfuscates the contribution that supra-thermal ions make to the energy spectrum. It is important to understand the behavior of such "fast ions" in fusion plasmas, and it is hence desirable to be able to measure their contribution to the neutron spectrum as accurately as possible. This paper presents a technique for incorporating distortion from undetected pile-up events into the analysis of the light-yield spectrum, hence compensating for pile-up distortion. The spectral contribution from undetected pile-up events is determined using Monte Carlo methods and is included in the spectroscopic study as a pile-up component. The method is applied to data from an NE213 scintillator detector at JET and validated by comparing with results from the time-of-flight spectrometer TOFOR, which is not susceptible to pile-up distortion. Based on the results, we conclude that the suggested analysis method helps counteract the problem of pile-up effects and improves the possibilities for extracting accurate fast-ion information from the light-yield spectrum.
- Published
- 2021
- Full Text
- View/download PDF
25. Assimilation scheme of the Mediterranean Forecasting System: operational implementation
- Author
-
E. Demirov, N. Pinardi, C. Fratianni, M. Tonani, L. Giacomelli, and P. De Mey
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP). The assimilation scheme, System for Ocean Forecast and Analysis (SOFA), is a reduced order Optimal Interpolation (OI) scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF). The data assimilated are Sea Level Anomaly (SLA) and temperature profiles from Expandable Bathy Termographs (XBT). The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT). The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS) between the model forecast and the analysis (the forecast RMS) is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS) is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements. Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction)
- Published
- 2003
- Full Text
- View/download PDF
26. The CNESM neutron imaging diagnostic for SPIDER beam source
- Author
-
L. Giacomelli, M. Fincato, V. Cervaro, M. Tardocchi, Gabriele Croci, Giovanni Grosso, F. Murtas, L. Franchin, S. Feng, A. Muraro, Giuseppe Gorini, Marco Cavenago, M. Dalla Palma, M. Tollin, Marica Rebai, E. Perelli Cippo, M. Nocente, Roberto Pasqualotto, Croci, G, Muraro, A, Perelli Cippo, E, Grosso, G, Pasqualotto, R, Cavenago, M, Cervaro, V, Dalla Palma, M, Feng, S, Fincato, M, Franchin, L, Giacomelli, L, Murtas, F, Nocente, M, Rebai, M, Tardocchi, M, Tollin, M, and Gorini, G
- Subjects
Neutral Beam Injector ,Vacuum ,Neutron emission ,Ultra-high vacuum ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,Beam dump ,GEM detectors Vacuum ,010306 general physics ,Deuterium map ,Civil and Structural Engineering ,Physics ,business.industry ,Mechanical Engineering ,Neutron imaging ,Detector ,Injector ,Neutron temperature ,Nuclear Energy and Engineering ,Physics::Accelerator Physics ,GEM detector ,business ,Beam (structure) - Abstract
The PRIMA project aims at the construction of two ITER-NBI facilities in Padova (Italy). The first one is called SPIDER which is negative H/D 100 keV RF source, while the second one (MITICA) will be a full scale 1 MeV deuterium beam injector as the one that will be used in ITER. In order to resolve the horizontal beam intensity profile in MITICA and one of the eight beamlets groups in SPIDER, the Close-contact Neutron Emission Surface Mapping (CNESM) system is being developed. The goal of this device is to reconstruct the D− beam evaluating the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. For this reason, the CNESM diagnostic, which is based on nGEM detectors for fast neutrons, will be placed right behind the SPIDER and MITICA beam dump, i.e. in an UHV (Ultra High Vacuum) environment. Since the nGEM detectors need to operate at atmospheric pressure a vacuum sealed detector box has been designed to be installed inside the vacuum vessel and able to sustain atmospheric pressure inside. This paper describes the status of the CNESM diagnostic and underlines the different phases followed during the realization and installation of the diagnostic on the SPIDER beam dump as well as its imaging performances.
- Published
- 2019
- Full Text
- View/download PDF
27. Generation of mildew-resistant grapevine clones via genome editing
- Author
-
Claudio Moser, Mickael Malnoy, L. Giacomelli, J. Roupee van der Voort, and Tieme Zeilmaker
- Subjects
Genetics ,Mildew ,MLO ,Susceptibility genes ,biology ,DMR6 ,Downy mildew resistance ,Powdery mildew resistance ,fungi ,food and beverages ,Horticulture ,Plant disease resistance ,biology.organism_classification ,Genome ,Fungicide ,Settore AGR/07 - GENETICA AGRARIA ,Powdery mildew ,Arabidopsis thaliana ,Downy mildew ,CRISPR/Cas9 ,Gene ,Genome editing - Abstract
Pesticides, mostly fungicides, are used in large quantities in viticulture to contain the spread of fungal and fungal-like diseases such as powdery mildew (PM) and downy mildew (DM), toward which cultivated grapevine (Vitis vinifera) is highly susceptible. Such consumption of fungicides is costly and deleterious for human health and environment. As an alternative, such diseases have been successfully controlled by inactivation of plant susceptibility genes in crops. The knocking out of DMR6 genes was demonstrated to be very effective in controlling DM in Arabidopsis thaliana and some cultivated species, but its efficacy toward DM resistance has yet to be demonstrated in grapevine. In addition, silencing of MLO genes resulted in resistance to PM in grapevine. Introgression of nonfunctional copies of susceptibility genes can be achieved via traditional breeding, but crossing is not always desirable in grapevine, since maintenance of clonal genetic integrity is commercially important for wine grapes. The advent of genome editing now offers revolutionary tools to edit and completely knock out susceptibility genes in many crops while maintaining their cultivar and clonal genetic backgrounds. In the present work, CRISPR/Cas9 technology was used to edit DM and PM susceptibility genes in different grapevine clones. Several plants edited in DMR6 and MLO genes were obtained and are currently being screened for DM and PM resistance. This work will establish whether full knockout of DMR6 and MLO genes provides durable resistance to DM and PM, respectively, and will hopefully deliver mildew-resistant grapevine plants.
- Published
- 2019
- Full Text
- View/download PDF
28. A high-resolution neutron spectroscopic camera for the SPARC tokamak based on the Jet European Torus deuterium–tritium experience
- Author
-
M, Tardocchi, M, Rebai, D, Rigamonti, R A, Tinguely, F, Caruggi, G, Croci, A, Dal Molin, Z, Ghani, L, Giacomelli, M, Girolami, G, Grosso, M, Kushoro, G, Marcer, M, Mastellone, A, Muraro, M, Nocente, E, Perelli Cippo, M, Petruzzo, O, Putignano, J, Scionti, V, Serpente, D M, Trucchi, S, Mackie, A A, Saltos, E, De Marchi, M, Parisi, A, Trotta, E, de la Luna, J, Garcia, Y, Kazakov, M, Maslov, Z, Stancar, G, Gorini, Tardocchi, M, Rebai, M, Rigamonti, D, Tinguely, R, Caruggi, F, Croci, G, Dal Molin, A, Ghani, Z, Giacomelli, L, Girolami, M, Grosso, G, Kushoro, M, Marcer, G, Mastellone, M, Muraro, A, Nocente, M, Perelli Cippo, E, Petruzzo, M, Putignano, O, Scionti, J, Serpente, V, Trucchi, D, Mackie, S, Saltos, A, De Marchi, E, Parisi, M, Trotta, A, de la Luna, E, Garcia, J, Kazakov, Y, Maslov, M, Stancar, Z, and Gorini, G
- Subjects
Neutron spectroscopy, neutron camera ,Instrumentation - Abstract
Dedicated nuclear diagnostics have been designed, developed, and built within EUROFUSION enhancement programs in the last ten years for installation at the Joint European Torus and capable of operation in high power Deuterium–Tritium (DT) plasmas. The recent DT Experiment campaign, called DTE2, has been successfully carried out in the second half of 2021 and provides a unique opportunity to evaluate the performance of the new nuclear diagnostics and for an understanding of their behavior in the record high 14 MeV neutron yields (up to 4.7 × 1018 n/s) and total number of neutrons (up to 2 × 1019 n) achieved on a tokamak. In this work, we will focus on the 14 MeV high resolution neutron spectrometers based on artificial diamonds which, for the first time, have extensively been used to measure 14 MeV DT neutron spectra with unprecedented energy resolution (Full Width at Half Maximum of ≈1% at 14 MeV). The work will describe their long-term stability and operation over the DTE2 campaign as well as their performance as neutron spectrometers in terms of achieved energy resolution and high rate capability. This important experience will be used to outline the concept of a spectroscopic neutron camera for the SPARC tokamak. The proposed neutron camera will be the first one to feature the dual capability to measure (i) the 2.5 and 14 MeV neutron emissivity profile via the conventional neutron detectors based on liquid or plastics scintillators and (ii) the 14 MeV neutron spectral emission via the use of high-resolution diamond-based spectrometers. The new opportunities opened by the spectroscopic neutron camera to measure plasma parameters will be discussed.
- Published
- 2022
- Full Text
- View/download PDF
29. Regeneration of Plants from DNA-free Edited Grapevine Protoplasts
- Author
-
Claudio Moser, Jeroen Rouppe van der Voort, Simone Scintilla, Umberto Salvagnin, Mickael Malnoy, L. Giacomelli, and Tieme Zeilmaker
- Subjects
Genome editing ,Callus ,fungi ,Botany ,food and beverages ,Downy mildew ,Exogenous DNA ,Plant breeding ,Biology ,Protoplast ,Plant cell ,Woody plant - Abstract
CRISPR-Cas technology has widely extended the application fields of genome editing in plant breeding, making possible specific and minimal mutations within a genetic pool. With respect to standard genome editing technologies, CRISPR-Cas machinery can be introduced in the form of ribonucleoproteins (RNPs), thus avoiding the introduction of exogenous DNA into cells. The interest on the application of DNA-free delivery into plant cells is constantly increasing, especially in the case of valuable woody plants elite varieties where CRISPR-Cas9 technology would preserve their genotype, while still resulting into targeted genetic modifications. The use of single cells fits well the requirements of New Breeding Technologies, by ensuring both the CRISPR-Cas DNA-free delivery as RNPs and, since every plant will be regenerated from a single edited cell, the absence of chimerism. However, the use of protoplasts cell culture from woody plants is generally hampered by low editing efficiencies and an unsuccessful regenerative process.We here describe a successful DNA-free methodology to obtain fully edited grapevine plants, regenerated from protoplasts obtained from V. vinifera cv. Crimson seedless L. embryogenic callus. The transfected protoplasts were edited on the Downy Mildew susceptibility gene VvDMR6-2. The regenerated edited plants exhibited homozygous deletions of 1bp or 2bp, and homozygous insertion of 1bp.
- Published
- 2021
- Full Text
- View/download PDF
30. First spatially resolved measurements of the D
- Author
-
E, Panontin, D, Rigamonti, M, Nocente, A, Dal Molin, A, Broslawski, T, Craciunescu, G, Croci, N, Cruz, J, Figueiredo, L, Giacomelli, G, Gorini, M, Gosk, G, Kaveney, Ye O, Kazakov, V, Kiptily, S, Korolczuk, G, Marcer, A, Murari, E, Perelli Cippo, M, Salewski, A, Urban, I, Zychor, and M, Tardocchi
- Abstract
The Joint European Torus (JET) gamma-ray camera has been recently upgraded with the installation of new gamma-ray detectors, based on LaBr
- Published
- 2021
31. Characterization and operational stability of EJ276 plastic scintillator-based detector for neutron spectroscopy
- Author
-
Roberto Pasqualotto, M. Tardocchi, L. Giacomelli, O. McCormack, Giuseppe Gorini, Gabriele Croci, A. Muraro, Marica Rebai, Giovanni Grosso, E. Perelli Cippo, and D. Rigamonti
- Subjects
Neutron detectors ,Materials science ,Spectrometers ,business.industry ,Physics::Instrumentation and Detectors ,Detector ,Scintillator ,Characterization (materials science) ,Neutron spectroscopy ,Gamma detectors ,Optoelectronics ,business ,Operational stability ,Instrumentation ,Mathematical Physics - Abstract
A state-of-the-art EJ276 plastic scintillator-based detector for neutron spectroscopy has undergone detailed characterization both in a controlled laboratory and on-site at the SPIDER negative ion source facility in Padua. The device will be used for the spectroscopy of 2.5 MeV neutrons produced from Deuterium-Deuterium fusion reactions occurring inside the SPIDER beam dump. A plastic based scintillator with neutron/gamma discrimination has some key advantages over the commonly used organic liquid scintillators with regards economic cost and handling safety. The purpose of this characterization is to determine the operational functionality and reliability of this new breed of detector material. Several tests were performed to verify expected operation with regards to signal reproducibility, long-term stability, and pulse shape discrimination (PSD) capabilities. It was found that the detector system (EJ276 scintillator + photomultiplier tube) performed well in terms of reproducibility and PSD, however the long-term stability of the scintillator light output was seen to diminish considerably over time (>50% decrease) and must be consistently monitored in order to have an accurate conversion scale needed for energy spectroscopy.
- Published
- 2021
- Full Text
- View/download PDF
32. New method for time alignment and time calibration of the TOFOR time-of-flight neutron spectrometer at JET
- Author
-
Sean Conroy, Anders Hjalmarsson, Göran Ericsson, B. Eriksson, L. Giacomelli, Matthias Weiszflog, Jacob Eriksson, and Jet Contributors
- Subjects
010302 applied physics ,Physics ,Spectrometer ,business.industry ,Neutron emission ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Joint European Torus ,Gamma ray ,Data acquisition ,Ion temperature ,01 natural sciences ,010305 fluids & plasmas ,Time of flight ,Optics ,0103 physical sciences ,Neutron ,business ,Instrumentation ,Neutron spectrometers ,Alignment - Abstract
The TOFOR time-of-flight (TOF) neutron spectrometer at the Joint European Torus (JET) is composed of 5 start (S1) and 32 stop (S2) scintillation detectors. Recently, the data acquisition system (DAQ) of TOFOR was upgraded to equip each of the 37 detectors with its own waveform digitizer to allow for correlated time and pulse height analysis of the acquired data. Due to varying cable lengths and different pulse processing pathways in the new DAQ system, the 160 (5 · 32) different TOF pairs of start-stop detectors must be time-aligned to enable the proper construction of a summed TOF spectrum. Given the time (energy) resolution required by the entire spectrometer system to measure different plasma neutron emission components, it is of importance to align the detector pairs to each other with sub-nanosecond precision. Previously, the alignment partially depended on using fusion neutron data from Ohmic heating phases of JET experimental pulses. The dependence on fusion neutron data in the time alignment process is, however, unsatisfactory as it involves data one would wish to include in an independent analysis for physics results. In this work, we describe a method of time-aligning the detector pairs by using gamma rays. Given the known geometry and response of TOFOR to gamma rays, the time alignment of the detector pairs is found by examining gamma events interacting in coincidence in both S1-S1 and S1-S2 detector combinations. Furthermore, a technique for separating neutron and gamma events in the different detector sets is presented. Finally, the time-aligned system is used to analyze neutron data from Ohmic phases for different plasma conditions and to estimate the Ohmic fuel ion temperature.
- Published
- 2021
- Full Text
- View/download PDF
33. Evidence for Alfvén eigenmodes driven by alpha particles in D-3He fusion experiments on JET
- Author
-
V. Goloborod'ko, H. Weisen, J. Garcia, Teddy Craciunescu, Ž. Štancar, Michael Fitzgerald, L. Giacomelli, Massimo Nocente, M. Dreval, J. Ongena, S. E. Sharapov, Vasily Kiptily, Jet Contributors, Ye. O. Kazakov, H.J.C. Oliver, Kiptily, V, Fitzgerald, M, Kazakov, Y, Ongena, J, Nocente, M, Sharapov, S, Dreval, M, tancar, ?, Craciunescu, T, Garcia, J, Giacomelli, L, Goloborodko, V, Oliver, H, Weisen, H, and Contributors, J
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,Tokamak ,Joint European Torus ,fast-ions ,Magnetic confinement fusion ,Alpha particle ,Plasma ,Sawtooth wave ,Condensed Matter Physics ,MHD instabilitie ,fusion-born alpha-particles ,law.invention ,Ion ,fusion-born alpha-particle ,Nuclear physics ,law ,Physics::Plasma Physics ,fast-ion ,MHD instabilities ,tokamak - Abstract
Alfvén eigenmodes (AEs) driven by energetic alpha particles can lead to enhanced fast ion transport and losses, thereby degrading the plasma performance in ITER and future magnetic confinement fusion reactors. Unexpectedly, AEs with negative toroidal mode numbers, which are currently not considered for ITER, were observed in dedicated experiments with fusion-born alpha particles on the tokamak Joint European Torus (JET). The paper provides evidence for a complex interplay between fast ions, monster sawtooth crashes and AEs. Our results highlight the need for an improved description of the synergies between different fast ion phenomena in future burning plasmas.
- Published
- 2021
- Full Text
- View/download PDF
34. On the road to ITER NBIs: SPIDER improvement after first operation and MITICA construction progress
- Author
-
M. Tardocchi, G. Mico, Hitesh Patel, V. Antoni, A. Garbuglia, A. Masiello, Emanuele Sartori, L. Giacomelli, M. Brombin, F. Geli, A. De Lorenzi, Pierluigi Veltri, Piero Agostinetti, Gabriele Manduchi, S. Cristofaro, T. Maejima, D. Bruno, F. Paolucci, Marica Rebai, L. Cordaro, M. Zaupa, B. Pouradier-Duteil, S. Denizeau, M. Vignando, R. Lorenzini, Y. Yamashita, M. Dan, R. Casagrande, D. Lopez-Bruna, Federica Bonomo, R. Zagorski, M. Siragusa, M. Zuin, A. Rigoni-Garola, V. Candeloro, Daniel Gutierrez, H. Decamps, C. Taliercio, Loris Zanotto, F. Fellin, C. Rotti, M. Fadone, R. Delogu, M. Valente, M. Bigi, A. Canton, Gabriele Croci, R. Agnello, A. Pimazzoni, Bernd Heinemann, Emilio Martines, O. McCormack, M. Dalla Palma, Kazuhiro Watanabe, J. Graceffa, Nicola Pilan, Simone Peruzzo, Vanni Toigo, E. Oshita, A. Rizzolo, Elena Gaio, D. Aprile, M. Dremel, M. De Muri, B. Zaniol, R. Milazzo, C. Cavallini, Silvia Spagnolo, Gianluigi Serianni, N. Cruz, A. Sottocornola, Claudia Gasparrini, Hiroyuki Tobari, L. Trevisan, Namita Singh, P. Tomsic, T. Patton, F. Gasparini, F. Taccogna, Diego Marcuzzi, Atsushi Kojima, E. Spada, A. Muraro, Ursel Fantz, M. Pavei, A.K. Chakraborty, Francesco Gnesotto, A. Ferro, S. Konno, Tullio Bonicelli, Roberto Cavazzana, Giuseppe Chitarin, Nicolò Marconato, Giuseppe Gorini, Adriano Luchetta, A. Maistrello, A. Zamengo, C. Poggi, Marco D’Arienzo, N. Pomaro, F. Panin, A. Rousseau, Monica Spolaore, G. Berton, J.F. Moreno, W. Kraus, S. Dal Bello, M. Battistella, P. Tinti, G. Kouzmenko, D. Boilson, Piergiorgio Sonato, Marco Cavenago, C. Wimmer, M. J. Singh, M. Rutigliano, P. Jain, Pierluigi Zaccaria, M. Ugoletti, Marco Boldrin, D. Rigamonti, Katsuyoshi Tsumori, S. Manfrin, D. Wünderlich, Gwenael Fubiani, Muriel Simon, G. Martini, G. Agarici, Mieko Kashiwagi, D. Terranova, Marco Barbisan, S. Martini, M. Urbani, Luca Grando, Roberto Pasqualotto, J. Zacks, A. Tonti, M. Recchia, C. Labate, Matteo Agostini, P.B. Krastev, V. Pilard, G. Gomez, A. Shepherd, Toigo, V, Marcuzzi, D, Serianni, G, Boldrin, M, Chitarin, G, Bello, S, Grando, L, Luchetta, A, Pasqualotto, R, Zaccaria, P, Zanotto, L, Agnello, R, Agostinetti, P, Agostini, M, Antoni, V, Aprile, D, Barbisan, M, Battistella, M, Berton, G, Bigi, M, Brombin, M, Candeloro, V, Canton, A, Casagrande, R, Cavallini, C, Cavazzana, R, Cordaro, L, Cruz, N, Palma, M, Dan, M, De Lorenzi, A, Delogu, R, De Muri, M, Denizeau, S, Fadone, M, Fellin, F, Ferro, A, Gaio, E, Gasparini, F, Gasparrini, C, Gnesotto, F, Jain, P, Krastev, P, Lopez-Bruna, D, Lorenzini, R, Maistrello, A, Manduchi, G, Manfrin, S, Marconato, N, Martines, E, Martini, G, Martini, S, Milazzo, R, Patton, T, Pavei, M, Peruzzo, S, Pilan, N, Pimazzoni, A, Poggi, C, Pomaro, N, Pouradier-Duteil, B, Recchia, M, Rigoni-Garola, A, Rizzolo, A, Sartori, E, Shepherd, A, Siragusa, M, Sonato, P, Sottocornola, A, Spada, E, Spagnolo, S, Spolaore, M, Taliercio, C, Terranova, D, Tinti, P, Tomsic, P, Trevisan, L, Ugoletti, M, Valente, M, Vignando, M, Zagorski, R, Zamengo, A, Zaniol, B, Zaupa, M, Zuin, M, Cavenago, M, Boilson, D, Rotti, C, Veltri, P, Decamps, H, Dremel, M, Graceffa, J, Geli, F, Urbani, M, Zacks, J, Bonicelli, T, Paolucci, F, Garbuglia, A, Agarici, G, Gomez, G, Gutierrez, D, Kouzmenko, G, Labate, C, Masiello, A, Mico, G, Moreno, J, Pilard, V, Rousseau, A, Simon, M, Kashiwagi, M, Tobari, H, Watanabe, K, Maejima, T, Kojima, A, Oshita, E, Yamashita, Y, Konno, S, Singh, M, Chakraborty, A, Patel, H, Singh, N, Fantz, U, Bonomo, F, Cristofaro, S, Heinemann, B, Kraus, W, Wimmer, C, Wunderlich, D, Fubiani, G, Tsumori, K, Croci, G, Gorini, G, Mccormack, O, Muraro, A, Rebai, M, Tardocchi, M, Giacomelli, L, Rigamonti, D, Taccogna, F, Bruno, D, Rutigliano, M, D'Arienzo, M, Tonti, A, and Panin, F
- Subjects
Tokamak ,Nuclear engineering ,design ,7. Clean energy ,01 natural sciences ,negative ion source ,010305 fluids & plasmas ,law.invention ,ITER neutral beam injector ,ITER neutral beam injectors ,Negative ion beam ,Negative ion source ,law ,iter neutral beam injectors ,0103 physical sciences ,General Materials Science ,010306 general physics ,Civil and Structural Engineering ,Dummy load ,Magnetic filter ,negative ion beam ,Mechanical Engineering ,Injector ,Beam optics ,Power (physics) ,Nuclear Energy and Engineering ,Environmental science ,Beam (structure) ,Voltage - Abstract
To reach fusion conditions and control the plasma configuration in ITER, the next step in tokamak fusion research, two neutral beam injectors (NBIs) will supply 16.5 MW each, by neutralizing accelerated negative hydrogen or deuterium ions. The requirements of ITER NBIs (40A/1 MeV D- ions for ≤1 h, 46A/870 keV H- ions for ≤1000 s) have never been simultaneously attained. So in the Neutral Beam Test Facility (NBTF, Consorzio RFX, Italy) the operation of the full-scale ITER NBI prototype (MITICA) will be tested and optimised up to full performances, focussing on accelerator (including voltage holding), beam optics, neutralisation, residual ion removal. The NBTF includes also the full-scale prototype of the ITER NBI source with 100 keV particle energy (SPIDER), for early investigation of: negative ion production and extraction, source uniformity, negative ion current density and beam optics. This paper will describe the main results of the first two years of SPIDER operation, devoted to characterizing plasma and beam parameters, including investigation of RF-plasma coupling efficiency and magnetic filter field effectiveness in reducing co-extracted electrons. SPIDER is progressing towards the first caesium injection, which aims at increasing the negative ion density. A major shutdown, planned for 2021, to solve the issues identified during the operation and to carry out programmed modifications, will be outlined. The installation of each MITICA power supply and auxiliary system is completed; in-vessel mechanical components are under procurement by Fusion for Energy (F4E). Integration, commissioning and test of the power supplies, procured by F4E and QST, as the Japanese Domestic Agency (JADA), will be presented. In particular, 1.0MV insulating tests were carried out step-by-step and successfully completed. In 2020 integrated tests of the power supplies on the accelerator dummy load started, including the assessment of their resilience to accelerator grid breakdowns using a short-circuit device located in vacuum. The aggressive programme, to validate the NBI design at NBTF and to meet ITER schedule (requiring NBIs in operation in 2032), will be outlined. Unfortunately, in 2020 the coronavirus disease infection affected the NBTF activities. A solution to proceed with integrated power tests despite the coronavirus is presented.
- Published
- 2021
- Full Text
- View/download PDF
35. Plasma position measurement with collimated neutron flux monitor diagnostics on JET
- Author
-
Sean Conroy, Jet Contributors, Marco Cecconello, L. Giacomelli, K. K. Kirov, A. Sperduti, and Jacob Eriksson
- Subjects
Physics ,Jet (fluid) ,business.industry ,Mechanical Engineering ,media_common.quotation_subject ,Plasma position ,Plasma ,Asymmetry ,Fusion, Plasma and Space Physics ,Neural network ,Collimated light ,Fusion, plasma och rymdfysik ,Optics ,Nuclear Energy and Engineering ,JET ,Physics::Plasma Physics ,Temporal resolution ,Emissivity ,Neutron camera ,General Materials Science ,Neutron ,Magnetohydrodynamics ,business ,Civil and Structural Engineering ,media_common - Abstract
In future burning plasma devices measuring the plasma position and its shape with great spatial and temporal resolution is a crucial task. Nowadays these information are obtained by means of magnetic coils installed inside the vacuum vessel that in the future devices (like ITER and DEMO), due to the harsh environment caused by the high plasma temperature, will experience degradation over the time. Furthermore, the long plasma discharges will result in large integration drift causing a lack of accuracy in the measured signal. In order to assist the magnetic diagnostics and at the same time provide a novel tool to benchmark them, here the measurement of the plasma magnetic axis position by means of a collimated neutron flux monitor is proposed. Three different methods are here described and applied on JET by means of the neutron camera: a weighted average, the asymmetry method and a neural network. The methods are calibrated on a large database of plasma discharges including NBI and ICRH heated ones, and then compared with the magnetic axis position reconstructed by EFIT. The neural network outperforms the two other methods. In particular, the asymmetry method results to be sensitive to MHD activity, NBI power variation and to neutron emissivity profiles presenting a strong asymmetry, such as in case of peripheral NBI deposition due to high density plasmas or ICRH resonance layer. A possible application to vertical displacement events and disruptions is discussed and envisaged for future applications on DEMO. Finally, the performances of the neural network and of the asymmetry methods are studied in the case of one or two missing channels in the neutron flux monitor, showing how in general the reconstruction of the radial magnetic axis in both methods is more sensitive to the lack of channels than the vertical one. The methods here proposed can be applied and benchmarked on DTT and ITER neutron cameras as part of a future real-time control system.
- Published
- 2021
- Full Text
- View/download PDF
36. Mining grapevine downy mildew susceptibility genes: A resource for genomics-based breeding and tailored gene editing
- Author
-
Silvia Vezzulli, Luca Bianco, Tieme Zeilmaker, Carlotta Pirrello, Claudio Moser, and L. Giacomelli
- Subjects
0106 biological sciences ,0301 basic medicine ,Protein Conformation ,Vitis spp ,lcsh:QR1-502 ,01 natural sciences ,Biochemistry ,Genome ,Protein Structure, Secondary ,lcsh:Microbiology ,Data Mining ,Vitis ,Genetics ,Gene Editing ,Disease resistance ,Mildew ,Homozygote ,Genomics ,Settore AGR/07 - GENETICA AGRARIA ,DLO ,Genome, Plant ,DMR ,Next-gen amplicon sequencing ,SNP ,Susceptibility genes ,Genotype ,Quantitative Trait Loci ,Introgression ,Biology ,Plant disease resistance ,Genes, Plant ,Polymorphism, Single Nucleotide ,Article ,03 medical and health sciences ,Molecular Biology ,Gene ,Plant Diseases ,Models, Genetic ,Haplotype ,Fungi ,Genetic Variation ,Sequence Analysis, DNA ,biology.organism_classification ,Plant Breeding ,030104 developmental biology ,Haplotypes ,Mutation ,Downy mildew ,010606 plant biology & botany - Abstract
Several pathogens continuously threaten viticulture worldwide. Until now, the investigation on resistance loci has been the main trend to understand the interaction between grapevine and the mildew causal agents. Dominantly inherited gene-based resistance has shown to be race-specific in some cases, to confer partial immunity, and to be potentially overcome within a few years since its introgression. Recently, on the footprint of research conducted in Arabidopsis, putative genes associated with downy mildew susceptibility have been discovered also in the grapevine genome. In this work, we deep-sequenced four putative susceptibility genes—namely VvDMR6.1, VvDMR6.2, VvDLO1, VvDLO2—in 190 genetically diverse grapevine genotypes to discover new sources of broad-spectrum and recessively inherited resistance. Identified Single Nucleotide Polymorphisms were screened in a bottleneck analysis from the genetic sequence to their impact on protein structure. Fifty-five genotypes showed at least one impacting mutation in one or more of the scouted genes. Haplotypes were inferred for each gene and two of them at the VvDMR6.2 gene were found significantly more represented in downy mildew resistant genotypes. The current results provide a resource for grapevine and plant genetics and could corroborate genomic-assisted breeding programs as well as tailored gene editing approaches for resistance to biotic stresses.
- Published
- 2021
37. Novel compact hard x-ray spectrometer with MCps counting rate capabilities for runaway electron measurements on DIII-D
- Author
-
A. Dal Molin, L. Giacomelli, Carlos Paz-Soldan, M. Nocente, L. Fumagalli, M. Tardocchi, E. Panontin, N. W. Edietis, Giuseppe Gorini, D. Rigamonti, Andrey Lvovskiy, Dal Molin, A, Fumagalli, L, Nocente, M, Rigamonti, D, Tardocchi, M, Giacomelli, L, Panontin, E, Lvovskiy, A, Paz-Soldan, C, Edietis, N, and Gorini, G
- Subjects
Materials science ,Tokamak ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Aluminum metallography ,Scintillator ,Perovskite ,01 natural sciences ,Runaway electrons, hard x-rays ,010305 fluids & plasmas ,law.invention ,System stability ,Silicon photomultiplier ,Optics ,law ,0103 physical sciences ,Yttrium metallography ,Instrumentation ,Diode ,010302 applied physics ,Spectrometer ,X ray spectrometers ,business.industry ,Gamma rays ,Detector ,Collimator ,Full width at half maximum ,business - Abstract
A novel compact spectrometer optimized for the measurement of hard x rays generated by runaway electrons is presented. The detector is designed to be installed in the fan-shaped collimator of the gamma-ray imager diagnostic at the DIII-D tokamak. The spectrometer is based on a 1 × 1 cm2 cerium doped yttrium aluminum perovskite scintillator crystal coupled with a silicon photomultiplier. The detector dynamic energy range is in excess of 10 MeV, with an energy resolution of ~10% at 661.7 keV. The fast detector signal (?70 ns full width at half maximum) allows for operation at counting rates in excess of 1 MCps. The gain stability of the system can be monitored in real time using a light-emitting diode embedded in the instrument. The detector is expected to be deployed in the forthcoming DIII-D runaway electron experimental campaign.
- Published
- 2021
- Full Text
- View/download PDF
38. Physics and applications of three-ion ICRF scenarios for fusion research
- Author
-
J. Ongena, D. King, R. J. Dumont, M. Schneider, D. Van Eester, Jet Contributors, E. Lerche, R. Coelho, Teddy Craciunescu, K. K. Kirov, A. Chomiczewska, Thomas Johnson, M. Van Schoor, D. Rigamonti, R. Bilato, P. A. Schneider, Alcator C-Mod Team, J. Galdon-Quiroga, M. Lennholm, Jacob Eriksson, Antti Hakola, S. D. Pinches, F. Durodié, A. R. Polevoi, P. Jacquet, M. Nocente, Ye. O. Kazakov, M. Maslov, John Wright, Mirko Salewski, A. Thorman, M. Fitzgerald, M. F. F. Nave, D. Gallart, N. Wendler, F. Nabais, A. Kappatou, H. Weisen, M. Dreval, D. Valcarcel, J. Garcia, S. Mazzi, M. J. Mantsinen, Kristel Crombé, C. Giroud, P. Dumortier, S.J. Wukitch, S. Menmuir, EUROfusion Mst Team, U. Plank, D. Keeling, M. Weiland, J. Gonzalez-Martin, P. Lamalle, I. Monakhov, M. Garcia-Munoz, Y. Baranov, Jari Varje, L. Giacomelli, R. Ochoukov, M. Baruzzo, Žiga Štancar, V. G. Kiptily, S. E. Sharapov, V. Bobkov, Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, EUROfusion Consortium, JET Contributors, ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society, Alcator C-Mod Team, Royal Military Academy, Massachusetts Institute of Technology, Max-Planck-Institut für Plasmaphysik, CEA, Culham Science Centre, Polytechnic University of Catalonia, University of Milan - Bicocca, ITER, Swiss Federal Institute of Technology Lausanne, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Soltan Institute for Nuclear Studies, Universidade Lisboa, National Institute for Laser, Plasma and Radiation Physics, National Science Center Kharkov Institute of Physics and Technology, Uppsala University, University of Seville, National Research Council of Italy, VTT Technical Research Centre of Finland, KTH Royal Institute of Technology, Technical University of Denmark, J. Stefan Institute, Department of Applied Physics, Aalto-yliopisto, Aalto University, Barcelona Supercomputing Center, Kazakov, Y, Ongena, J, Wright, J, Wukitch, S, Bobkov, V, Garcia, J, Kiptily, V, Mantsinen, M, Nocente, M, Schneider, M, Weisen, H, Baranov, Y, Baruzzo, M, Bilato, R, Chomiczewska, A, Coelho, R, Craciunescu, T, Crombe, K, Dreval, M, Dumont, R, Dumortier, P, Durodie, F, Eriksson, J, Fitzgerald, M, Galdon-Quiroga, J, Gallart, D, Garcia-Munoz, M, Giacomelli, L, Giroud, C, Gonzalez-Martin, J, Hakola, A, Jacquet, P, Johnson, T, Kappatou, A, Keeling, D, King, D, Kirov, K, Lamalle, P, Lennholm, M, Lerche, E, Maslov, M, Mazzi, S, Menmuir, S, Monakhov, I, Nabais, F, Nave, M, Ochoukov, R, Polevoi, A, Pinches, S, Plank, U, Rigamonti, D, Salewski, M, Schneider, P, Sharapov, S, Stancar, Z, Thorman, A, Valcarcel, D, Van Eester, D, Van Schoor, M, Varje, J, Weiland, M, and Wendler, N
- Subjects
Tokamak ,Tokamak devices ,Cyclotron ,Plasma heating ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Ion ,Fusion, plasma och rymdfysik ,ASDEX Upgrade ,law ,Physics::Plasma Physics ,0103 physical sciences ,Fusió nuclear ,Magnetoplasma ,010306 general physics ,Fusion ,Physics ,Jet (fluid) ,Particle beam injection ,Física [Àrees temàtiques de la UPC] ,ICRF ,ICRH heating, fusion plasmas ,Plasma ,Cyclotrons ,Condensed Matter Physics ,Fusion, Plasma and Space Physics ,Three-ion ICRF ,Neutral beam injection ,Computational physics ,Plasma waves ,Physics and Astronomy ,Nuclear fusion ,Radio frequency - Abstract
This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H?D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H?4He and H?D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D?3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research. AB - This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H?D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H?4He and H?D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D?3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research. The authors are grateful to the anonymous reviewers for their constructive comments that allowed us to improve the paper, I. Voitsekhovitch for her valuable comments and suggestions during the paper preparation, and to H. Meyer and J. Faustin for fruitful discussions. We thank the ITPA Energetic Particle Physics Topical Group for its support. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Part of this work was also carried out in the framework of projects done for the ITER Scientist Fellow Network (ISFN). ITER is the Nuclear Facility INB No. 174. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. This publication is provided for scientific purposes only. Its contents should not be considered as commitments from the ITER Organization as a nuclear operator in the frame of the licensing process. Peer Reviewed "Article signat per 67 autors/es: Ye. O. Kazakov, J. Ongena, J. C. Wright, S. J. Wukitch, V. Bobkov, J. Garcia, V. G. Kiptily, M. J. Mantsinen, M. Nocente, M. Schneider, H. Weisen, Y. Baranov, M. Baruzzo, R. Bilato, A. Chomiczewska, R. Coelho, T. Craciunescu K. Crombé, M. Dreval, R. Dumont, P. Dumortier, F. Durodié, J. Eriksson, M. Fitzgerald, J. Galdon-Quiroga, D. Gallart, M. Garcia-Muñoz, L. Giacomelli, C. Giroud, J. Gonzalez-Martin, A. Hakola, P. Jacquet, T. Johnson, A. Kappatou, D. Keeling, D. King, K. K. Kirov, P. Lamalle, M. Lennholm, E. Lerche, M. Maslov, S. Mazzi, S. Menmuir, I. Monakhov5, F. Nabais, M. F. F. Nave, R. Ochoukov, A. R. Polevoi, S. D. Pinches, U. Plank, D. Rigamonti, M. Salewski, P. A. Schneider, S. E. Sharapov, Ž. Štancar, A. Thorman, D. Valcarcel, D. Van Eester, M. Van Schoor, J. Varje, M. Weiland, N. Wendler, JET Contributors, ASDEX Upgrade Team, EUROfusion MST1 Team, and Alcator C-Mod Team"
- Published
- 2021
- Full Text
- View/download PDF
39. A maximum likelihood tomographic method applied to JET gamma ray emission during the current quench
- Author
-
Jet Contributors, Emmanuele Peluso, V. G. Kiptily, Teddy Craciunescu, Gabor Szepesi, C. Reux, A. Murari, L. Giacomelli, and Michela Gelfusa
- Subjects
Tokamak ,Astrophysics::High Energy Astrophysical Phenomena ,Hard X-rays ,Inverse transform sampling ,law.invention ,Runaway electrons ,Quality (physics) ,law ,General Materials Science ,Neutron ,Tomography ,Reliability (statistics) ,Civil and Structural Engineering ,Physics ,Jet (fluid) ,Mechanical Engineering ,Bolometer ,Gamma rays ,Gamma ray ,Inversion (meteorology) ,Computational physics ,Shattered pellet injector ,Nuclear Energy and Engineering ,Disruptions ,Nuclear fusion ,Maximum likelihood - Abstract
In recent years, a new inversion method has been adapted to JET tomographic diagnostics. It is based on the Maximum Likelihood (ML) approach and has been applied to most systems of interest: the neutron, gamma ray and bolometric tomographies. In addition to its accuracy and reliability, the main competitive advantage of the ML inversion is the fact that it can provide reliable estimates of the uncertainties in the reconstructions. Recently the same approach has been deployed for the investigation of the hard X-rays and gamma rays, emitted by beams of runaway electrons during disruptions. This application is a particularly challenging proposition, given the potential detrimental effects of the errors in the magnetic topology, during the current quench. In this perspective, particular attention has been devoted to producing good quality, high time resolution equilibria. The ML inversion technique has given promising results and the developed routines have the potential of constituting a good complement to the other diagnostics, such as the infrared cameras, typically used to investigate the runaway electrons.
- Published
- 2021
- Full Text
- View/download PDF
40. Comparison of unfolding methods for the inference of runaway electron energy distribution from γ-ray spectroscopic measurements
- Author
-
E. Panontin, A. Dal Molin, M. Nocente, G. Croci, J. Eriksson, L. Giacomelli, G. Gorini, M. Iliasova, E. Khilkevitch, A. Muraro, D. Rigamonti, M. Salewski, J. Scionti, A. Shevelev, M. Tardocchi, Panontin, E, Dal Molin, A, Nocente, M, Croci, G, Eriksson, J, Giacomelli, L, Gorini, G, Iliasova, M, Khilkevitch, E, Muraro, A, Rigamonti, D, Salewski, M, Scionti, J, Shevelev, A, Tardocchi, M, Eurofusion MST1 Team, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Plasma diagnostics - charged-particle spectroscopy ,Plasma diagnostics-interferometry, spectroscopy and imaging ,Nuclear instruments and methods for hot plasma diagnostics ,Plasma diagnostics - interferometry ,spectroscopy and imaging ,Nuclear instruments and methods for hot plasma diagnostic ,Plasma diagnostics-charged-particle spectroscopy ,Analysis and statistical methods ,Analysis and statistical method ,Instrumentation ,Mathematical Physics - Abstract
Unfolding techniques are employed to reconstruct the 1D energy distribution of runaway electrons from Bremsstrahlung hard X-ray spectrum emitted during plasma disruptions in tokamaks. Here we compare four inversion methods: truncated singular value decomposition, which is a linear algebra technique, maximum likelihood expectation maximization, which is an iterative method, and Tikhonov regularization applied to χ 2 and Poisson statistics, which are two minimization approaches. The reconstruction fidelity and the capability of estimating cumulative statistics, such as the mean and maximum energy, have been assessed on both synthetic and experimental spectra. The effect of measurements limitations, such as the low energy cut and few number of counts, on the final reconstruction has also been studied. We find that the iterative method performs best as it better describes the statistics of the experimental data and is more robust to noise in the recorded spectrum.
- Published
- 2021
- Full Text
- View/download PDF
41. The novel Mechanical Ventilator Milano for the COVID-19 pandemic
- Author
-
M. Tardocchi, P. Lu, Silvia Bonfanti, C. Fricbergs, J. M. Cela Ruiz, M. Del Tutto, R. Brown, D. Salomoni, C. Jillings, A. Visioli, A. Abba, B. Smith, P. Stringari, Valerio Ippolito, K. Olchanski, S. Yue, A. Razeto, L. Parmeggiano, M. Beschi, I. Palumbo, C. C. James, M. Daley, Andrea Bombarda, Eugenio Scapparone, T. Boccali, D. Vonica, G. Luzón, E. Panontin, Nigel Hessey, E. Elliott, O. Putignano, R. Maharaj, M. H. L. S. Wang, M. Laclaustra, A. Sher, E. Gramellini, P. Napoli, S. Parmeggiano, E. Meazzi, S. Sala, A. Muraro, T. Girma, D. Trask, A. Lennarz, F. Golf, G. Magni, C. Di Guardo, A. S. Slutsky, C. Lim, B. Shaw, C. Duma, V. Pesudo, S. Gillespie, A. Devoto, E. Guetre, L. Camozzi, B. Bell, C. E. Dahl, M. Dossi, E. Alessi, M. MacDonald, A. J. Noble, F. Ardellier Desages, O. Davignon, B. Morrison, R. D. Fournier, Alberto Annovi, S. Kuula, Elvinia Riccobene, A. Rizzi, G. Hersak, J. Bagger, S. Brice, S. Khan, L. VanPagee, P. Salvo, R. Lubna, A. Bayo, M. Bouchard, J. Romualdez, G. Bianchi, H. Wang, S. Bicelli, T. A. Mohayai, A. Dal Molin, M. Breviario, C. Ienzi, M. Carlini, K. Hayashi, G. Monzani, G. A. Lukhanin, R. J. Ford, D. Yates, B. Velghe, G. Finocchiaro, C. Charette, M.H. Kushoro, E. Sansoucy, D. Reed, Pierre-Andre Amaudruz, A. Pocar, S. Scorza, M. Camozzi, T. Reilly, C. Crippa, S. Pordes, F. Padula, S. Westerdale, C. Straubel, P. Garcia Abia, A. Shi, D. Giorgi, A. Capra, S. Shawyer, S. Martin, F. Prelz, S. Back, D. Sablone, L. Takeuchi, D. Franco, L. Martin, An. Ianni, L. Tseng, P. McClurg, M. I. Martínez, D. Wood, A. Norrick, C. Pellegrino, J. Tseng, C. Ratti, M. Constable, V. Vedia, L. M. Tosatti, L. S. Giarratana, G. Fiorillo, M. Razeti, A. Patel, C. R. Natzke, S. Manni, M. Wada, S. Tacchino, M. Paterno, P. Gorel, P. Diaz Gomez Maqueo, N. Massacret, S. Cudmore, Marco Pallavicini, A. Heavey, Gabriele Croci, E. Kim, B. Celano, G. Batignani, E. Druszkiewicz, A. L. Renshaw, L. Giacomelli, D. Walter, S. Viel, Angelo Gargantini, D. Goeldi, P. Liimatainen, N. J. T. Smith, T. Schaubel, G. Cogliati, G. Foti, C. Mapelli, F. Retriere, Giuseppe Gorini, K. Patel, R. Tartaglia, N. Papini, M. Settimo, P. Pelliccione, P. Skensved, M. Leyton, V. Basile, A. Kittmer, G. D'Avenio, D. Rigamonti, R. Krücken, F. Guescini, F. Giacomini, E. Thomas, K. Hudson, Claudio Moretti, R. Santorelli, G. Hackman, R. Gobui, L. Viviani, C. Savarese, I. Kochanek, R. Migalla, J. Rode, F. Gabriele, D. Farina, F. Ferroni, F. Di Francesco, J. M. Calvo-Mozota, M. Suchenek, G. Hockin, J. Refsgaard, J. Kowalkowski, A. Pope, T. Lomonaco, S. King, Bhaskar Sur, C. L. Kendziora, M. Caravati, A. Ceccanti, W. Hawkins, W. Bonivento, C. Fernandes, G. Leblond, M. Mountaniol, A. B. McDonald, C. Accorsi, A. Stenzler, Federico Nati, V. Zambrano, D. Bishop, M. King, A. Sandoval, X. Li, P. Margetak, P. Agnes, J. L. Raaf, J. De Ruiter, Cristiano Galbiati, Giovanni Grosso, L. Lee, A. Ortiz de Solórzano, T. Hadden, T. Lindner, D. Biagini, L. Russel, C. Badia, Abba, A., Accorsi, C., Agnes, P., Alessi, E., Amaudruz, P., Annovi, A., Desages, F. A., Back, S., Badia, C., Bagger, J., Basile, V., Batignani, G., Bayo, A., Bell, B., Beschi, M., Biagini, D., Bianchi, G., Bicelli, S., Bishop, D., Boccali, T., Bombarda, A., Bonfanti, S., Bonivento, W. M., Bouchard, M., Breviario, M., Brice, S., Brown, R., Calvo-Mozota, J. M., Camozzi, L., Camozzi, M., Capra, A., Caravati, M., Carlini, M., Ceccanti, A., Celano, B., Cela Ruiz, J. M., Charette, C., Cogliati, G., Constable, M., Crippa, C., Croci, G., Cudmore, S., Dahl, C. E., Dal Molin, A., Daley, M., Di Guardo, C., D'Avenio, G., Davignon, O., Del Tutto, M., De Ruiter, J., Devoto, A., Diaz Gomez Maqueo, P., Di Francesco, F., Dossi, M., Druszkiewicz, E., Duma, C., Elliott, E., Farina, D., Fernandes, C., Ferroni, F., Finocchiaro, G., Fiorillo, G., Ford, R., Foti, G., Fournier, R. D., Franco, D., Fricbergs, C., Gabriele, F., Galbiati, C., Garcia Abia, P., Gargantini, A., Giacomelli, L., Giacomini, F., Giarratana, L. S., Gillespie, S., Giorgi, D., Girma, T., Gobui, R., Goeldi, D., Golf, F., Gorel, P., Gorini, G., Gramellini, E., Grosso, G., Guescini, F., Guetre, E., Hackman, G., Hadden, T., Hawkins, W., Hayashi, K., Heavey, A., Hersak, G., Hessey, N., Hockin, G., Hudson, K., Ianni, A., Ienzi, C., Ippolito, V., James, C. C., Jillings, C., Kendziora, C., Khan, S., Kim, E., King, M., King, S., Kittmer, A., Kochanek, I., Kowalkowski, J., Krucken, R., Kushoro, M., Kuula, S., Laclaustra, M., Leblond, G., Lee, L., Lennarz, A., Leyton, M., Li, X., Liimatainen, P., Lim, C., Lindner, T., Lomonaco, T., Lu, P., Lubna, R., Lukhanin, G. A., Luzon, G., Macdonald, M., Magni, G., Maharaj, R., Manni, S., Mapelli, C., Margetak, P., Martin, L., Martin, S., Martinez, M., Massacret, N., Mcclurg, P., Mcdonald, A. B., Meazzi, E., Migalla, R., Mohayai, T., Tosatti, L. M., Monzani, G., Moretti, C., Morrison, B., Mountaniol, M., Muraro, A., Napoli, P., Nati, F., Natzke, C. R., Noble, A. J., Norrick, A., Olchanski, K., Ortiz De Solorzano, A., Padula, F., Pallavicini, M., Palumbo, I., Panontin, E., Papini, N., Parmeggiano, L., Parmeggiano, S., Patel, K., Patel, A., Paterno, M., Pellegrino, C., Pelliccione, P., Pesudo, V., Pocar, A., Pope, A., Pordes, S., Prelz, F., Putignano, O., Raaf, J. L., Ratti, C., Razeti, M., Razeto, A., Reed, D., Refsgaard, J., Reilly, T., Renshaw, A., Retriere, F., Riccobene, E., Rigamonti, D., Rizzi, A., Rode, J., Romualdez, J., Russel, L., Sablone, D., Sala, S., Salomoni, D., Salvo, P., Sandoval, A., Sansoucy, E., Santorelli, R., Savarese, C., Scapparone, E., Schaubel, T., Scorza, S., Settimo, M., Shaw, B., Shawyer, S., Sher, A., Shi, A., Skensved, P., Slutsky, A., Smith, B., Smith, N. J. T., Stenzler, A., Straubel, C., Stringari, P., Suchenek, M., Sur, B., Tacchino, S., Takeuchi, L., Tardocchi, M., Tartaglia, R., Thomas, E., Trask, D., Tseng, J., Tseng, L., Vanpagee, L., Vedia, V., Velghe, B., Viel, S., Visioli, A., Viviani, L., Vonica, D., Wada, M., Walter, D., Wang, H., Wang, M. H. L. S., Westerdale, S., Wood, D., Yates, D., Yue, S., Zambrano, V., AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), École des Mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Abba, A, Accorsi, C, Agnes, P, Alessi, E, Amaudruz, P, Annovi, A, Desages, F, Back, S, Badia, C, Bagger, J, Basile, V, Batignani, G, Bayo, A, Bell, B, Beschi, M, Biagini, D, Bianchi, G, Bicelli, S, Bishop, D, Boccali, T, Bombarda, A, Bonfanti, S, Bonivento, W, Bouchard, M, Breviario, M, Brice, S, Brown, R, Calvo-Mozota, J, Camozzi, L, Camozzi, M, Capra, A, Caravati, M, Carlini, M, Ceccanti, A, Celano, B, Cela Ruiz, J, Charette, C, Cogliati, G, Constable, M, Crippa, C, Croci, G, Cudmore, S, Dahl, C, Dal Molin, A, Daley, M, Di Guardo, C, D'Avenio, G, Davignon, O, Del Tutto, M, De Ruiter, J, Devoto, A, Diaz Gomez Maqueo, P, Di Francesco, F, Dossi, M, Druszkiewicz, E, Duma, C, Elliott, E, Farina, D, Fernandes, C, Ferroni, F, Finocchiaro, G, Fiorillo, G, Ford, R, Foti, G, Fournier, R, Franco, D, Fricbergs, C, Gabriele, F, Galbiati, C, Garcia Abia, P, Gargantini, A, Giacomelli, L, Giacomini, F, Giarratana, L, Gillespie, S, Giorgi, D, Girma, T, Gobui, R, Goeldi, D, Golf, F, Gorel, P, Gorini, G, Gramellini, E, Grosso, G, Guescini, F, Guetre, E, Hackman, G, Hadden, T, Hawkins, W, Hayashi, K, Heavey, A, Hersak, G, Hessey, N, Hockin, G, Hudson, K, Ianni, A, Ienzi, C, Ippolito, V, James, C, Jillings, C, Kendziora, C, Khan, S, Kim, E, King, M, King, S, Kittmer, A, Kochanek, I, Kowalkowski, J, Krucken, R, Kushoro, M, Kuula, S, Laclaustra, M, Leblond, G, Lee, L, Lennarz, A, Leyton, M, Li, X, Liimatainen, P, Lim, C, Lindner, T, Lomonaco, T, Lu, P, Lubna, R, Lukhanin, G, Luzon, G, Macdonald, M, Magni, G, Maharaj, R, Manni, S, Mapelli, C, Margetak, P, Martin, L, Martin, S, Martinez, M, Massacret, N, Mcclurg, P, Mcdonald, A, Meazzi, E, Migalla, R, Mohayai, T, Tosatti, L, Monzani, G, Moretti, C, Morrison, B, Mountaniol, M, Muraro, A, Napoli, P, Nati, F, Natzke, C, Noble, A, Norrick, A, Olchanski, K, Ortiz De Solorzano, A, Padula, F, Pallavicini, M, Palumbo, I, Panontin, E, Papini, N, Parmeggiano, L, Parmeggiano, S, Patel, K, Patel, A, Paterno, M, Pellegrino, C, Pelliccione, P, Pesudo, V, Pocar, A, Pope, A, Pordes, S, Prelz, F, Putignano, O, Raaf, J, Ratti, C, Razeti, M, Razeto, A, Reed, D, Refsgaard, J, Reilly, T, Renshaw, A, Retriere, F, Riccobene, E, Rigamonti, D, Rizzi, A, Rode, J, Romualdez, J, Russel, L, Sablone, D, Sala, S, Salomoni, D, Salvo, P, Sandoval, A, Sansoucy, E, Santorelli, R, Savarese, C, Scapparone, E, Schaubel, T, Scorza, S, Settimo, M, Shaw, B, Shawyer, S, Sher, A, Shi, A, Skensved, P, Slutsky, A, Smith, B, Smith, N, Stenzler, A, Straubel, C, Stringari, P, Suchenek, M, Sur, B, Tacchino, S, Takeuchi, L, Tardocchi, M, Tartaglia, R, Thomas, E, Trask, D, Tseng, J, Tseng, L, Vanpagee, L, Vedia, V, Velghe, B, Viel, S, Visioli, A, Viviani, L, Vonica, D, Wada, M, Walter, D, Wang, H, Wang, M, Westerdale, S, Wood, D, Yates, D, Yue, S, and Zambrano, V
- Subjects
ventilator ,Emergency Use Authorization ,Coronavirus disease 2019 (COVID-19) ,Fault conditions ,Computational Mechanics ,Certification ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Mechanical parts ,Food and drug administration ,Compressed oxygen ,Food and Drug Administration ,Health care professionals ,Industrial partners ,Intensive therapy ,Ventilation mode ,Mechanical ventilator ,law ,0103 physical sciences ,Pandemic ,medicine ,010306 general physics ,Fluid Flow and Transfer Processes ,Physics ,[PHYS]Physics [physics] ,Mechanical Engineering ,healthcare ,Articles ,Condensed Matter Physics ,medicine.disease ,3. Good health ,Medical gas supply ,Mechanical Ventilation, COVID-19 Pandemic ,covid-19 ,Mechanics of Materials ,Others ,Ventilation (architecture) ,Medical emergency ,Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; This paper presents the Mechanical Ventilator Milano (MVM), a novel intensive therapy mechanical ventilator designed for rapid, large-scale, low-cost production for the COVID-19 pandemic. Free of moving mechanical parts and requiring only a source of compressed oxygen and medical air to operate, the MVM is designed to support the long-term invasive ventilation often required for COVID-19 patients and operates in pressure-regulated ventilation modes, which minimize the risk of furthering lung trauma. The MVM was extensively tested against ISO standards in the laboratory using a breathing simulator, with good agreement between input and measured breathing parameters and performing correctly in response to fault conditions and stability tests. The MVM has obtained Emergency Use Authorization by U.S. Food and Drug Administration (FDA) for use in healthcare settings during the COVID-19 pandemic and Health Canada Medical Device Authorization for Importation or Sale, under Interim Order for Use in Relation to COVID-19. Following these certifications, mass production is ongoing and distribution is under way in several countries. The MVM was designed, tested, prepared for certification, and mass produced in the space of a few months by a unique collaboration of respiratory healthcare professionals and experimental physicists, working with industrial partners, and is an excellent ventilator candidate for this pandemic anywhere in the world
- Published
- 2021
- Full Text
- View/download PDF
42. A new tangential gamma-ray spectrometer for fast ion measurements in deuterium and deuterium-tritium plasmas of the Joint European Torus
- Author
-
M. Iliasova, Giuseppe Gorini, E. Panontin, Teddy Craciunescu, A. Dal Molin, Jet Contributors, D. Rigamonti, M. Curuia, Ye. O. Kazakov, M. Nocente, João Figueiredo, Mirko Salewski, E.M. Khilkevitch, I. Zychor, S. Soare, G. Marcer, Vasile Zoita, Vasily Kiptily, M. Tardocchi, V. Braic, A. E. Shevelev, L. Giacomelli, Nocente, M, Craciunescu, T, Gorini, G, Kiptily, V, Tardocchi, M, Braic, V, Curuia, M, Dal Molin, A, Figueiredo, J, Giacomelli, L, Iliasova, M, Kazakov, Y, Khilkevitch, E, Marcer, G, Panontin, E, Rigamonti, D, Salewski, M, Shevelev, A, Soare, S, Zoita, V, and Zychor, I
- Subjects
Materials science ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Joint European Torus ,Tritium ,01 natural sciences ,Bismuth germanate ,010305 fluids & plasmas ,Ion ,chemistry.chemical_compound ,Physics::Plasma Physics ,0103 physical sciences ,Neutron ,Nuclear Experiment ,Instrumentation ,Alpha particles ,010302 applied physics ,Jet (fluid) ,Spectrometer ,Gamma ray spectroscopy ,Plasma ,Deuterium ,Photomultipliers ,Gammay ray spetroscopy, thermonuclear fusion ,Neutron interactions ,chemistry ,Scintillators ,Atomic physics ,Tokamaks - Abstract
A new tangential gamma-ray spectrometer has been developed for fast ion measurements in deuterium and deuterium-tritium plasmas of the Joint European Torus (JET). The instrument is based on a LaBr3 crystal with a photo-multiplier tube and replaces a pre-existing bismuth germanate detector, providing enhanced energy resolution and a counting rate capability in the MHz range. The line of sight is equipped with a LiH attenuator, which reduces the background due to 14 MeV neutron interactions with the crystal by more than two orders of magnitude and enables the observation of gamma-ray emission from confined α particles in JET deuterium-tritium plasmas. Thanks to its tangential line of sight, the detector can distinguish co- and counter-passing ions. The performance of the instrument is demonstrated through the results of recent JET fast ion experiments in deuterium plasmas.
- Published
- 2021
- Full Text
- View/download PDF
43. Quantum vacuum excitation of a quasi-normal mode in an analog model of black hole spacetime
- Author
-
M. J. Jacquet, L. Giacomelli, Q. Valnais, M. Joly, F. Claude, E. Giacobino, Q. Glorieux, I. Carusotto, and A. Bramati
- Subjects
Quantum Physics ,General Relativity and Quantum Cosmology ,Astrophysics::High Energy Astrophysical Phenomena ,General Physics and Astronomy ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Quantum Physics (quant-ph) - Abstract
Vacuum quantum fluctuations near horizons are known to yield correlated emission by the Hawking effect. We use a driven-dissipative quantum fluid of microcavity polaritons as an analog model of a quantum field theory on a black-hole spacetime and numerically calculate correlated emission. We show that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizeable stationary excitation of a quasi-normal mode of the field theory. Observable signatures of the excitation of the quasi-normal mode are found in the spatial density fluctuations as well as in the spectrum of Hawking emission. This suggests an intrinsic fluctuation-driven mechanism leading to the quantum excitation of quasi-normal modes on black hole spacetimes., Comment: Version accepted for publication
- Published
- 2021
- Full Text
- View/download PDF
44. First spatially resolved measurements of the D-3He α -particle source with the upgraded JET gamma-ray camera
- Author
-
M. Gosk, Nuno Cruz, L. Giacomelli, A. Dal Molin, Gabriele Croci, Ye. O. Kazakov, G. Kaveney, A. Urban, Jet Contributors, Mirko Salewski, I. Zychor, G. Marcer, João Figueiredo, Giuseppe Gorini, M. Tardocchi, Massimo Nocente, Teddy Craciunescu, E. Perelli Cippo, S. Korolczuk, D. Rigamonti, A. Broslawski, E. Panontin, Vasily Kiptily, A. Murari, Panontin, E, Rigamonti, D, Nocente, M, Dal Molin, A, Broslawski, A, Craciunescu, T, Croci, G, Cruz, N, Figueiredo, J, Giacomelli, L, Gorini, G, Gosk, M, Kaveney, G, Kazakov, Y, Kiptily, V, Korolczuk, S, Marcer, G, Murari, A, Perelli Cippo, E, Salewski, M, Urban, A, Zychor, I, and Tardocchi, M
- Subjects
Ion cyclotron resonance heating ,Electromagnetic radiation detector ,Plasma diagnostic ,Tokamak ,Astrophysics::High Energy Astrophysical Phenomena ,Joint European Torus ,Plasma heating ,Gamma ray ,Tritium ,01 natural sciences ,010305 fluids & plasmas ,Cyclotron resonance ,Optics ,0103 physical sciences ,Nuclear fusion ,Instrumentation ,Tomography ,Alpha particles ,010302 applied physics ,Physics ,Energy resolutions ,Scintillation crystals ,Jet (fluid) ,Gamma ray measurements ,Dynamic range ,business.industry ,Detector ,Gamma rays ,Plasma ,Alpha particle ,Cameras ,Deuterium ,Spatially resolved ,Gamma-ray cameras ,business ,Gamma ray detector - Abstract
The Joint European Torus (JET) gamma-ray camera has been recently upgraded with the installation of new gamma-ray detectors, based on LaBr3(Ce) scintillation crystals, which add spectroscopic capability to the existing system allowing measurements with good energy resolution (5% at 0.622 MeV), a dynamic range from hundreds of keV up to about 30 MeV, and high counting rate capabilities of MCps. First gamma-ray measurements during the C38 campaign of the JET have been successfully carried out, in particular, in D-3He plasmas from three-ion ion cyclotron resonance heating experiments, where the detection of 16.4 MeV γ-rays from D + 3He → γ + 5Li reactions with the gamma-ray camera upgrade allowed determining the spatial profile of alpha particles born in D + 3He fusion reactions.
- Published
- 2021
- Full Text
- View/download PDF
45. Evidence for Alfv??n eigenmodes driven by alpha particles in D- 3 He fusion experiments on JET
- Author
-
Kiptily, V, Fitzgerald, M, Kazakov, Y, Ongena, J, Nocente, M, Sharapov, S, Dreval, M, ??tancar, ?, Craciunescu, T, Garcia, J, Giacomelli, L, Goloborodko, V, Oliver, H, Weisen, H, Contributors, J, V. G. Kiptily, M. Fitzgerald, Ye. O. Kazakov, J. Ongena, M. Nocente, S. E. Sharapov, M. Dreval, ??. ??tancar, T. Craciunescu, J. Garcia, L. Giacomelli, V. Goloborodko, H. J. C. Oliver, H. Weisen, JET Contributors, Kiptily, V, Fitzgerald, M, Kazakov, Y, Ongena, J, Nocente, M, Sharapov, S, Dreval, M, ??tancar, ?, Craciunescu, T, Garcia, J, Giacomelli, L, Goloborodko, V, Oliver, H, Weisen, H, Contributors, J, V. G. Kiptily, M. Fitzgerald, Ye. O. Kazakov, J. Ongena, M. Nocente, S. E. Sharapov, M. Dreval, ??. ??tancar, T. Craciunescu, J. Garcia, L. Giacomelli, V. Goloborodko, H. J. C. Oliver, H. Weisen, and JET Contributors
- Abstract
Alfvén eigenmodes (AEs) driven by energetic alpha particles can lead to enhanced fast ion transport and losses, thereby degrading the plasma performance in ITER and future magnetic confinement fusion reactors. Unexpectedly, AEs with negative toroidal mode numbers, which are currently not considered for ITER, were observed in dedicated experiments with fusion-born alpha particles on the tokamak Joint European Torus (JET). The paper provides evidence for a complex interplay between fast ions, monster sawtooth crashes and AEs. Our results highlight the need for an improved description of the synergies between different fast ion phenomena in future burning plasmas.
- Published
- 2021
46. Development and validation of a Partial Least Squares-Discriminant Analysis (PLS-DA) model based on the determination of ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) in hair for the diagnosis of chronic alcohol abuse
- Author
-
L. Giacomelli, Eugenio Alladio, G. Biosa, D. Di Corcia, Alberto Salomone, Marco Vincenti, and Enrico Gerace
- Subjects
Alcohol biomarkers ,Alcoholism ,Cut-off ,EtG ,FAEE ,Hair ,2734 ,Male ,Multivariate statistics ,Alcohol abuse ,Glucuronates ,Alcohol ,Sensitivity and Specificity ,01 natural sciences ,Pathology and Forensic Medicine ,Forensic Toxicology ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Ethyl glucuronide ,Partial least squares regression ,medicine ,Humans ,030216 legal & forensic medicine ,Least-Squares Analysis ,Principal Component Analysis ,Chromatography ,Receiver operating characteristic ,Fatty Acids ,010401 analytical chemistry ,Discriminant Analysis ,Esters ,medicine.disease ,Linear discriminant analysis ,0104 chemical sciences ,chemistry ,Principal component analysis ,Female ,Law ,Biomarkers - Abstract
The chronic intake of an excessive amount of alcohol is currently ascertained by determining the concentration of direct alcohol metabolites in the hair samples of the alleged abusers, including ethyl glucuronide (EtG) and, less frequently, fatty acid ethyl esters (FAEEs). Indirect blood biomarkers of alcohol abuse are still determined to support hair EtG results and diagnose a consequent liver impairment. In the present study, the supporting role of hair FAEEs is compared with indirect blood biomarkers with respect to the contexts in which hair EtG interpretation is uncertain. Receiver Operating Characteristics (ROC) curves and multivariate Principal Component Analysis (PCA) demonstrated much stronger correlation of EtG results with FAEEs than with any single indirect biomarker or their combinations. Partial Least Squares Discriminant Analysis (PLS-DA) models based on hair EtG and FAEEs were developed to maximize the biomarkers information content on a multivariate background. The final PLS-DA model yielded 100% correct classification on a training/evaluation dataset of 155 subjects, including both chronic alcohol abusers and social drinkers. Then, the PLS-DA model was validated on an external dataset of 81 individual providing optimal discrimination ability between chronic alcohol abusers and social drinkers, in terms of specificity and sensitivity. The PLS-DA scores obtained for each subject, with respect to the PLS-DA model threshold that separates the probabilistic distributions for the two classes, furnished a likelihood ratio value, which in turn conveys the strength of the experimental data support to the classification decision, within a Bayesian logic. Typical boundary real cases from daily work are discussed, too.
- Published
- 2018
- Full Text
- View/download PDF
47. Study of runaway electron dynamics at the ASDEX Upgrade tokamak during impurity injection using fast hard x-ray spectrometry
- Author
-
A. Shevelev, E. Khilkevitch, M. Iliasova, M. Nocente, G. Pautasso, G. Papp, A.D. Molin, S.P. Pandya, V. Plyusnin, L. Giacomelli, G. Gorini, E. Panontin, D. Rigamonti, M. Tardocchi, G. Tardini, A. Patel, A. Bogdanov, I. Chugunov, D. Doinikov, V. Naidenov, I. Polunovsky, null the ASDEX Upgrade Team, null the EUROfusion MST1 Team, Shevelev, A, Khilkevitch, E, Iliasova, M, Nocente, M, Pautasso, G, Papp, G, Molin, A, Pandya, S, Plyusnin, V, Giacomelli, L, Gorini, G, Panontin, E, Rigamonti, D, Tardocchi, M, Tardini, G, Patel, A, Bogdanov, A, Chugunov, I, Doinikov, D, Naidenov, V, Polunovsky, I, ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society, and EUROfusion MST1 Team
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Materials science ,gamma-ray spectrometry ,Physics::Instrumentation and Detectors ,diagnostics of hot plasma ,Electron dynamics ,Mass spectrometry ,runaway electron ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,Nuclear physics ,ASDEX Upgrade ,Physics::Plasma Physics ,Impurity ,law ,0103 physical sciences ,010306 general physics ,tokamak ,X-ray ,Condensed Matter Physics ,13. Climate action ,Physics::Space Physics ,hard X-ray ,hard X-rays ,runaway electrons - Abstract
To study the runaway electron (RE) dynamics during plasma discharge and develop scenarios for disruption mitigation, a hard X-ray (HXR) spectrometric system has been developed and commissioned at the ASDEX Upgrade tokamak (AUG). The diagnostic system consists of two high-performance spectrometers based on LaBr3(Ce) scintillation detectors supplied with advanced electronics and analysis algorithms. These spectrometers view the AUG tokamak chamber quasi-radially at the equatorial plane. The measurements were carried out in the RE beam generation regimes by injecting argon into a deuterium plasma. In the interaction of a developed RE beam with a heavy gas target, powerful bremsstrahlung flux is induced, reaching energy close to 20 MeV. The electron energy distributions were reconstructed from the measured HXR spectra by deconvolution methods. The experimentally obtained maximum RE energies at different discharge stages were compared with relativistic test particle simulations that include the effect of toroidal electric field, plasma collisional drag force, synchrotron deceleration force. It was observed that the electrons attain their maximum energies within 50-100 ms after the gas injection. It gradually decreases due to the drop in loop voltage, energy loss due to synchrotron radiation emission and collisions dissipation of energy with the background plasma. HXR measurements at the discharge with multiple deuterium pellet injections allowed observing the effects of plasma cooling and argon ion recombination after the pellet injections. Argon density in AUG plasma after massive gas injection was estimated using HXR measurements.
- Published
- 2021
- Full Text
- View/download PDF
48. Expression analysis of gibberellin metabolism genes and metabolites during berry development in table grape
- Author
-
C. Moser, C. Munoz, S. Silva, Maribel Mamani, G. Ravest, J. Correa, M. Pinto, P. Hinrichsen, and L. Giacomelli
- Subjects
education.field_of_study ,Table grape ,Population ,food and beverages ,Berry ,Horticulture ,Biology ,Phenotype ,Gibberellin metabolism ,Botany ,Trait ,Gibberellin ,education ,Gene - Abstract
Berry size is a highly desired trait in table grapes. However, the processes of berry development and growth are still not well understood, even when gibberellins are clear candidates to have a crucial role in the regulation of berry size. Looking for clues about the participation of gibberellins in determining berry size, in this work we used segregants of a 'Ruby Seedless' × 'Sultanina' population with contrasting phenotypes for this trait, searching for transcriptional and metabolic information. We found three GA-oxidases genes (VvGA20ox2, VvGA3ox4 and VvGA2ox2) that showed differential expression during berry development. We also found that, depending on the stage of development, the bioactive metabolites GA1 and GA4 exhibit different levels.
- Published
- 2017
- Full Text
- View/download PDF
49. Gibberellin metabolism in grapevine during bloom and fruit-set
- Author
-
O. Rota, Claudio Moser, Domenico Masuero, L. Giacomelli, U. Vrhovsek, and R. Werhens
- Subjects
Fruit set ,Horticulture ,Botany ,Biology ,Bloom ,Gibberellin metabolism - Published
- 2017
- Full Text
- View/download PDF
50. Mining downy mildew susceptibility genes: a diversity study in grapevine
- Author
-
Moser C, L. Giacomelli, Tieme Zeilmaker, Pirrello C, Luca Bianco, and Silvia Vezzulli
- Subjects
Genetics ,Genetic diversity ,Mildew ,biology ,Genotype ,Downy mildew ,Single-nucleotide polymorphism ,Plant disease resistance ,biology.organism_classification ,Gene ,Genome - Abstract
Several pathogens continuously threaten viticulture worldwide. Until now, the investigation on resistance loci has been the main trend to understand the interaction between grapevine and mildew causal agents. Dominantly inherited gene-based resistance has shown to be race-specific in some cases, to confer partial immunity and to be potentially overcome within a few years since its introgression. Recently, on the footprint of research conducted on Arabidopsis, the putative hortologues of genes associated with downy mildew susceptibility in this species, have been discovered also in the grapevine genome. In this work, we deep-resequenced four putative susceptibility genes in 190 highly genetically diverse grapevine genotypes to discover new sources of broad-spectrum recessively inherited resistance. The scouted genes areVvDMR6-1, VvDMR6-2, VvDLO1, VvDLO2and predicted to be involved in susceptibility to downy mildew. From all identified mutations, 56% were Single Nucleotide Polymorphisms (SNPs) in heterozygosity, while the remaining 44% were homozygous. Regarding the identified mutations with putative impact on gene function, we observed ~4% genotypes mutated inVvDMR6-1and ~8% mutated inVvDMR6-2, only a handful of genotypes that were mutated in both genes. ~2% and ~7% genotypes showed mutations inVvDLO1andVvDLO2respectively, and again a few genotypes resulted mutated in both genes. In particular, 80% of impacting mutations were heterozygous while 20% were homozygous. The current results will inform grapevine genetics and corroborate genomic-assisted breeding programs for resistance to biotic stresses.Significance statementA survey on the genetic diversity of downy mildew susceptibility genes in grapevine varieties and wild species reveals a potential valuable for genomic-assisted breeding as well as tailored gene editing to induce disease resistance.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.