7 results on '"Léa Dupaty"'
Search Results
2. Design, immunogenicity, and efficacy of a pan-sarbecovirus dendritic-cell targeting vaccine
- Author
-
Séverin Coléon, Aurélie Wiedemann, Mathieu Surénaud, Christine Lacabaratz, Sophie Hue, Mélanie Prague, Minerva Cervantes-Gonzalez, Zhiqing Wang, Jerome Ellis, Amandine Sansoni, Camille Pierini, Quentin Bardin, Manon Fabregue, Sarah Sharkaoui, Philippe Hoest, Léa Dupaty, Florence Picard, Marwa El Hajj, Mireille Centlivre, Jade Ghosn, Rodolphe Thiébaut, Sylvain Cardinaud, Bernard Malissen, Gérard Zurawski, Ana Zarubica, Sandra M. Zurawski, Véronique Godot, and Yves Lévy
- Subjects
COVID-19 ,SARS-CoV-2 ,Vaccine ,Pre-clinical model ,Sarbecoviruses ,Medicine ,Medicine (General) ,R5-920 - Abstract
Summary: Background: There is an urgent need of a new generation of vaccine that are able to enhance protection against SARS-CoV-2 and related variants of concern (VOC) and emerging coronaviruses. Methods: We identified conserved T- and B-cell epitopes from Spike (S) and Nucleocapsid (N) highly homologous to 38 sarbecoviruses, including SARS-CoV-2 VOCs, to design a protein subunit vaccine targeting antigens to Dendritic Cells (DC) via CD40 surface receptor (CD40.CoV2). Findings: CD40.CoV2 immunization elicited high levels of cross-neutralizing antibodies against SARS-CoV-2, VOCs, and SARS-CoV-1 in K18-hACE2 transgenic mice, associated with viral control and survival after SARS-CoV-2 challenge. A direct comparison of CD40.CoV2 with the mRNA BNT162b2 vaccine showed that the two vaccines were equally immunogenic in mice. We demonstrated the potency of CD40.CoV2 to recall in vitro human multi-epitope, functional, and cytotoxic SARS-CoV-2 S- and N-specific T-cell responses that are unaffected by VOC mutations and cross-reactive with SARS-CoV-1 and, to a lesser extent, MERS epitopes. Interpretation: We report the immunogenicity and antiviral efficacy of the CD40.CoV2 vaccine in a preclinical model providing a framework for a pan-sarbecovirus vaccine. Fundings: This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR and the CARE project funded from the Innovative Medicines Initiative 2 Joint Undertaking (JU).
- Published
- 2022
- Full Text
- View/download PDF
3. The Potential of Immune Modulation in Therapeutic HIV-1 Vaccination
- Author
-
Nabila Seddiki, Florence Picard, Léa Dupaty, Yves Lévy, and Véronique Godot
- Subjects
cytokines ,immune checkpoint blockers ,combinatorial intervention ,HIV-1 ,therapeutic vaccine ,Medicine - Abstract
We discuss here some of the key immunological elements that are at the crossroads and need to be combined to develop a potent therapeutic HIV-1 vaccine. Therapeutic vaccines have been commonly used to enhance and/or recall pre-existing HIV-1-specific cell-mediated immune responses aiming to suppress virus replication. The current success of immune checkpoint blockers in cancer therapy renders them very attractive to use in HIV-1 infected individuals with the objective to preserve the function of HIV-1-specific T cells from exhaustion and presumably target the persistent cellular reservoir. The major latest advances in our understanding of the mechanisms responsible for virus reactivation during therapy-suppressed individuals provide the scientific basis for future combinatorial therapeutic vaccine development.
- Published
- 2020
- Full Text
- View/download PDF
4. Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques
- Author
-
Zhiqing Wang, Olivier Schwartz, Mathieu Surenaud, Mireille Centlivre, Gerard Zurawski, Julien Lemaitre, Léa Dupaty, Christine Lacabaratz, Yves Levy, Rodolphe Thiébaut, Sylvie van der Werf, Inga Szurgot, Romain Marlin, Véronique Godot, Severin Coleon, Aurélie Wiedemann, Giuseppe Pantaleo, Pauline Maisonnasse, Delphine Planas, Mélanie Prague, Catherine Chapon, Mario Gomez-Pacheco, Thibaut Naninck, Mathilde Galhaut, Anne-Sophie Gallouet, Jerome Ellis, Mariangela Cavarelli, Sandra Zurawski, Nidhal Kahlaoui, Roger Le Grand, Timothée Bruel, Francis Relouzat, Craig Fenwick, Nathalie Dereuddre-Bosquet, Sylvain Cardinaud, Raphael Ho Tsong Fang, Peter Liljeström, Vanessa Contreras, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Institut Mondor de Recherche Biomédicale (IMRB), Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR10-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Vaccine Research Institute (VRI), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Baylor Scott & White Charles A. Sammons Cancer Center [Dallas, TX, USA], Lausanne University Hospital, Université de Lausanne = University of Lausanne (UNIL), Karolinska Institutet [Stockholm], Virus et Immunité - Virus and immunity, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Génétique Moléculaire des Virus à ARN - Molecular Genetics of RNA Viruses (GMV-ARN (UMR_3569 / U-Pasteur_2)), Centre National de Référence des virus des infections respiratoires (dont la grippe) - National Reference Center Virus Influenzae [Paris] (CNR), Institut Pasteur [Paris]-Université Paris Cité (UPCité), Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Statistics In System biology and Translational Medicine (SISTM), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Bordeaux [Bordeaux], Hôpital Henri Mondor, Hôpital Albert Chenevier, The programme was funded by the Vaccine Research Institute via the ANR-10-LABX-77 grant. Studies in hu-mice model have been supported by ARN grant ANR-20-COV6-0004-01. The Infectious Disease Models and Innovative Therapies (IDMIT) research infrastructure is supported by the 'Programme Investissements d’Avenir', managed by the ANR under reference ANR-11-INBS-0008. The Fondation Bettencourt Schueller and the Region Ile-de-France contributed to the implementation of IDMIT’s facilities and imaging technologies. The NHP study received financial support from REACTing, the Fondation pour la Recherche Medicale (FRM, AM-CoV-Path) and the European Infrastructure TRANSVAC2 (730964) for implementation of in vivo imaging technologies an NHP immuno assays. The virus stock used in NHPs was obtained through the EVAg platform (https://www.european-virus-archive.com/), funded by H2020 (653316)., ANR-10-LABX-0077,VRI,Initiative for the creation of a Vaccine Research Institute(2010), ANR-20-COV6-0004,DC-CoVaC,Développement de vaccins anti-SARS-CoV-2(2020), ANR-11-INBS-0008,IDMIT,Infrastructure nationale pour la modélisation des maladies infectieuses humaines(2011), European Project: 730964, H2020, RIA,H2020-INFRAIA-2016-1,TRANSVAC2(2017), European Project: 653316,H2020,H2020-INFRAIA-2014-2015,EVAg(2015), University of Lausanne (UNIL), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut Pasteur [Paris], Vaccine Research Institute [Créteil, France] (VRI), Virus et Immunité - Virus and immunity (CNRS-UMR3569), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre National de Référence des virus des infections respiratoires (dont la grippe) - National Reference Center Virus Influenzae [Paris] (CNR - laboratoire coordonnateur), Institut Pasteur [Paris] (IP)-Université Paris Cité (UPCité), DARMIGNY, SANDRINE, Laboratoires d'excellence - Initiative for the creation of a Vaccine Research Institute - - VRI2010 - ANR-10-LABX-0077 - LABX - VALID, Développement de vaccins anti-SARS-CoV-2 - - DC-CoVaC2020 - ANR-20-COV6-0004 - COVID-19 - VALID, Infrastructures - Infrastructure nationale pour la modélisation des maladies infectieuses humaines - - IDMIT2011 - ANR-11-INBS-0008 - INBS - VALID, European Vaccine Research and Development Infrastructure - TRANSVAC2 - - H2020, RIA2017-05-01 - 2022-04-30 - 730964 - VALID, and European Virus Archive goes global - EVAg - - H20202015-04-01 - 2019-03-31 - 653316 - VALID
- Subjects
T-Lymphocytes ,medicine.medical_treatment ,[SDV]Life Sciences [q-bio] ,General Physics and Astronomy ,Mice ,0302 clinical medicine ,030212 general & internal medicine ,skin and connective tissue diseases ,B-Lymphocytes ,0303 health sciences ,Multidisciplinary ,biology ,Vaccination ,3. Good health ,[SDV] Life Sciences [q-bio] ,Spike Glycoprotein, Coronavirus ,Vaccines, Subunit ,Antibody ,Adjuvant ,Protein vaccines ,COVID-19 Vaccines ,Science ,Protein domain ,Antigen-Presenting Cells ,Virulence ,Article ,General Biochemistry, Genetics and Molecular Biology ,Viral vector ,03 medical and health sciences ,Protein Domains ,medicine ,Animals ,Humans ,CD40 Antigens ,030304 developmental biology ,CD40 ,SARS-CoV-2 ,fungi ,COVID-19 ,Convalescence ,General Chemistry ,Virology ,body regions ,Viral infection ,Preclinical research ,Reinfection ,Mutation ,Humanized mouse ,biology.protein ,Macaca - Abstract
Achieving sufficient worldwide vaccination coverage against SARS-CoV-2 will require additional approaches to currently approved viral vector and mRNA vaccines. Subunit vaccines may have distinct advantages when immunizing vulnerable individuals, children and pregnant women. Here, we present a new generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. We demonstrate that targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model. Additionally, we demonstrate that a single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2. Vaccine-elicited antibodies cross-neutralize different SARS-CoV-2 variants, including D614G, B1.1.7 and to a lesser extent B1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals., In this study, Marlin et al. provide insights into the potential use of subunit vaccines that induce a high level of protection against SARS-CoV-2 in animal models.
- Published
- 2021
- Full Text
- View/download PDF
5. The Potential of Immune Modulation in Therapeutic HIV-1 Vaccination
- Author
-
Véronique Godot, Léa Dupaty, Nabila Seddiki, Yves Levy, and Florence Picard
- Subjects
0301 basic medicine ,Immunology ,Human immunodeficiency virus (HIV) ,lcsh:Medicine ,Review ,medicine.disease_cause ,Virus ,03 medical and health sciences ,0302 clinical medicine ,Immune system ,combinatorial intervention ,Drug Discovery ,medicine ,Pharmacology (medical) ,Pharmacology ,business.industry ,lcsh:R ,Immune modulation ,Immune checkpoint ,cytokines ,immune checkpoint blockers ,Vaccination ,030104 developmental biology ,Infectious Diseases ,Viral replication ,030220 oncology & carcinogenesis ,HIV-1 ,Therapeutic vaccine ,therapeutic vaccine ,business - Abstract
We discuss here some of the key immunological elements that are at the crossroads and need to be combined to develop a potent therapeutic HIV-1 vaccine. Therapeutic vaccines have been commonly used to enhance and/or recall pre-existing HIV-1-specific cell-mediated immune responses aiming to suppress virus replication. The current success of immune checkpoint blockers in cancer therapy renders them very attractive to use in HIV-1 infected individuals with the objective to preserve the function of HIV-1-specific T cells from exhaustion and presumably target the persistent cellular reservoir. The major latest advances in our understanding of the mechanisms responsible for virus reactivation during therapy-suppressed individuals provide the scientific basis for future combinatorial therapeutic vaccine development.
- Published
- 2020
6. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity
- Author
-
Célia Gallien, Axel Rossi, Hildegard Büning, Margarete Odenthal, Anna Salvetti, Michael Hallek, Ludovic Aillot, Liang Zhang, Léa Dupaty, Sahil Adriouch, Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department I of Internal Medicine, University of Cologne, Pathology, Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Institute for Virology
- Subjects
Male ,0301 basic medicine ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,T cell ,viruses ,Genetic Vectors ,lcsh:Medicine ,CD8-Positive T-Lymphocytes ,Biology ,Article ,Viral vector ,Mice ,03 medical and health sciences ,Transduction (genetics) ,Capsid ,0302 clinical medicine ,Antigen ,Transduction, Genetic ,medicine ,Animals ,Humans ,lcsh:Science ,Multidisciplinary ,Immunogenicity ,lcsh:R ,Dendritic Cells ,Dependovirus ,3. Good health ,Cell biology ,Mice, Inbred C57BL ,Ovalbumin ,030104 developmental biology ,medicine.anatomical_structure ,biology.protein ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,lcsh:Q ,Capsid Proteins ,[SDV.IMM.VAC]Life Sciences [q-bio]/Immunology/Vaccinology ,030217 neurology & neurosurgery ,CD8 - Abstract
AAV vectors poorly transduce Dendritic cells (DC), a feature invoked to explain AAV’s low immunogenicity. However, the reason for this non-permissiveness remained elusive. Here, we performed an in-depth analysis using human monocyte-derived immature DC (iDC) as model. iDC internalized AAV vectors of various serotypes, but even the most efficient serotype failed to transduce iDC above background. Since AAV vectors reached the cell nucleus, we hypothesized that AAV’s intracellular processing occurs suboptimal. On this basis, we screened an AAV peptide display library for capsid variants more suitable for DC transduction and identified the I/VSS family which transduced DC with efficiencies of up to 38%. This property correlated with an improved vector uncoating. To determine the consequence of this novel feature for AAV’s in vivo performance, we engineered one of the lead candidates to express a cytoplasmic form of ovalbumin, a highly immunogenic model antigen, and assayed transduction efficiency as well as immunogenicity. The capsid variant clearly outperformed the parental serotype in muscle transduction and in inducing antigen-specific humoral and T cell responses as well as anti-capsid CD8+ T cells. Hence, vector uncoating represents a major barrier hampering AAV vector-mediated transduction of DC and impacts on its use as vaccine platform.
- Published
- 2019
- Full Text
- View/download PDF
7. Oral-tolerization Prevents Immune Responses and Improves Transgene Persistence Following Gene Transfer Mediated by Adeno-associated Viral Vector
- Author
-
Laurent Drouot, Laetitia Jean, Yassine Naïmi, Olivier Boyer, Léa Dupaty, Benjamin Chevalier, Sahil Adriouch, Anna Salvetti, Romain Hardet, Gaëtan Riou, Centre de recherche en myologie, Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Physiopathologie, Autoimmunité, maladies Neuromusculaires et THErapies Régénératrices (PANTHER), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]
- Subjects
0301 basic medicine ,Ovalbumin ,Transgene ,Genetic enhancement ,[SDV]Life Sciences [q-bio] ,Genetic Vectors ,Programmed Cell Death 1 Receptor ,Administration, Oral ,Biology ,CD8-Positive T-Lymphocytes ,Injections, Intramuscular ,Viral vector ,Immune tolerance ,03 medical and health sciences ,Mice ,Immune system ,Downregulation and upregulation ,Drug Discovery ,Immune Tolerance ,Genetics ,Cytotoxic T cell ,Animals ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,Cell Proliferation ,Pharmacology ,Gene Transfer Techniques ,Genetic Therapy ,Dependovirus ,030104 developmental biology ,Immunology ,Cancer research ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Molecular Medicine ,Original Article ,CD8 - Abstract
Gene therapy represents a feasible strategy to treat inherited monogenic diseases and intramuscular (i.m.) injection of recombinant adeno-associated viral (AAV) vector is now recognized as a convenient and safe method of gene transfer. However, this approach is hampered by immune responses directed against the vector and against the transgenic protein. We used here to reproduce this situation a mouse model where robust immune responses are induced following injection of an AAV vector coding for an immunogenic transgenic protein. We show that prophylactic oral administration of the immunogenic protein before AAV-mediated gene transfer completely prevented antibody formation and cytotoxic CD8(+) T-cell response. Consistently, prophylactic oral-tolerization considerably improved long-term transgene persistence and expression. Mechanistically, inhibition of the cytotoxic immune response involved abortive proliferation of antigen-specific cytotoxic CD8(+) T cells, upregulation of the PD-1 immunoregulatory molecule, downregulation of the Bcl-2 antiapoptotic factor, and their deletion in the context of AAV-mediated gene transfer. Hence, gene therapy may represent an ideal situation where oral-tolerization can be adopted before or at the same time as vector injection to efficiently prevent deleterious immune responses directed against the transgenic protein.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.