1. [Effect of the Food to Mass Ratio and Hydraulic Retention Time on Hydrogen Production from Fruit and Vegetable Waste].
- Author
-
Li B, Kong XY, Li LH, Li Y, Yuan ZH, Sun YM, and Lü PM
- Subjects
- Anaerobiosis, Fermentation, Methane, Biofuels, Bioreactors, Fruit, Hydrogen analysis, Vegetables
- Abstract
Semi-continuous biogas production from fruit and vegetable waste by medium temperature anaerobic fermentation was conducted. Hydrogen production under different food-microorganism ratios (F/M 0.5, 0.75, 1.0, 1.5) and hydraulic retention times (HRT) (2, 3, 4 d) were investigated. The results show that in the case of a smaller F/M values (0.5 and 0.75), not all HRT stages were conducive to the continuous production of hydrogen, however, they were conducive to producing methane, especially when HRT was 3 or 4 d. Continuous hydrogen production was viable when the F/M ration was relatively higher (1.0 and 1.5), however, this was not conducive to the production of methane, with almost no methane production detected in this process. A F/M of 1.0 and a HRT of 3 d provided the best conditions for continuous hydrogen production from fruit and vegetable waste. Meanwhile, the highest and average daily volume of hydrogen production were 451.2 mL·(L·d)
-1 and (186±29) mL·(L·d)-1 respectively, whereas the highest and average hydrogen production rate of volatile solids were 133 mL·g-1 and (27±5) mL·g-1 respectively. The hydrogen content was 20%-30%.- Published
- 2017
- Full Text
- View/download PDF