67 results on '"L. Dubbeldam"'
Search Results
2. Early Predicting the Need for Aftercare Based on Patients Events from the First Hours of Stay – A Case Study
- Author
-
Annika L. Dubbeldam, István Ketykó, Renata M. de Carvalho, and Felix Mannhardt
- Abstract
Patients, when in a hospital, will go through a personalized treatment scheduled for many different reasons and with various outcomes. Furthermore, some patients and/or treatments require aftercare. Identifying the need for aftercare is crucial for improving the process of the patient and hospital. A late identification results in a patient staying longer than needed, occupying a bed that otherwise could serve another patient. In this paper, we will investigate to what extent events from the first hours of stay can help in predicting the need for aftercare. For that, we explored a dataset from a Dutch hospital. We compared different methods, considering different prediction moments (depending of the amount of initial hours of stay), and we evaluate the gain in earlier predicting the need for aftercare.
- Published
- 2023
3. Manufacturing and optical performance of silicon immersed gratings for Sentinel-5
- Author
-
Aaldert van Amerongen, L. Dubbeldam, Phillip P. Laubert, Geert Keizer, Tonny Coppens, Ruud Schuurhof, Ralf Kohlhaas, Paul J. J. Tol, R. Huisman, Stephen J. C. Yates, René Wanders, P.P. Kooijman, Sander van Loon, and M. Mustafa Kaykisiz
- Subjects
Wavefront ,Optics ,Materials science ,business.industry ,Wafer bonding ,Environmental tests ,Wafer ,Prism ,Grating ,Polarization (waves) ,Adaptive optics ,business - Abstract
In this article the immersed gratings for the ESA Copernicus Sentinel-5 mission are presented. The manufacturing approach is shown and the optical performance of the SWIR-3 immersed gratings as well as the results of the environmental tests are discussed. The immersed gratings show an average efficiency of 60% and a wavefront error of 200 nm rms. The total integrated scatter over the complete stray-light hemisphere excluding ghosts from internal reflections is found to be 0.2% using a conservative estimate. A method for the derivation of the wavefront error from separate surface measurements is presented and the results are compared to measurements with an experimental Shack- Hartmann setup. The immersed gratings are produced by bonding a prism to a wafer with a grating. Environmental tests and testing at operational temperatures show the suitability of this approach for complex space optical components. The article concludes with possible improvements in the optical performance of future immersed gratings.
- Published
- 2019
4. A reappraisal of the existence of an avian pyramidal tract, a review
- Author
-
Jacob L. Dubbeldam
- Subjects
Basal (phylogenetics) ,Pyramidal tracts ,medicine.anatomical_structure ,biology ,medicine ,Animal Science and Zoology ,Anatomy ,biology.organism_classification ,Neuroscience ,Ecology, Evolution, Behavior and Systematics ,Evolution of birds - Abstract
This communication presents a concise overview of reports in the literature concerning the occurrence of extratelencephalic fibre tracts in birds and the comparability of these tracts with the mammalian pyramidal tract. Emphasis is on the intratelencephalic organization, in particular that of the intratelencephalic sensorimotor circuits processing information from all important types of sense organs. It is suggested that two descending tracts, the occipitomesencephalic tract and the basal tractus superficialis medialis in birds have the same role in guiding behaviour as the pyramidal pathway in mammals. However, the differences in origin, trajectory and targets suggest that two independent systems may have developed in birds. One of these, the basal tractus superficialis medialis, represents the homologue of the pyramidal tract. It is suggested that the occipitomesencephalic tract is a specific feature of birds that has developed during the evolution from the early dinosaurs to birds. This suggestion follows from recent observations on the evolution of birds.
- Published
- 2014
5. 'Teder' behaviour (tenderness) – an exploration into the neural pathways of mild touch perception in mammals and birds
- Author
-
Jacob L. Dubbeldam and Koenraad Kortmulder
- Subjects
media_common.quotation_subject ,Somatosensory system ,Insular cortex ,Tenderness ,Limbic system ,medicine.anatomical_structure ,Perception ,Touch Perception ,medicine ,Animal Science and Zoology ,medicine.symptom ,Psychology ,Neuroscience ,Insula ,Ecology, Evolution, Behavior and Systematics ,media_common ,Neuroanatomy - Abstract
Abstract A category of teder interaction is proposed as the main source of (mutual) mild touch stimuli in higher vertebrates. The somatosensory circuits for the perception of these stimuli in mammals and birds are discussed using data from the literature. In addition to the usual somatosensory areas of the brain, in mammals mild touch signals are also conducted to the insula, which is closely connected to the limbic system. This separate processing of mild touch stimuli lends more substance to the category of teder behaviour. The comparable neuroanatomy in birds is more difficult to interpret. There are some intriguing parallels between the relevant circuits of mammals and birds, though in the telencephalic parts in particular, conclusions are limited by uncertainties as to the homologies of the mammalian and avian brains.
- Published
- 2009
6. The Vestibular Nuclei and Vestibuloreticular Connections in the Mallard (Anas platyrhynchos L.)
- Author
-
Annet J. Tellegen, Jacob L. Dubbeldam, and Joop J.A. Arends
- Subjects
Vestibular system ,Lateral vestibulospinal tract ,Vestibular pathway ,Medial vestibulospinal tract ,Anatomy ,Biology ,Reticular formation ,Behavioral Neuroscience ,medicine.anatomical_structure ,nervous system ,Developmental Neuroscience ,Vestibular nuclei ,Parvocellular cell ,medicine ,Righting reflex ,Neuroscience - Abstract
The vestibular apparatus provides information about the position and movements of the head. Craniocervical muscles position the head with respect to the upper part of the neck. Motoneurons innervating these muscles are located in the supraspinal nucleus and ventral horn of the rostral cervical cord. Premotor neurons of craniocervical muscles have been found in the medial two-thirds of the medullary reticular formation: the ventromedial part of the parvocellular reticular formation and the gigantocellular reticular formation. In the present study, projections from vestibular nuclei upon craniocervical premotor neurons were investigated using anterograde and retrograde tracers. Vestibulospinal fibers run bilaterally in the medial vestibulospinal tract and ipsilaterally in the lateral vestibulospinal tract. Vestibuloreticular projections are mainly ipsilateral, and originate from the n. vestibularis lateralis pars ventralis and pars dorsalis, and from the n. vestibularis descendens. Terminal labeling is found in the border zone between the parvocellular and gigantocellular reticular formation. These projections show that in addition to direct bilateral vestibulo-craniocervical projections an indirect vestibular pathway to craniocervical motor nuclei exists. The direct pathway probably is the neural substrate for the vestibulocollic reflex, whereas the vestibular projection upon the reticular formation might influence head orientation during various kinds of activities, such as pecking, preening and so on.
- Published
- 2001
7. The Reflection Grating Spectrometer on board XMM-Newton
- Author
-
K. Rees, Graziella Branduardi-Raymont, J. Tandy, Manuel Güdel, P. A. J. de Korte, C. de Vries, Marcela Stern, Steven M. Kahn, Masao Sako, L. Dubbeldam, A. Naber, Alex Zehnder, F. B. S. Paerels, R. Mewe, B. J. van Leeuwen, Marc Audard, Charles J. Hailey, I. Sakelliou, Takayuki Tamura, Christian Erd, A. C. Brinkman, T. Decker, A. P. Rasmussen, A. J. F. den Boggende, A. J. McCalden, K. Al Janabi, Jelle Kaastra, P. Guttridge, H. Goulooze, John R. Peterson, J. W. den Herder, J. Spodek, Christopher W. Mauche, Knud Thomsen, Jay V. Bixler, Jean Cottam, H. Aarts, and S. Welch
- Subjects
Physics ,Spectrometer ,Spacecraft ,business.industry ,Antenna aperture ,chemistry.chemical_element ,Astronomy and Astrophysics ,Astrophysics ,Grating ,L-shell ,Neon ,Optics ,Reflection (mathematics) ,chemistry ,Space and Planetary Science ,business ,Line Spread Function - Abstract
著者人数:38名, Accepted: 2000-10-26, 資料番号: SA1001486000
- Published
- 2001
8. Central connections of the nucleus mesencephalicus nervi trigemini in the mallard (Anas platyrhynchosL.)
- Author
-
Jacob L. Dubbeldam, R.G. Bout, and A.J. Tellegen
- Subjects
education.field_of_study ,Proprioception ,Population ,Anatomy ,Biology ,Reticular formation ,Agricultural and Biological Sciences (miscellaneous) ,stomatognathic diseases ,Anterograde tracing ,Trigeminal motor nucleus ,medicine.anatomical_structure ,stomatognathic system ,Reticular connective tissue ,medicine ,Adductor muscles ,education ,Pterygoid Muscles - Abstract
Background In the mallard duck, functionally distinct groups of jaw muscles are each innervated by a different subnucleus of the main trigeminal (mV) or facial (mVII) motor nucleus. The other subnuclei of mV and mVII innervate several head muscles, including lingual muscles. The reticular premotor cells of the trigeminal and facial jaw motor subnuclei occupy different areas in the parvocellular reticular formation (RPc). The cell bodies of jaw muscle spindle afferents are situated in the mesencephalic nucleus (MesV). In the present study, the central connections of MesV with jaw motor subnuclei and their premotor areas are investigated. Methods In a first series of experiments, horseradish peroxidase (HRP) injections were made in electrophysiologically identified trigeminal and facial subnuclei. In a second series of experiments, HRP was delivered iontophoretically at different parts of RPc. Anterograde tracing with tritiated leucine was used to confirm the central connections of MesV. Double labeling with fluorescent tracers was used to investigate whether MesV collaterals reach both the rostral and caudal parts of RPc. Results MesV projects to only two of the five different subnuclei of the trigeminal motor nucleus. The subnuclei that receive spindle afferents innervate jaw adductor muscles (mV2) or pro- and retractors of the mandible (pterygoid muscles; mV1). The three other subnuclei innervate jaw-opener muscles or other head muscles. MesV fibers also project to the rostral part of the dorsolateral RPc (RPcdl), which serves as a premotor area for the motor subnuclei of adductor and pterygoid muscles. The intermediate part of RPcdl does not contain premotor cells of mV or mVII, and a clear projection of MesV to this area is absent. The caudal part of RPcdl projects to the mV and mVII subnuclei that innervate jaw-opener muscles. This part of RPc receives a projection from the same MesV cells as the rostral RPcdl. The MesV projection to RPc does not include premotor cells of mV and mVII in the ventromedial part of RPc (RPcvm). Conclusions Spindle afferents from jaw-closer muscles project only to mV subnuclei innervating jaw-closer muscles (mV1, mV2) and to a population of premotor cells in the rostral RPcdl that innervates these subnuclei. The mixed population of premotor cells in RPcvm, which innervates both jaw-opener and jaw-closer subnuclei, does not receive a MesV projection. However, a premotor area for jaw-opener subnuclei in the caudal part of RPcdl does receive MesV input and may serve as a relay through which proprioceptive information from jaw closer spindles can reach jaw opener muscles. Anat. Rec. 248:554-565, 1997. © 1997 Wiley-Liss, Inc.
- Published
- 1997
9. Histology of the grooved ventral pouch of the minke whale,Balaenoptera acutorostrata, with special reference to the occurrence of lamellated corpuscles
- Author
-
R. A. Kastelein, J. L. Dubbeldam, and M. A. G. de Bakker
- Subjects
Mouth closure ,Krill ,biology ,Balaenoptera ,Histology ,Anatomy ,biology.organism_classification ,Baleen ,stomatognathic system ,Animal Science and Zoology ,Minke whale ,Pouch ,Anatomical feature ,Ecology, Evolution, Behavior and Systematics - Abstract
The rorquals, Balaenopteridae, catch their food by swimming into a concentration of krill or schooling fish, taking up prey-laden water, and then filtering it with their fringed baleen. An anatomical feature adapted to this feeding strategy is the expansible buccal cavity. The amount of expansion depends upon the elasticity of the grooved ventral pouch forming the wall of the buccal cavity. This wall consists, in addition to the fat tissue, of thick layers of elastic connective tissue and muscle. In these layers, lamellated corpuscles were found close to the grooves. These sense organs may play a role in the timing of mouth closure during feeding.
- Published
- 1997
10. Do craniocervical and jaw motor nuclei receive input from the same population of reticular premotor neurons? a double labeling tracing study in the mallard (Anas platyrhynchos)
- Author
-
Jacob L. Dubbeldam and Annet J. Tellegen
- Subjects
genetic structures ,Population ,Biology ,Reticular formation ,behavioral disciplines and activities ,Parvocellular cell ,Neural Pathways ,medicine ,Animals ,education ,Motor Neurons ,education.field_of_study ,Reticular Formation ,General Neuroscience ,Motor Cortex ,food and beverages ,Anatomy ,medicine.anatomical_structure ,Trigeminal motor nucleus ,Jaw ,nervous system ,Reticular connective tissue ,Medulla oblongata ,Brainstem ,Neuroscience ,Nucleus ,psychological phenomena and processes ,Brain Stem - Abstract
As part of a study concerning the organization of premotor areas in the medullary reticular formation in birds we used a fluorescent retrograde double labeling technique to localize the premotor neurons of the trigeminal (mV) and supraspinal motor nucleus (SSp). Diamidino Yellow injections in mV and Fast Blue injections in SSp demonstrated that mV and SSp do not share premotor neurons, but the premotor neurons form a mixed population in the ventromedial part of the parvocellular reticular formation.
- Published
- 1996
11. In-orbit performance of Herschel-HIFI
- Author
-
N. Whyborn, Per Bjerkeli, Pieter R. Roelfsema, Dominicus Kester, L. Dubbeldam, Q. Xie, Claudia Comito, Z. Nagy, A. Marston, R. Moreno, J. Rector, C. Gal, M. H. D. van der Wiel, M. Akyilmaz, Christian Leinz, Michael Olberg, Miriam Rengel, Mihkel Kama, T. Klein, D. R. Higgins, Tomasz S. Kaminski, Yoko Okada, E. Sánchez-Suárez, S. Pacheco, G. de Lange, J. Stutzki, I. M. Avruch, W. Salomons, R. Assendorp, Tom Bell, R. Shipman, W. Nowosielski, O. Coeur-Joly, Volker Ossenkopf, Adwin Boogert, C. Kramer, W. M. Laauwen, S. D. Lord, J. C. Pearson, M. Marseille, Rudolf Schieder, Piotr Orleanski, J. Braine, C. K. Wafelbakker, D. Rabois, C. McCoey, Marco Soldati, A. de Jonge, L. Ravera, Charlotte Vastel, Christopher Jarchow, S. Wang, F. Schlöder, F. Flederus, W. Luinge, Pieter Dieleman, Umut A. Yildiz, Robin Lombaert, Christophe Risacher, Emmanuel Caux, Nathan R. Crockett, B. Delforge, M. Melchior, M. De Luca, Willem Jellema, Fabrice Herpin, N. Biver, A. Lorenzani, Thomas G. Phillips, B. Thomas, Patrick W. Morris, K. Wildeman, E. De Beck, P. Zaal, Hideo Sagawa, Jesús Martín-Pintado, K. Edwards, R. Huisman, Colin Borys, M. Caris, Alexander G. G. M. Tielens, Michel Fich, Jacob Kooi, Th. de Graauw, M. Michalska, Z. Makai, M. Xilouris, A. Hoac, Frank Helmich, Thibault Cavalié, F. Schmülling, Bengt Larsson, D. A. Beintema, A. M. di Giorgio, José Cernicharo, Holger S. P. Müller, Bertrand Lefloch, D. Teyssier, Pierre Hily-Blant, SRON Netherlands Institute for Space Research (SRON), Infrared Processing and Analysis Center (IPAC), California Institute of Technology (CALTECH), Onsala Space Observatory, Chalmers University of Technology [Göteborg], foreign laboratories (FL), CERN [Genève], ESO, European Southern Observatory (ESO), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), FORMATION STELLAIRE 2012, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), CNRS INSU, UMR 5187, F-31028 Toulouse 4, France, UMR 5187 Toulouse, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Max Planck Institute for Radio Astronomy, Max-Planck-Institut für Radioastronomie (MPIFR), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, I. Physikalisches Institut [Köln], Universität zu Köln = University of Cologne, SSE 2012, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy [Ann Arbor], University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Laboratoire Univers et Théories (LUTH (UMR_8102)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA, CALTECH, Ctr Infrared Proc & Anal, Pasadena, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France, Centre Etud Spatiale Rayonnements Toulouse, Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain, Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung (MPS), Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany, Univ Cologne, Inst Phys 1, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), École normale supérieure - Paris (ENS Paris), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Universität zu Köln, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Kapteyn Astronomical Institute, Astronomy, Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Heterodyne ,Physics ,[PHYS]Physics [physics] ,010504 meteorology & atmospheric sciences ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Instrumentation ,Astrophysics::Instrumentation and Methods for Astrophysics ,ASTRONOMY ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,7. Clean energy ,Methods observational ,Space and Planetary Science ,0103 physical sciences ,Orbit (dynamics) ,Calibration ,methods: observational ,space vehicles: instruments ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,instrumentation: spectrographs - Abstract
International audience; Aims: In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described. Methods: The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources. Results: The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
- Published
- 2012
12. Brain organization and behaviour
- Author
-
Jacob L. Dubbeldam
- Subjects
Brain organization ,Applied Mathematics ,Sensory system ,General Medicine ,Biology ,General Biochemistry, Genetics and Molecular Biology ,Philosophy ,Philosophy of biology ,medicine.anatomical_structure ,Specialization (functional) ,medicine ,Auditory system ,General Agricultural and Biological Sciences ,Trigeminal system ,Neuroscience ,General Environmental Science - Abstract
Central question of this essay is, whether it is possible to relate specific aspects of the organization of sensorimotor systems to specific aspects of the behaviour. The role of the auditory system as part of a system for vocalization (song-birds) or as part of a system for prey localization (owls) and the different roles of the trigeminal system in the feeding behaviour of different birds are considered. The ascending sensory systems seem to possess a comparable organization in the various species. Also the descending ‘motor’ pathways from archistriatum and paleostriatal complex seem to be basically similar. Behavioural specialization may be expressed particularly in the organization of the intratelencephalic circuits and thus in the involvement of specific regions of neostriatum and hyperstriatum ventrale. In discussions on cerebralisation it will be necessary to take such differences in intratelencephalic organization into account.
- Published
- 1993
13. The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
- Author
-
Brian Jackson, B. Kopf, R. Bieber, R. Güsten, A. M. di Giorgio, J. A. Stern, Holger S. P. Müller, B. J. van Leeuwen, G. S. Liu, R. Orfei, Neal R. Erickson, R. Lai, B. Delforges, Wolfgang Wild, Christian Leinz, O. Coeur-Joly, J. Desbat, David Teyssier, S. D. Lord, Karl Jacobs, Bruce Bumble, Lorene Samoska, M. Rataj, R. H. Lin, Dominicus Kester, M. Salez, X. Tielens, Alexandre Karpov, Paolo Saraceno, K. Edwards, R. Huisman, A. Megej, K. F. Schuster, Michel Fich, L. Dubbeldam, Serguei Cherednichenko, H. Golstein, Christian Monstein, J. A. Murphy, C. van Baaren, Victor Belitsky, P. Planesas, E. Natale, Michael Olberg, Lorenzo Piazzo, T. Peacock, Martin Eggens, Emmanuel Caux, W. A. Hatch, Neil Trappe, Hubregt J. Visser, Herbert Zirath, Jaap Evers, S. Phillip-May, Alain Maestrini, Hamid Javadi, Jacob Kooi, Th. de Graauw, F. Schmülling, E. C. Honingh, C. McCoey, J. C. Pearson, W. Luinge, I. Lopez-Fernandez, W. M. Laauwen, M. Michalska, Bengt Larsson, S. Wulff, John Gill, René Liseau, Volker Ossenkopf, Colin Borys, B. Kruizenga, Rafael Teipen, C. Kramer, A. Cros, H. Goulooze, P. Cais, W. Nowosielski, Goutam Chattopadhyay, M. Stokroos, Rafael Bachiller, F. Zwart, C. Gal, Piotr Orleanski, J. Kawamura, H. Smit, O. Siebertz, H. Aarts, Francesco Nuzzolo, L. Meinsma, Jonas Zmuidzinas, R. Assendorp, D. A. Beintema, H. van de Stadt, Jesús Martín-Pintado, G. de Lange, Ryszard Szczerba, Erich Schlecht, R. Higgins, Christophe Risacher, Patrick W. Morris, H. Jacobs, Christopher Jarchow, Willem Jellema, Pieter Dieleman, Todd Gaier, B. Franke, J. Stutzki, Imran Mehdi, Th. Klein, Harald Franz Arno Merkel, T. Finn, M. Justen, P.R. Wesselius, M. Ciechanowicz, T. M. Klapwijk, Hans-Joachim Wunsch, C. Comito, P. Zaal, Erik L. Kollberg, C. Diez-Gonzalez, T. den Boggende, John Ward, Jian-Rong Gao, Pasquale Cerulli-Irelli, C. Kasemann, T. Kuhn, Frank Helmich, K. Wildeman, Henry G. LeDuc, L. Ravera, Frank Maiwald, Y. Delorme, D. Moratschke, F. Schlöder, J. M. Krieg, M. Olbrich, A. Marston, Juan Daniel Gallego, P.-P. Kooiman, E. Steinmetz, T. Gunsing, A. Naber, M. Melchior, Geert Keizer, M. Schultz, I. Peron, S. Gauffre, C. K. Wafelbakker, N. Whyborn, M. Krause, T. Tils, Alexander Loose, A. de Jonge, Pieter R. Roelfsema, Rudolf Schieder, M. Caris, S. Glenz, A. Barcia, W. Baechtold, Paul Hartogh, R. Shipman, Adwin Boogert, Arnold O. Benz, Thomas G. Phillips, California Institute of Technology (CALTECH), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Université Sciences et Technologies - Bordeaux 1, Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology [Gothenburg, Sweden], Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Dept Pathol & Microbiol, Université de Montréal (UdeM)-Faculté de médecine vétérinaire, Leibniz Institute for Crystal Growth, Leibniz Institute, Technische Universität Darmstadt (TU Darmstadt), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster (WWU), Institute of Molecular Medicine and Cell Research (ZBMZ), University of Freiburg [Freiburg], Onsala Space Observatory, Chalmers University of Technology [Göteborg], ESO, European Southern Observatory (ESO), Istituto di Fisica dello Spazio Interplanetario (IFSI), Consiglio Nazionale delle Ricerche (CNR), Max Planck Institute for Meteorology (MPI-M), Institut für Chemie und Dynamik der Geosphäre - Troposphäre (ICG-2), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Herschel Science Center [Madrid], European Space Astronomy Centre (ESAC), European Space Agency (ESA)-European Space Agency (ESA), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), École normale supérieure - Paris (ENS-PSL), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), Westfälische Wilhelms-Universität Münster = University of Münster (WWU), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), TNO Industrie en Techniek, and Astronomy
- Subjects
Experimental Physics ,Local oscillator ,Observatories ,Orbits ,general [Submillimeter] ,01 natural sciences ,7. Clean energy ,spectroscopic [Techniques] ,law.invention ,Far infrared ,Spectrographs ,law ,spectrographs [Instrumentation] ,010303 astronomy & astrophysics ,instrumentation: spectrographs ,Physics ,Spectrometers ,submillimeter: general ,Bolometers ,Correlators ,methods: observational ,infrared: general ,Heterodyne ,Frequency band ,Submillimeter: generals ,Instantaneous phase ,Radio spectrum ,Optics ,Mixers (machinery) ,0103 physical sciences ,Frequency bands ,observational [Methods] ,010306 general physics ,Remote sensing ,techniques: spectroscopic ,Spectrometer ,business.industry ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Bolometer ,generals [Submillimeter] ,Astronomy and Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Launching ,general [Infrared] ,Space and Planetary Science ,Heterodyning ,Instruments ,business - Abstract
International audience; Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
- Published
- 2010
14. The origin of the [C II] emission in the S140 photon-dominated regions. New insights from HIFI
- Author
-
C. Dedes, M. Röllig, B. Mookerjea, Y. Okada, V. Ossenkopf, S. Bruderer, A. O. Benz, M. Melchior, C. Kramer, M. Gerin, R. Güsten, M. Akyilmaz, O. Berne, F. Boulanger, G. De Lange, L. Dubbeldam, K. France, A. Fuente, J. R. Goicoechea, A. Harris, R. Huisman, W. Jellema, C. Joblin, T. Klein, F. Le Petit, S. Lord, P. Martin, J. Martin-Pintado, D. A. Neufeld, S. Philipp, T. Phillips, P. Pilleri, J. R. Rizzo, M. Salez, R. Schieder, R. Simon, O. Siebertz, J. Stutzki, F. van der Tak, D. Teyssier, H. Yorke, Institute of Astronomy [ETH Zürich], Department of Physics [ETH Zürich] (D-PHYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Physikalisches Institut [Köln], Universität zu Köln, KOSMA, I. Physikalisches Institut, foreign laboratories (FL), CERN [Genève], Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Extraterrestrische Physik (MPE), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Division for Submm Technologies, Max-Planck-Institut für Radioastronomie (MPIFR), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Center for Astrophysics and Space Astronomy [Boulder] (CASA), University of Colorado [Boulder], Observatorio Astronómico Nacional (OAN), oan, CRUK Medical Oncology Unit, The Churchill Hospital, Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France, Centre Etud Spatiale Rayonnements Toulouse, CITA, University of Toronto, Los Alamos National Laboratory (LANL), Helmholtz zentrum für Schwerionenforschung GmbH (GSI), European Space Astronomy Centre (ESAC), European Space Agency (ESA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, and Astronomy
- Subjects
Photon ,ISM: structure ,010103 numerical & computational mathematics ,Astrophysics ,01 natural sciences ,CARBON ,photon-dominated region (PDR) ,0103 physical sciences ,OUTFLOW ,0101 mathematics ,Spectral resolution ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,Line (formation) ,Physics ,STAR-FORMING REGIONS ,ISM: kinematics and dynamics ,MASS-SPECTRA ,S140-IRS-1 ,photon ,Astronomy and Astrophysics ,submillimeter: general ,Ionization front ,FIELDS ,Astrophysics - Astrophysics of Galaxies ,ISM: molecules ,CONTINUUM ,13. Climate action ,Space and Planetary Science ,dominated region (PDR) ,MOLECULAR CLOUDS ,S 140 ,Outflow ,S-140/L-1204 ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Using Herschel's HIFI instrument we have observed [C II] along a cut through S140 and high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-tau model for photon dominated regions. Here we derive the physical conditions in S140 and in particular the origin of [C II] emission around IRS1. We identify three distinct regions of [C II] emission from the cut, one close to the embedded source IRS1, one associated with the ionization front and one further into the cloud. The line emission can be understood in terms of a clumpy model of photon-dominated regions. At the position of IRS1, we identify at least two distinct components contributing to the [C II] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the fact that the [C II] peak at IRS1 coincides with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be well reproduced by a single-component KOSMA-tau model. Thus it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity which has allowed us to uncover an additional hot gas component in the S140 region.
- Published
- 2010
15. Origin of the hot gas in low-mass protostars: Herschel-PACS spectroscopy of HH 46
- Author
-
T. Giannini, Patrick W. Morris, R. Shipman, Javier R. Goicoechea, A. Di Giorgio, Michael J. Kaufman, S. F. Wampfler, Sylvain Bontemps, René Liseau, Simon Bruderer, Ruud Visser, Fabrice Herpin, Mario Tafalla, R. H. Lin, Rafael Bachiller, F. F. S. van der Tak, Rene Plume, P. Saraceno, Christophe Risacher, Michel Fich, M. Marseille, Asunción Fuente, Arnold O. Benz, T. Jacq, Pierre Encrenaz, Th. de Graauw, Gregory J. Herczeg, T. A. van Kempen, Jes K. Jørgensen, Steven D. Doty, John C. Pearson, John Anthony Murphy, Jonathan Braine, E. F. van Dishoeck, Umut A. Yildiz, Neil Trappe, Doug Johnstone, Berengere Parise, Edwin Bergin, Per Bjerkeli, G. Melnick, S. Glenz, M. Benedettini, Christian Brinch, C. McCoey, Frank Helmich, R. Huisman, M. Ciechanowicz, F. Daniel, B. Larsson, Friedrich Wyrowski, Geoffrey A. Blake, Brunella Nisini, José Cernicharo, Alain Baudry, David A. Neufeld, Dariusz C. Lis, Michael Olberg, L. Dubbeldam, Lars E. Kristensen, J. Santiago-Garcia, Claudio Codella, Carsten Dominik, Paola Caselli, Michiel R. Hogerheijde, Low Energy Astrophysics (API, FNWI), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge], Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), SRON Netherlands Institute for Space Research (SRON), INAF - Osservatorio Astronomico di Roma (OAR), Onsala Space Observatory, Chalmers University of Technology [Göteborg], Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, ESO, European Southern Observatory (ESO), Istituto di Fisica dello Spazio Interplanetario (IFSI), Consiglio Nazionale delle Ricerche (CNR), Max-Planck-Institut für Radioastronomie (MPIFR), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB), Harvard University-Smithsonian Institution, École normale supérieure - Paris (ENS-PSL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), and Kapteyn Astronomical Institute
- Subjects
Experimental Physics ,Young stellar object ,FOS: Physical sciences ,Astrophysics ,I ,01 natural sciences ,Luminosity ,0103 physical sciences ,Protostar ,WATER ,Solar and Stellar Astrophysics ,OUTFLOW ,14. Life underwater ,Spectroscopy ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Line (formation) ,Envelope (waves) ,QB ,Physics ,stars: formation ,010308 nuclear & particles physics ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,astrochemistry ,Astronomy and Astrophysics ,HH-46/47 ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,ISM: molecules ,ISM: jets and outflows ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,ISM: individual objects: HH 46 ,JETS ,SHOCK ,Outflow ,Low Mass ,EMISSION - Abstract
'Water in Star-forming regions with Herschel' (WISH) is a Herschel Key Programme aimed at understanding the physical and chemical structure of young stellar objects (YSOs) with a focus on water and related species. The low-mass protostar HH 46 was observed with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory to measure emission in H2O, CO, OH, [OI], and [CII] lines located between 63 and 186 um. The excitation and spatial distribution of emission can disentangle the different heating mechanisms of YSOs, with better spatial resolution and sensitivity than previously possible. Far-IR line emission is detected at the position of the protostar and along the outflow axis. The OH emission is concentrated at the central position, CO emission is bright at the central position and along the outflow, and H2O emission is concentrated in the outflow. In addition, [OI] emission is seen in low-velocity gas, assumed to be related to the envelope, and is also seen shifted up to 170 km/s in both the red- and blue-shifted jets. Envelope models are constructed based on previous observational constraints. They indicate that passive heating of a spherical envelope by the protostellar luminosity cannot explain the high-excitation molecular gas detected with PACS, including CO lines with upper levels at >2500 K above the ground state. Instead, warm CO and H2O emission is probably produced in the walls of an outflow-carved cavity in the envelope, which are heated by UV photons and non-dissociative C-type shocks. The bright OH and [OI] emission is attributed to J-type shocks in dense gas close to the protostar. In the scenario described here, the combined cooling by far-IR lines within the central spatial pixel is estimated to be 2 \times 10-2 L_sun, with 60-80% attributed to J- and C-type shocks produced by interactions between the jet and the envelope., Accepted for publication in Astronomy and Astrophysics (Herschel special issue)
- Published
- 2010
16. The trigeminal system in birds and nociception
- Author
-
Jacob L. Dubbeldam
- Subjects
Dorsum ,Presynaptic Terminals ,Pain ,Biology ,Birds ,Rats, Sprague-Dawley ,Prosencephalon ,Species Specificity ,Neural Pathways ,medicine ,Animals ,Neurons, Afferent ,Trigeminal Nerve ,Receptor ,Trigeminal system ,Mammals ,Afferent Pathways ,General Neuroscience ,Nociceptors ,Spinal cord ,Rats ,Disease Models, Animal ,Neuropsychology and Physiological Psychology ,medicine.anatomical_structure ,Nociception ,nervous system ,Spinal Cord ,Forebrain ,Nociceptor ,Molecular Medicine ,Brainstem ,Neuroscience - Abstract
Aim of this paper is to give a concise overview of what is known about the trigeminal nociceptive system in birds. Several types of nociceptors have been discovered, thermal nociceptors and polymodal, i.e. mechanothermal and mechanochemical receptors. Information from these receptors reaches the Laminae I and II of the caudal subnucleus of the descending trigeminal system and of the dorsal horn of the rostral spinal cord. The organization of the afferents to the avian brainstem and of the primary nociceptive centers is largely the same as that in mammals. This is also true for a number of histochemical characteristics of these primary centers. The comparability of the ascending nociceptive system in birds and mammals is more problematic. This is due to the differences in organization of the forebrain in mammals and birds. The paper concludes with a short discussion on the sense of pain and the connection with nociception.
- Published
- 2009
17. The Spektr-RG x-ray calorimeter
- Author
-
F. Scott Porter, Y. Takei, R. A. Sunyaev, Yoshitaka Ishisaki, N. Semena, F. Zwart, Peter Friedrich, Keisuke Shinozaki, Kazuhisa Mitsuda, C. van Baren, L. Dubbeldam, M. Buntov, D. McCammon, Caroline A. Kilbourne, Masahide Murakami, A. Tkachenko, Jean Cottam, K. D. Kuntz, Marat Gilfanov, C. P. de Vries, Ryuichi Fujimoto, Takao Nakagawa, R. L. Kelley, Robert Petre, H. Aarts, Jelle Kaastra, N. E. White, Elisa Costantini, E. M. Churazov, M. N. Pavlinsky, J. W. den Herder, Hiroyuki Sugita, R. Smith, Y. Sato, Jacco Vink, S. L. Snowden, Takaya Ohashi, Noriko Y. Yamasaki, R. F. Mushotzky, Yuichiro Ezoe, and Peter Predehl
- Subjects
Physics ,Calorimeter (particle physics) ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics ,Galaxy ,Interstellar medium ,Supernova ,Galaxy groups and clusters ,Sky ,Spectral resolution ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
Spatially resolved X-ray spectroscopy with high spectral resolution allows the study of astrophysical processes in extended sources with unprecedented sensitivity. This includes the measurement of abundances, temperatures, densities, ionisation stages as well as turbulence and velocity structures in these sources. An X-ray calorimeter is planned for the Russian mission Spektr Rontgen-Gamma (SRG), to be launched in 2011. During the first half year (pointed phase) it will study the dynamics and composition of of the hot gas in massive clusters of galaxies and in supernova remnants (SNR). During the survey phase it will produce the first all sky maps of line-rich spectra of the interstellar medium (ISM). Spectral analysis will be feasible for typically every 5° x 5° region on the sky. Considering the very short time-scale for the development of this instrument it consists of a combination of well developed systems. For the optics an extra eROSITA mirror, also part of the Spektr-RG payload, will be used. The detector will be based on spare parts of the detector flown on Suzaku combined with a rebuild of the electronics and the cooler will be based on the design for the Japanese mission NeXT. In this paper we will present the science and give an overview of the instrument.
- Published
- 2008
18. The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI): instrument and pre-launch testing
- Author
-
Michel Perault, René Liseau, Hubregt J. Visser, C. Kramer, Rudolf Schieder, Do Kester, L. Ravera, Jon Kawamura, Anthony Murphy, Bob Kruizenga, Xander Tielens, Fabrice Herpin, Nicolas Biver, Douwe Beintema, Thijs de Graauw, Willem Jellema, Jean-Michel Krieg, P. Planesas, Peer Zaal, L. Dubbeldam, John Ward, Claudia Comito, Emmanuel Dartois, Klaas Wildeman, Patrick W. Morris, Rolf Güsten, David Teyssier, John Pearson, Sabine Phillip, Rafael Moreno, N. Honingh, Gert de Lange, Willem Luinge, R. Shipman, Harald Franz Arno Merkel, H. Jacobs, Albert Naber, Frank Schmuelling, Steve Lord, Bengt Larsson, Adwin Boogert, H. Aarts, Volker Ossenkopf, Charlotte Vastel, Kees Wafelbakker, Teun M. Klapwijk, Christian Leinz, Ian Delorme, Pieter Dieleman, Piotr Orleanski, Anna DiGiorgio, Mirek Rataj, Anthony Marston, Sergey Cherednichenko, Frank Helmich, Roonan Higgins, Jürgen Stutzki, W. M. Laauwen, Albrecht de Jonge, M. Fich, Jesús Martín-Pintado, Arnold O. Benz, Thomas G. Phillips, Ryszard Szczerba, Odile Coeur-Joly, T. Klein, Francois Boulanger, Peter Roelfsema, Paolo Saraceno, K. Edwards, R. Huisman, Nick Whyborn, Micheal Olberg, Jacob Kooi, Emmanuel Caux, Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, California Institute of Technology (CALTECH), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology [Gothenburg, Sweden], Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), SRON Netherlands Institute for Space Research (SRON), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Department of physical chemistry, Uppsala University, Max-Planck-Institut für Radioastronomie (MPIFR), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Institute of Medical Technology and Tampere University Hospital, University of Tampere [Finland], Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), KOSMA, I. Physikalisches Institut, Universität zu Köln, Institut de Microélectronique, Electromagnétisme et Photonique (IMEP), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF), CSIRO Materials Sciences and Engineering, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Onsala Space Observatory, Chalmers University of Technology [Göteborg], Department of Physics and Astronomy [Leicester], University of Leicester, Laboratoire de Radioastronomie (LRA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Photonics Centre, University College Cork (UCC), Dept Pathol & Microbiol, Université de Montréal (UdeM)-Faculté de médecine vétérinaire, Oschmann, Jacobus M., Jr., de Graauw, Mattheus W. M., MacEwen, Howard A., Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Nice Sophia Antipolis (1965 - 2019) (UNS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Universität zu Köln = University of Cologne, Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Heterodyne ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,business.industry ,Frequency band ,Local oscillator ,Bolometer ,Superheterodyne receiver ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,020206 networking & telecommunications ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Radio spectrum ,law.invention ,Optics ,Far infrared ,law ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Ka band ,business ,010303 astronomy & astrophysics ,Remote sensing - Abstract
International audience; This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI), to be launched onboard of ESA's Herschel Space Observatory, by 2008. It includes the first results from the instrument level tests. The instrument is designed to be electronically tuneable over a wide and continuous frequency range in the Far Infrared, with velocity resolutions better than 0.1 km/s with a high sensitivity. This will enable detailed investigations of a wide variety of astronomical sources, ranging from solar system objects, star formation regions to nuclei of galaxies. The instrument comprises 5 frequency bands covering 480-1150 GHz with SIS mixers and a sixth dual frequency band, for the 1410-1910 GHz range, with Hot Electron Bolometer Mixers (HEB). The Local Oscillator (LO) subsystem consists of a dedicated Ka-band synthesizer followed by 7 times 2 chains of frequency multipliers, 2 chains for each frequency band. A pair of Auto-Correlators and a pair of Acousto-Optic spectrometers process the two IF signals from the dual-polarization front-ends to provide instantaneous frequency coverage of 4 GHz, with a set of resolutions (140 kHz to 1 MHz), better than < 0.1 km/s. After a successful qualification program, the flight instrument was delivered and entered the testing phase at satellite level. We will also report on the pre-flight test and calibration results together with the expected in-flight performance.
- Published
- 2008
19. The identification of the motor nuclei innervating the tongue muscles in the mallard (Anas platyrhynchos); an HRP study
- Author
-
R.G. Bout and Jacob L. Dubbeldam
- Subjects
Motor Neurons ,Brain Mapping ,biology ,Hypoglossal nucleus ,General Neuroscience ,Central nervous system ,Cranial Nerves ,Anatomy ,Motor neuron ,Tongue muscles ,Horseradish peroxidase ,Hyoglossus ,Ducks ,medicine.anatomical_structure ,Tongue ,Neck Muscles ,medicine ,biology.protein ,Animals ,Nucleus ,Horseradish Peroxidase ,Brain Stem - Abstract
Horseradish peroxidase (HRP) histochemistry was used to identify the motoneurons innervating the tongue muscles in the mallard. Four nuclei are involved: the intermediate motor nucleus of N.VII innervating the stylohyoid, serpihyoid and ceratohyoid muscles, the retrofacial nucleus of N.IX innervating the m. geniohyoideus and the n. intermedius or motor nucleus of N.XII that innervates the mm. ceratoglossus and hyoglossus anterior and obliquus. The m. intermandibularis is innervated by a trigeminal motor subnucleus. There is no clear intranuclear organization. The results are summarized in Table I and discussed in connection with the role of each of the muscles during movements of the tongue.
- Published
- 1990
20. An annotated bibliography of C.J. van der Klaauw with notes on the impact of his work
- Author
-
Jacob L. Dubbeldam
- Subjects
Long lasting ,Ecology (disciplines) ,Morphology (biology) ,Biology ,Tympanic region ,General Biochemistry, Genetics and Molecular Biology ,Environmental Science(all) ,Functional morphology ,Animals ,General Environmental Science ,Netherlands ,Cognitive science ,Annotated bibliography ,Original Paper ,Agricultural and Biological Sciences(all) ,Comparative anatomy ,Ecology ,Biochemistry, Genetics and Molecular Biology(all) ,Applied Mathematics ,General Medicine ,History, 20th Century ,Philosophy of biology ,Philosophy ,Anatomy, Comparative ,Evolutionary biology ,Vertebrates ,Ecological morphology ,General Agricultural and Biological Sciences ,Zoology - Abstract
Van der Klaauw was a professor of Descriptive Zoology in the period 1934–1958. This paper presents a concise annotated overview of his publications. In his work three main topics can be recognized: comparative anatomy of the mammalian auditory region, theoretical studies about ecology and ecological morphology, and vertebrate functional morphology. In particular van der Klaauw developed new concepts on functional morphology, based upon a holistic approach. A series of studies in functional morphology of Vertebrates by his students is added. An overview of recent morphological and theoretical studies show that this new approach had a long lasting impact in studies of functional morphology.
- Published
- 2007
21. Review
- Author
-
J. L. Dubbeldam
- Subjects
Philosophy ,Applied Mathematics ,General Medicine ,General Agricultural and Biological Sciences ,General Biochemistry, Genetics and Molecular Biology ,General Environmental Science - Published
- 1994
22. The vestibular nuclei and vestibuloreticular connections in the mallard (Anas platyrhynchos L.). An anterograde and retrograde tracing study
- Author
-
A J, Tellegen, J J, Arends, and J L, Dubbeldam
- Subjects
Male ,Ducks ,Histocytochemistry ,Molecular Probes ,Reticular Formation ,Neural Pathways ,Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate ,Animals ,Autoradiography ,Biotin ,Dextrans ,Vestibular Nuclei ,Fluorescent Dyes - Abstract
The vestibular apparatus provides information about the position and movements of the head. Craniocervical muscles position the head with respect to the upper part of the neck. Motoneurons innervating these muscles are located in the supraspinal nucleus and ventral horn of the rostral cervical cord. Premotor neurons of craniocervical muscles have been found in the medial two-thirds of the medullary reticular formation: the ventromedial part of the parvocellular reticular formation and the gigantocellular reticular formation. In the present study, projections from vestibular nuclei upon craniocervical premotor neurons were investigated using anterograde and retrograde tracers. Vestibulospinal fibers run bilaterally in the medial vestibulospinal tract and ipsilaterally in the lateral vestibulospinal tract. Vestibuloreticular projections are mainly ipsilateral, and originate from the n. vestibularis lateralis pars ventralis and pars dorsalis, and from the n. vestibularis descendens. Terminal labeling is found in the border zone between the parvocellular and gigantocellular reticular formation. These projections show that in addition to direct bilateral vestibulo-craniocervical projections an indirect vestibular pathway to craniocervical motor nuclei exists. The direct pathway probably is the neural substrate for the vestibulocollic reflex, whereas the vestibular projection upon the reticular formation might influence head orientation during various kinds of activities, such as pecking, preening and so on.
- Published
- 2002
23. In-flight calibration of the XMM-Newton reflection grating spectrometers
- Author
-
Knud Thomsen, A. C. Brinkman, Jan-Willem den Herder, Jelle Kaastra, Antonius J. F. den Boggende, Frits Paerels, I. Sakelliou, Alex Zehnder, John R. Peterson, Steven M. Kahn, Christian Erd, Cor P. de Vries, Manuel Guedel, R. Mewe, Marc Audard, J. Spodek, Andrew P. Rasmussen, Jean Cottam, L. Dubbeldam, and Graziella Branduardi-Raymont
- Subjects
Physics ,Optics ,Spectrometer ,business.industry ,Antenna aperture ,Calibration ,Reflection (physics) ,Grating ,business ,Remote sensing - Abstract
The activities during the instrument calibrations are summarized and first data are presented. The main instrument features, the line-spread function and the effective area, are discussed and the status of the in-flight calibrations is summarized.
- Published
- 2000
24. Description and performance of the reflection grating spectrometer on board of XMM-Newton
- Author
-
Andrew P. Rasmussen, A. C. Brinkman, Graziella Branduardi-Raymont, L. Dubbeldam, Steven M. Kahn, Knud Thomsen, Frits Paerels, I. Sakelliou, J. Spodek, Manuel Guedel, Jan-Willem den Herder, Christian Erd, Jean Cottam, Jelle Kaastra, R. Mewe, Cor P. de Vries, and Antonius J. F. den Boggende
- Subjects
Physics ,Optics ,Spectrometer ,business.industry ,Optical engineering ,Antenna aperture ,Calibration ,Reflection (physics) ,Satellite ,Spectral resolution ,Grating ,business ,Remote sensing - Abstract
The ESA X-ray Multi Mirror mission, XMM-Newton, carries two identical Reflection Grating Spectrometers behind two of its three nested sets of Wolter I type mirrors. The instrument allows high-resolution (E/(Delta) E equals 100 to 500) measurements in the soft X-ray range (6 to 38 A or 2.1 to 0.3 keV) with a maximum effective area of about 150 cm2 at 15 A. The satellite was successfully launched on December 10, 1999, from Guyana Space Center. Following the launch the instrument commissioning was started early in 2000. First results for the Reflection Grating Spectrometers are presented concentrating on instrumental parameters such as resolution, instrument background and CCD performance. The instrument performance is illustrated by first results from HR 1099, a non-eclipsing RS CVn binary.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
- Published
- 2000
25. Contributors
- Author
-
C.M. Bishop, Charles R. Blem, Joan Burnside, P.J. Butler, R.V. Carsia, Larry Clark, Larry A. Cogburn, Christopher G. Dacke, W.R. Dawson, D. Michael Denbow, Jacob L. Dubbeldam, David P. Froman, B. Glick, David L. Goldstein, Onur Güntürkün, Eberhard Gwinner, A.L. Harvey, S. Harvey, Michaela Hau, Robert L. Hazelwood, A.L. Johnson, David R. Jones, John D. Kirby, Wayne J. Kuenzel, I.G. Marshall, J. Russell Mason, F. M. Anne McNabb, Reinhold Necker, F.L. Powell, Colin G. Scanes, Erik Skadhauge, Frank M. Smith, Hiroshi Tazawa, Nigel H. West, and G.C. Whittow
- Published
- 2000
26. A crossed projection from the optic tectum to craniocervical premotor areas in the brainstem reticular formation. An anterograde and retrograde tracing study in the mallard (Anas platyrhynchos L.)
- Author
-
J L Dubbeldam, T M Rietveld, A J Tellegen, and A M Karssen
- Subjects
Superior Colliculi ,genetic structures ,Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate ,Biotin ,Biology ,Visual system ,Reticular formation ,Synaptic Transmission ,Oculomotor nucleus ,Neck Muscles ,medicine ,Animals ,Visual Pathways ,Muscle, Skeletal ,Fluorescent Dyes ,Retina ,Brain Mapping ,Reticular Formation ,Skull ,Dextrans ,Anatomy ,Agricultural and Biological Sciences (miscellaneous) ,Retrograde tracing ,medicine.anatomical_structure ,Ducks ,nervous system ,Molecular Probes ,Reticular connective tissue ,sense organs ,Brainstem ,Tectum ,Neuroscience ,Brain Stem - Abstract
The optic tectum in birds receives visual information from the contralateral retina. This information is passed through to other brain areas via the deep layers of the optic tectum. In the present study the crossed tectobulbar pathway is described in detail. This pathway forms the connection between the optic tectum and the premotor area of craniocervical muscles in the contralateral paramedian reticular formation. It originates predominantly from neurons in the ventromedial part of stratum griseum centrale and to a lesser extent from stratum album centrale. The fibers leave the tectum as a horizontal fiber bundle, and cross the midline through the caudal radix oculomotorius and rostral nucleus oculomotorius. On the contralateral side fibers turn to ventral and descend caudally in the contralateral paramedian reticular formation to the level of the obex. Labeled terminals are found in the ipsilateral medial mesencephalic reticular formation lateral to the radix and motor nucleus of the oculomotor nerve, and in the contralateral paramedian reticular formation, along the descending tract. Neurons in the medial mesencephalic reticular formation in turn project to the paramedian reticular formation. Through the crossed tectobulbar pathway visual information can influence the activity of craniocervical muscles via reticular premotor neurons.
- Published
- 1999
27. Location of reticular premotor areas of a motor center innervating craniocervical muscles in the mallard (Anas platyrhynchos L.)
- Author
-
A J, Tellegen and J L, Dubbeldam
- Subjects
Male ,Brain Mapping ,Ducks ,Spinal Cord ,Neck Muscles ,Molecular Probes ,Reticular Formation ,Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate ,Animals ,Brain Stem - Abstract
The supraspinal nucleus (SSp) in the mallard, which lies in the rostral spinal cord and caudal brainstem, is a motor nucleus that forms the rostral continuation of the ventral horn. It contains part of the motoneurons innervating the craniocervical muscles. Injections with horseradish peroxidase (HRP) and wheat germ agglutinin conjugated to HRP (WGA) in the SSp were used to localize the craniocervical premotor neurons in the medullary reticular formation. A mixture of WGA and HRP (WGA/HRP) or biotinylated dextran amine (BDA) were injected in the different reticular areas to test the results. Small numbers of craniocervical premotor neurons were found bilaterally in the ventromedial part of the parvocellular reticular formation (RPcvm) and in the caudal extension of RPcvm, the nucleus centralis dorsalis of the medulla oblongata, and the gigantocellular reticular formation (RGc). In a second series of experiments, WGA/HRP and BDA injections in these reticular areas were used to visualize afferent fibers and terminals in the SSp. The combination of the two types of experiments shows that RPcvm and RGc contain modest numbers of craniocervical premotor neurons. Because the reticular formation also contains jaw and tongue premotor neurons and receives a variety of sensory projections, the present results suggest that the medullary reticular formation plays a role in the coordination of complex movements (e.g., feeding). The pattern of afferent and efferent connections of the reticular formation is used to redefine its subdivisions in the myelencephalon of the mallard.
- Published
- 1999
28. Birds
- Author
-
J. L. Dubbeldam
- Published
- 1998
29. Organization and efferent connections of the archistriatum of the mallard, Anas platyrhynchos L.: an anterograde and retrograde tracing study
- Author
-
J L, Dubbeldam, A M, den Boer-Visser, and R G, Bout
- Subjects
Male ,Telencephalon ,Brain Mapping ,Ducks ,Mesencephalon ,Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate ,Animals ,Occipital Lobe ,Efferent Pathways ,Horseradish Peroxidase ,Fluorescent Dyes - Abstract
The intratelencephalic and descending connections of the archistriatum of the mallard were studied using anterograde and retrograde tracers. Autoradiography after injections of [3H]-leucine served to visualize the intratelencephalic and extratelencephalic efferent connections of the archistriatum. Horseradish peroxidase (HRP), HRP-wheatgerm agglutinin, and fluorescent tracers were used to identify the precise origin of the projections to the various terminal fields found in the anterograde experiments. Four main regions can be recognized in the archistriatum of the mallard: (1) the rostral or anterior part that is a source of contralateral intratelencephalic projections, in particular to the contralateral archistriatum; (2) the dorsal intermediate archistriatum that is the origin of a large descending fiber system, the occipitomesencephalic tract, with projections to dorsal thalamic nuclei, the medial spiriform nucleus, the intercollicular nucleus, the deep tectum, parts of the mesencephalic and bulbar reticular formation, and the subnuclei of the descending trigeminal tract. There are no direct projections to motor nuclei. This part corresponds to the somatic sensorimotor part as defined by Zeier and Karten (1971, Brain Res. 31:313-326); it also contributes to the ipsilateral intratelencephalic connections and, to a lesser degree, to contralateral intratelencephalic connections. (3) The ventral intermediate archistriatum is another region that is also a source of intratelencephalic projections, in particular of those to the lobus parolfactorius. The most lateral zone sends fibers to the septal area. (4) The caudoventral intermediate and posterior archistriatum is another region that is a source of the projections to the hypothalamus and thus corresponds to the amygdaloid part of the archistriatum as defined by Zeier and Karten; it also contributes a modest component to the occipitomesencephalic tract. The different cell populations are not spatially separated, which makes it impossible to recognize distinct subnuclei within the four main regions of the archistriatum of the mallard.
- Published
- 1997
30. Central connections of the nucleus mesencephalicus nervi trigemini in the mallard (Anas platyrhynchos L.)
- Author
-
R G, Bout, A J, Tellegen, and J L, Dubbeldam
- Subjects
Male ,Reticular Formation ,Tritium ,Trigeminal Nuclei ,Electrophysiology ,Facial Nerve ,Ducks ,Jaw ,Leucine ,Masticatory Muscles ,Animals ,Autoradiography ,Trigeminal Nerve ,Horseradish Peroxidase - Abstract
In the mallard duck, functionally distinct groups of jaw muscles are each innervated by a different subnucleus of the main trigeminal (mV) or facial (mVII) motor nucleus. The other subnuclei of mV and mVII innervate several head muscles, including lingual muscles. The reticular premotor cells of the trigeminal and facial jaw motor subnuclei occupy different areas in the parvocellular reticular formation (RPc). The cell bodies of jaw muscle spindle afferents are situated in the mesencephalic nucleus (MesV). In the present study, the central connections of MesV with jaw motor subnuclei and their premotor areas are investigated.In a first series of experiments, horseradish peroxidase (HRP) injections were made in electrophysiologically identified trigeminal and facial subnuclei. In a second series of experiments, HRP was delivered iontophoretically at different parts of RPc. Anterograde tracing with tritiated leucine was used to confirm the central connections of MesV. Double labeling with fluorescent tracers was used to investigate whether MesV collaterals reach both the rostral and caudal parts of RPc.MesV projects to only two of the five different subnuclei of the trigeminal motor nucleus. The subnuclei that receive spindle afferents innervate jaw adductor muscles (mV2) or pro- and retractors of the mandible (pterygoid muscles; mV1). The three other subnuclei innervate jaw-opener muscles or other head muscles. MesV fibers also project to the rostral part of the dorsolateral RPc (RPcdl), which serves as a premotor area for the motor subnuclei of adductor and pterygoid muscles. The intermediate part of RPcdl does not contain premotor cells of mV or mVII, and a clear projection of MesV to this area is absent. The caudal part of RPcdl projects to the mV and mVII subnuclei that innervate jaw-opener muscles. This part of RPc receives a projection from the same MesV cells as the rostral RPcdl. The MesV projection to RPc does not include premotor cells of mV and mVII in the ventromedial part of RPc (RPcvm).Spindle afferents from jaw-closer muscles project only to mV subnuclei innervating jaw-closer muscles (mV1, mV2) and to a population of premotor cells in the rostral RPcdl that innervates these subnuclei. The mixed population of premotor cells in RPcvm, which innervates both jaw-opener and jaw-closer subnuclei, does not receive a MesV projection. However, a premotor area for jaw-opener subnuclei in the caudal part of RPcdl does receive MesV input and may serve as a relay through which proprioceptive information from jaw closer spindles can reach jaw opener muscles.
- Published
- 1997
31. Reflection Grating Spectrometer on board XMM
- Author
-
L. Dubbeldam, Charles J. Hailey, E. J. van Zwet, Andrew P. Rasmussen, Antonius J. F. den Boggende, Christian Erd, Alex Zehnder, H. Aarts, Boris van Leeuwen, Steven M. Pratuch, Jan-Willem den Herder, Piet A. J. de Korte, Jelle Kaastra, R. Mewe, Frits Paerels, T. M. V. Bootsma, Phil R. Guttridge, Steven M. Kahn, Graziella Branduardi-Raymont, Knud Thomsen, Jay V. Bixler, Todd A. Decker, and A. C. Brinkman
- Subjects
Physics ,Spectrometer ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,X-ray telescope ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Grating ,law.invention ,Telescope ,Cardinal point ,Optics ,law ,Astrophysics::Solar and Stellar Astrophysics ,Spectral resolution ,business ,Diffraction grating ,Image resolution - Abstract
The x-ray multi-mirror (XMM) mission is the second of four cornerstone projects of the ESA long-term program for space science, Horizon 2000. The payload comprises three co- aligned high-throughput, imaging telescopes with a FOV of 30 arcmin and spatial resolution less than 20 arcsec. Imaging CCD-detectors (EPIC) are placed in the focus of each telescope. Behind two of the three telescopes, about half the x-ray light is utilized by the reflection grating spectrometer (RGS). The x-ray instruments are co-aligned and measure simultaneously with an optical monitor (OM). The RGS instruments achieve high spectral resolution and high efficiency in the combined first and second order of diffraction in the wavelength range between 5 and 35 angstrom. The design incorporates an array of reflection gratings placed in the converging beam at the exit from the x-ray telescope. The grating stack diffracts the x-rays to an array of dedicated charge-coupled device (CCD) detectors offset from the telescope focal plane. The cooling of the CCDs is provided through a passive radiator. The design and performance of the instrument are described below.
- Published
- 1996
32. Exemplar
- Author
-
L, Dubbeldam
- Subjects
Conflict, Psychological ,Male ,Patient Care Team ,Cerebrovascular Disorders ,Terminal Care ,Interprofessional Relations ,Humans ,Aged - Published
- 1995
33. Integrated x-ray testing of the electro-optical breadboard model for the X-ray Multimirror Mission (XMM) reflection grating spectrometer
- Author
-
F. A. Jansen, Jay V. Bixler, L. Dubbeldam, Heinrich W. Braeuninger, Todd A. Decker, A. C. Brinkman, Piet A. J. de Korte, H. Aarts, Graziella Branduardi-Raymont, William W. Craig, Wolfgang Burkert, Charles J. Hailey, Christopher W. Mauche, Knud Thomsen, Christian Erd, Steven M. Kahn, Antonius J. F. den Boggende, Jan-Willem den Herder, and Frits Paerels
- Subjects
Physics ,Spectrometer ,business.industry ,Scattering ,Physics::Optics ,Grating ,Breadboard ,law.invention ,Metrology ,Optics ,law ,Blazed grating ,Reflection (physics) ,Calibration ,Optoelectronics ,Physics::Atomic Physics ,business - Abstract
X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XMM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements were made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes' fabrication. Examination of the individual grating surface's at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica's surface.
- Published
- 1994
34. Reflection grating spectrometer onboard the ESA x-ray multimirror (XMM) mission
- Author
-
Jay V. Bixler, Antonius J. F. den Boggende, Alex Zehnder, Todd A. Decker, Marcel L. van den Berg, Jan-Willem den Herder, A. C. Brinkman, L. Dubbeldam, F. A. Jansen, Christopher W. Mauche, Hugo J. Spruijt, Richard C. Montesanti, Knud Thomsen, Graziella Branduardi-Raymont, Charles J. Hailey, Peter Verhoeve, H. Aarts, Piet A. J. de Korte, Frits Paerels, and Steven M. Kahn
- Subjects
Physics ,Spectrometer ,business.industry ,X-ray telescope ,Large format ,Grating ,law.invention ,Telescope ,Optics ,law ,Reflection (physics) ,Spectral resolution ,business ,Dark current - Abstract
The Reflection Grating Spectrometer (RGS) onboard the ESA satellite XMM (X-ray Multi Mirror mission) combines a high resolving power (approximately 400 at 0.5 keV) with a large effective area (approximately 200 cm 2 ). The spectral range selected for RGS (5 - 35 angstroms) contains the K shell transitions of N, O, Ne, Mg, Al, Si and S as well as the important L shell transitions of FE. The resolving power allows the study of a wide variety of challenging scientific questions. Detailed temperature diagnostics are feasible as the ionization balance is a unique function of the distribution of the electron temperature. Density diagnostics are provided by studying He-like triplets where the ratio of the forbidden to intercombination lines varies with density. Other fields of interest include the determination of elemental abundances, the study of optical depth effects, velocity diagnostics by measuring Doppler shifts and the estimate of magnetic fields through the observation of Zeeman splitting. The resolving power is obtained by an array of 240 gratings placed behind the mirrors of the telescope, dispersing about half of the X-rays in two spectroscopic orders. The X-rays are recorded by an array of 9 large format CCDs. These CCDs are operated in the frame transfer mode. They are back illuminated as the quantum efficiency of front illuminated devices is poor at low energies because of their poly-silicon gate structure. To suppress dark current the CCDs are passively cooled. In order to obtain the effective area of about 200 cm 2 , grating arrays and CCD cameras are placed behind two of the three XMM telescopes. A model of RGS was tested last autumn ('93) at the Panter long beam X-ray facility in Munich. The model consisted of a subset of four mirrors, eight representative gratings covering a small section of the inner mirror shells and a CCD camera containing three CCDs. The purpose of these tests was to verify the resolution and sensitivity of the instrument as a function of X-ray energy. Extensive simulations, using a Monte Carlo raytracing code, are used to interpret these tests. Preliminary results of these tests will be discussed and compared to the calculated response.
- Published
- 1994
35. The reticular premotor neurons of the jaw muscle motor nuclei in the mallard (Anas platyrhynchos L.)
- Author
-
R G, Bout and J L, Dubbeldam
- Subjects
Neurons ,Ducks ,Jaw ,Muscles ,Reticular Formation ,Animals ,Motor Activity - Abstract
The trigeminal and facial motor nuclei in the mallard comprise several subnuclei which innervate tongue, jaw and other head muscles. The premotor cells of the subnuclei innervating jaw muscles are distributed in two longitudinal cell columns within the parvocellular reticular formation (RPc). The ventromedial part of RPc contains cells projecting to subnuclei innervating either jaw-closer muscles or jaw-opener muscles. In the dorsolateral part of RPc three subdivisions may be recognized: a rostral part which projects to two trigeminal subnuclei innervating jaw-closer muscles, an intermediate part which does not serve as premotor area for any of the jaw motor subnuclei and a caudal part of RPcdl which projects to the trigeminal and facial motor subnuclei innervating jaw-opener muscles. Exteroceptive information from mechanoreceptors in the beak reaches all three parts of RPCdl. Muscle spindles in jaw-closer muscles may influence the activity of premotor cells of jaw-opener muscles through their projection upon the caudal part of RPcdl.
- Published
- 1994
36. Organization of 'feeding circuits' in birds: pathways for the control of beak and head movements
- Author
-
J L, Dubbeldam and A M, Den Boer-Visser
- Subjects
Birds ,Telencephalon ,Brain Mapping ,Eating ,Thalamus ,Movement ,Neural Pathways ,Beak ,Animals ,Visual Pathways ,Head ,Corpus Striatum ,Psychomotor Performance - Abstract
Two sensorimotor 'feeding' circuits and their descending projections are described in the mallard and compared to those in the pigeon. The tactile/trigeminal circuit consists of a pattern of reciprocal connections of the nucleus basalis with the overlying parts of the frontal neostriatum (Nf) and hyperstriatum ventrale (HV). The dorsal zone of Nf projects to the sensorimotor part of archistriatum, to the paleostriatum augmentatum (PA) and to the lateral lobus parolfactorius. A comparable pattern of visual connections has been found: the ectostriatum has reciprocal connections with the intermediate neostriatum (Ni) and HV. Here, too, Ni has projections to archistriatum and probably to PA. Archistriatum is the source of a large descending pathway with, among others, substantial projections to the parvocellular reticular formation of the brain stem. This provides a pathway for telencephalic control of premotor systems of jaw, tongue and neck muscles. The paleostriatal complex is the source of the ansa lenticularis with projections to the nucleus spiriformis lateralis and the nucleus tegmenti pedunculopontinus, both projecting to the deep tectum. This pathway may be important for the control of body position. In the mallard, it includes a substantial trigeminal component that has not been found in the pigeon.
- Published
- 1994
37. Location of premotor neurons of the motor nuclei innervating craniocervical muscles in the mallard (Anas platyrhynchos L.)
- Author
-
A J, Tellegen and J L, Dubbeldam
- Subjects
Motor Neurons ,Ducks ,Neck Muscles ,Muscles ,Animals ,Motor Activity ,Head - Abstract
Reticular premotor neurons of craniocervical muscles in the duck were localized with the retrograde tracer HRP and the anterograde tracer WGA-HRP. In the reticular formation neck premotor neurons were found in the gigantocellular reticular nucleus and in the ventromedial part of the parvocellular reticular nucleus rostral to the obex, and caudal to the obex in the nucleus centralis ventralis of the medulla. Results were compared with premotor areas of jaw muscles. The ventromedial part of the parvocellular reticular formation contains neck as well as jaw premotor neurons. This area may serve as the neural substrate for the coordination of neck and jaw movements.
- Published
- 1994
38. Organization of the motor innervation of craniocervical muscles in the Mallard, Anas platyrhynchos L
- Author
-
C, Zijlstra and J L, Dubbeldam
- Subjects
Male ,Motor Neurons ,Ducks ,Spinal Nerves ,Organ Specificity ,Muscles ,Animals ,Peripheral Nerves ,Motor Endplate - Abstract
The organization of the motorsystem supplying the craniocervical muscles in the mallard was investigated. Firstly, the distribution of peripheral nerves supplying these muscles was macroscopically examined. Each muscle was found to be innervated by several spinal nerves, and each nerve to contact various muscles. Secondly, the position of neck motoneurons was studied by means of retrograde tracer transport. Labeled motoneurons were found in the supraspinal nucleus of the lower brainstem and in the ventral horn of the upper cervical cord. Each of the craniocervical muscles appeared to be innervated by a separate motorpool, and pools supplying different muscles were found to overlap considerably. Despite this overlap, some organization pattern could be recognized: the most ventral muscles are innervated by motoneurons that occupy dorsomedial positions, while more dorsal muscles are innervated by neurons at ventro-lateral positions. Thirdly, the arrangement of motoneurons innervating different parts of three craniocervical muscles was investigated by means of retrograde tracer transport. This indicated that each muscle part is also innervated by a separate motor column, and that columns supplying parts of the same muscle have similar positions in transverse sections but are shifted with respect to each other in the longitudinal direction. The separate columns of one muscle mingle to form one main motorpool. These results are discussed with respect to observations in other animals.
- Published
- 1994
39. Electron Spectrometers and Voltage Measurements
- Author
-
L. Dubbeldam
- Subjects
Physics ,Spectrum analyzer ,Bradbury–Nielsen shutter ,Optics ,Electron spectrometer ,Spectrometer ,business.industry ,Detector ,Shot noise ,business ,Noise (electronics) ,Voltage - Abstract
Voltage measurements in an electron beam tester are based on the energy analysis of SEs that escape from the point of interest. Voltage measurements are taken with an energy analyzer, which is usually referred to as an electron spectrometer or voltage contrast detector. In the first section of this chapter, the development of electron spectrometers as used in EBT systems is traced, showing the design approaches taken to tackle specific problems. The next section describes factors that influence the voltage measurement, covering all random errors due to shot noise, partition noise, and secondary emission noise. Further systematic errors caused by local fields, material contrast, contamination, and specimen charging are also discussed. The final section compares different electron spectrometers, covering several aspects of the spectrometer constant in detail.
- Published
- 1993
40. Geometrical differences between neck motoneurons located in the brainstem and spinal cord in the mallard Anas platyrhynchos L.; a Golgi study
- Author
-
C, Zijlstra and J L, Dubbeldam
- Subjects
Motor Neurons ,Ducks ,Spinal Cord ,Animals ,Golgi Apparatus ,Dendrites ,Neck ,Brain Stem - Abstract
The dendrite geometry of neck motoneurons located in the upper cervical cord and lower brainstem of the mallard was studied in Golgi silver impregnated material. Measurements were obtained from camera lucida drawings and concerned the extent and orientation of dendritic trees. Dendrites were found to be oriented predominantly parallel to the sagittal plane, and projections were asymmetric in the dorso-ventral direction. Comparison between motoneurons located in the supraspinal nucleus of the brainstem and motoneurons in the ventral horn of the upper spinal cord showed that dendrites of motoneurons in the first cell group branch more often than those of neurons in the latter group. In addition, dendritic trees of ventral horn motoneurons preferentially project into the field dorsal to the cell body.
- Published
- 1992
41. Functional morphological interpretation of the distribution of muscle spindles in the jaw muscles of the mallard (Anas platyrhynchos)
- Author
-
J. L. Dubbeldam and R. G. Bout
- Subjects
Pathology ,medicine.medical_specialty ,Facial Muscles ,Anatomy ,Biology ,Tongue muscles ,Sarcomere ,Ducks ,stomatognathic system ,Jaw ,Tongue ,Spindle morphology ,medicine ,Animals ,Animal Science and Zoology ,Adductor muscles ,Muscle fibre ,Jaw opening ,Muscle Spindles ,Pterygoid Muscles ,Developmental Biology - Abstract
The morphology and distribution of muscle spindles of jaw and tongue muscles in the mallard were examined in serial transverse sections of single muscles and in horizontal sections of a whole head. Our observations on spindle morphology are in agreement with previous descriptions of spindles in birds. Some spindles differ in their innervation and the pattern of intrafusal muscle fibers. The spindles of individual adductor and pterygoid muscles are distributed unevenly. Some adductor muscles lack spindles, whereas those of other muscles are confined to limited areas. Jaw opening muscles and extrinsic tongue muscles lack spindles. The stretch of extrafusal muscle fibers could be estimated from the difference in sarcomere length for birds with the beak open and closed. Not all muscle fiber groups are stretched evenly over the whole range of jaw opening. Only those fiber groups that are continuously stretched during jaw opening contain spindles.
- Published
- 1991
42. The avian and mammalian forebrain:correspondences and differences
- Author
-
J. L. Dubbeldam
- Subjects
Forebrain ,Biology ,Neuroscience - Published
- 1991
43. Rhombomeres and innervation fields
- Author
-
Jacob L. Dubbeldam
- Subjects
General Neuroscience ,Rhombomere ,Psychology ,Neuroscience - Published
- 1995
44. Afferent Connections of Nervus facialis and Nervus glossopharyngeus in the Pigeon (Columba livia) and Their Role in Feeding Behavior
- Author
-
Jacob L. Dubbeldam
- Subjects
Trigeminal nerve ,Anatomy ,Biology ,Facial nerve ,Ganglion ,Behavioral Neuroscience ,medicine.anatomical_structure ,Feeding behavior ,Developmental Neuroscience ,Peripheral nervous system ,Glossopharyngeal nerve ,Afferent ,medicine ,Neuroscience ,Nervus facialis - Abstract
The afferent connections of the facial nerve and glossopharyngeal nerve in the pigeon have been studied with the Fink-Heimer I method after ganglion lesions. The nucleus ventrolateralis anterior of th
- Published
- 1984
45. A suspected infrared-recipient nucleus in the brainstem of the vampire bat,Desmodus rotundus
- Author
-
Shin-ichi Terashima, Jacob L. Dubbeldam, Reiji Kishida, and Richard C. Goris
- Subjects
animal structures ,biology ,Infrared Rays ,General Neuroscience ,Vampire ,Sensation ,Snakes ,Anatomy ,biology.organism_classification ,Trigeminal Nuclei ,medicine.anatomical_structure ,Vampire bat ,Chiroptera ,medicine ,Desmodus rotundus ,Animals ,Neurology (clinical) ,Brainstem ,Molecular Biology ,Nucleus ,Phylogeny ,Developmental Biology - Abstract
We discovered in the brainstem of infrared-sensitive vampire bats,Desmodus rotundus, a specific nucleus not known in other species of bats. Because it corresponded in location and histological features to the infrared nucleus of infrared-sensitive snakes, we suggest the probability of its being part of the infrared processing system of vampire bats.
- Published
- 1984
46. Primary sensory ganglion cells projecting to the principal trigeminal nucleus in the mallard,Anas platyrhynchos
- Author
-
Reiji Kishida, Richard C. Goris, and Jacob L. Dubbeldam
- Subjects
Male ,Sensory system ,Biology ,Trigeminal Nuclei ,Trigeminal ganglion ,symbols.namesake ,Neural Pathways ,medicine ,Animals ,Trigeminal Nerve ,Glossopharyngeal Nerve ,Horseradish Peroxidase ,Injections, Intraventricular ,Staining and Labeling ,Proprioception ,General Neuroscience ,Principal trigeminal nucleus ,Vagus Nerve ,Anatomy ,Axons ,Sensory neuron ,Ganglion ,Ducks ,medicine.anatomical_structure ,Sensory Ganglion ,Nissl body ,symbols ,Ganglia ,sense organs ,Brain Stem - Abstract
The trigeminal and glossopharyngeal ganglia of the adult mallard were studied following HRP injections into the principal trigeminal nucleus (PrV). The PrV consists of the principal trigeminal nucleus proper (prV) and the principal glossopharyngeal nucleus (prIX). After an injection into the prV, the labeled cells were found in the ipsilateral trigeminal ganglion. After an injection into the prIX, labeled cells were found in the ipsilateral distal glossopharyngeal ganglion, but not in the proximal ganglion of the IX and X cranial nerve (pGIX + X). In Nissl preparations, two types of ganglion cells in the trigeminal ganglion, pGIX + X, and distal ganglion of N IX could be distinguished: larger light cells and smaller dark cells. We could not determine whether the HRP-labeled cells belonged to both types or to one of them; but because all the labeled cells were over 20 microns, we concluded that the smallest cells (10-19 microns) in the trigeminal ganglion and distal ganglion of N IX did not project to the PrV. The labeling of the cells in the distal ganglion of N IX (average 34.5 microns) was uniformly moderate. In the trigeminal ganglion there were two types of labeled cells: heavily labeled cells (average 29.1 microns) and moderately labeled cells (average 35.1 l microns). These two types of labeling (moderate and heavy) may reflect two types of primary sensory neurons: cells with ascending, nonbifurcating axons, and cells with bifurcating axons. We speculate that the former are proprioceptive neurons and the latter tactile neurons. Labeled bifurcating axons in the sensory trigeminal complex gave off collaterals to all parts of the descending trigeminal nucleus except to the caudalmost laminated spinal part.
- Published
- 1985
47. Central projections of the chorda tympani nerve in the mallard, Anas Platyrhynchos
- Author
-
Harvey J. Karten, Steph B. J. Menken, Jacob L. Dubbeldam, and IBED Other Research (FNWI)
- Subjects
Dorsum ,Afferent Pathways ,General Neuroscience ,Nodose Ganglion ,Sensory system ,Anatomy ,Biology ,Substantia gelatinosa ,medicine.anatomical_structure ,Ducks ,stomatognathic system ,Nerve Degeneration ,medicine ,Animals ,Geniculate ganglion ,Chorda Tympani Nerve ,Nucleus ,Chorda tympani nerve - Abstract
The central projections of the chorda tympani nerve in the duck were studied by means of the Fink-Heimer technique. Following section of the VIIth nerve proximal to the geniculate ganglion terminal projections of the CT are found in the sensory nucleus N VII (sVIId) on the dorsum of the descending trigeminal root, the n. presulcalis anterior solitarii, the n. sulcalis anterior solitarii p. dorsalis and p. ventralis, and the n. ventrolateralis anterior solitarii (Vla). Small quantities of terminal degeneration are also found in the n. intermedius anterior and the lateral substantia gelatinosa of the solitary complex. A number of fibers decussate to terminate contralaterally in corresponding portions of the opposite solitary complex. Comparison with data of the pigeon reveals a limited overlap of projections of the chorda tympani nerve and of the nodose ganglion, respectively, in the dorsal and ventral parts of the n. sulcalis anterior. We suggest that the regions sVIId and Vla alone may convey gustatory information.
- Published
- 1976
48. Imminent Myocardial Infarction: A Psychological Study
- Author
-
Ad Appels, Paul Mulder, and A. L. Dubbeldam-Marree
- Subjects
Adult ,Male ,Risk ,medicine.medical_specialty ,Heart disease ,media_common.quotation_subject ,Myocardial Infarction ,Coronary Disease ,Angina Pectoris ,Malaise ,Internal medicine ,medicine ,Humans ,cardiovascular diseases ,Myocardial infarction ,Fatigue ,Depression (differential diagnoses) ,Aged ,media_common ,Depression ,Unstable angina ,business.industry ,Age Factors ,Type A Personality ,Syndrome ,Middle Aged ,medicine.disease ,Psychiatry and Mental health ,Feeling ,General malaise ,Physical therapy ,Cardiology ,medicine.symptom ,business ,Vital Exhaustion - Abstract
Unstable angina pectoris and feelings of fatigue and general malaise are often mentioned as premonitory symptoms of myocardial infarction. From a psychological point of view these feelings of fatigue and malaise reflect a syndrome of vital exhaustion and depression (VED). A questionnaire which measures this syndrome was given to 3,571 males who participated in a voluntary health check up. It was found that the prevalence of “imminent myocardial infarction,” defined as unstable angina pectoris plus electrocardiographic signs of ischaemia, was more than four times higher among exhausted and depressive persons, than among persons not so affected.
- Published
- 1984
49. Brainstem Mechanisms for Feeding in Birds: Interaction or Plasticity
- Author
-
Jacob L. Dubbeldam
- Subjects
Communication ,Proprioception ,business.industry ,Biology ,Plasticity ,Behavioral Neuroscience ,Beak ,medicine.anatomical_structure ,Developmental Neuroscience ,Tongue ,Functional anatomy ,medicine ,Brainstem ,Feeding patterns ,business ,Tactile sense ,Neuroscience - Abstract
Starting from a functional-anatomical analysis of the feeding apparatus of a bird, some expectations are formulated regarding the organization of the neuronal systems controlling the activity of this feeding apparatus. The organization of the pre-motor-motor system of the jaw muscles, of the exteroceptive system conveying tactile sense from tongue and beak to the brain and of the proprioceptive system of the jaw muscles is discussed. An attempt is made to relate specific structural features of these systems to their function in the control of the different feeding patterns of birds.
- Published
- 1984
50. Studies on the somatotopy of the trigeminal system in the mallard,Anas platyrhynchos L. IV. Tactile representation in the nucleus basalis
- Author
-
Schelte Zeilstra, Herman Berkhoudt, and Jacob L. Dubbeldam
- Subjects
Male ,Sensory system ,Stimulation ,Biology ,Nucleus basalis ,Trigeminal Nuclei ,Basal Ganglia ,Tongue ,medicine ,Animals ,Trigeminal Nerve ,Evoked Potentials ,Afferent Pathways ,Brain Mapping ,Mouth ,General Neuroscience ,Anatomy ,Electrophysiology ,Ducks ,medicine.anatomical_structure ,Touch ,Receptive field ,Mechanoreceptors ,Neuroscience ,Nucleus ,Equithesin ,medicine.drug - Abstract
This electrophysiological study complements neuroanatomical work from our department on the somatotopy of the trigeminal system of the mallard. Peripheral areas of mechanoreceptors in bills and tongue were mapped in the telencephalic nucleus basalis, a second-order relay nucleus in the ascending trigeminal pathway. The multi-unit responses recorded under Equithesin anaesthesia did not show spontaneous activity and all animals adapted rapidly after mechanical stimulation. They showed well-circumscribed receptive fields whose peripheral position did not change when the electrode was lowered in the vertical stereotaxic plane, but changes immediately when its position was changed in the horizontal XZ-plane. The somatotopic picture presented here corresponds in many details to that obtained with combined neuroanatomical techniques (Dubbeldam et al., '81). In the discussion the structural point-to-point relationship between the peripheral mechanoreceptive areas and the nucleus basalis is tentatively changed to a division into areas related to the functional units involved in the subsequent sensory events during feeding. The somatotopy provides a basis for future chronic experiments to investigate this postulated role of the various areas in the nucleus basalis.
- Published
- 1981
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.