1. Tree aging does not affect the ranking for water use efficiency recorded from δ13C in three Populus deltoides × P. nigra genotypes
- Author
-
Rasheed F, Dreyer E, Le Thiec D, Zafar Z, and Delagrange S
- Subjects
Water Use Efficiency ,Age ,Wood ,Tree Ring ,Populus × euramericana ,Basal Area Increment ,Synchronic Approach ,Forestry ,SD1-669.5 - Abstract
A large variability of water use efficiency (assessed from the carbon isotopic discrimination in leaves and leaf soluble sugars) has been detected among poplar genotypes. Checking whether such differences detected in young trees (1-2 years old) remain stable with tree age is a prerequisite to use this trait with confidence for breeding purposes. In this study, a synchronic approach was used to test the age-related stability of the genotypic ranking of carbon isotopic discrimination in wood (Δ13C) until tree maturity. We sampled 376 trees between 4 and 20 years from three Populus deltoides × P. nigra genotypes growing in 41 common-garden trials across France. Carbon and nitrogen percentages along with δ13C was measured in the bulk wood of the year 2009 and used to compute the Δ13C. Basal area increment between 2008 and 2009 was also measured. Results showed that Δ13C increased (i.e., water use efficiency decreased) between ages 4 to 6 and remained stable later on. Significant differences among genotypes were found but the ranking among genotypes remained stable with age during the assessed life span. Furthermore, basal area increment and Δ13C were positively correlated interannually. This large-scale survey shows that despite crossing over in the temporal trend, water use efficiency remained stable with age across 3 poplar genotypes. However, further studies with a large number of genotypes are required to confirm whether this trait can be used to maintain or even improve productivity of poplar plantations, while lowering water consumption.
- Published
- 2019
- Full Text
- View/download PDF