15 results on '"Laštre, Ana"'
Search Results
2. Ortonormirani i Parsevalovi valići s cjelobrojnim dilatacijama
- Author
-
Laštre, Ana
- Subjects
ortonormiran ,Parsevalov ,valić - Abstract
U radu se proučavaju ortonormirani i Parsevalovi valići s cjelobrojnim dilatacijama.
- Published
- 2014
3. Problem maksimalnog protoka
- Author
-
Piplica, Jelena, Perić, Jurica, Klaričić Bakula, Milica, and Laštre, Ana
- Subjects
put ,arc ,Ford-Fulkerson algorithm ,digraph ,Dijkstra algoritam ,augmenting path ,rezidualni kapacitet ,PRIRODNE ZNANOSTI. Matematika ,Ford-Fulkerson algoritam ,težinska funkcija ,minimalni rez ,Dijkstra’s algorithm ,graf ,rezidualni graf ,Bellman-Ford algoritam ,residual capacity ,weight function ,Bellman-Ford algorithm ,path ,digraf ,stablo ,graph ,tree ,minimum cut ,uvećavajući put ,network ,mreža ,residual graph ,NATURAL SCIENCES. Mathematics ,luk - Abstract
Dijkstra algoritam i Bellman-Ford algoritam su algoritmi koji se koriste za pronalaženje najkraćeg puta u težinskom grafu. Dijkstra algoritam djeluje na pozitivnim težinama bridova i koristi se za pronalaženje najkraćeg puta od jednog početnog vrha do svih ostalih vrhova u grafu. Bellman-Ford algoritam, s druge strane, može se koristiti čak i kada postoje negativne težine bridova, ali ima složenost vremena veću od Dijkstra algoritma. Ford-Fulkerson algoritam koristi se za pronalaženje maksimalnog mrežnog protoka, a temelji se na uvećavajućim putevima. Ovaj algoritam iterativno pronalazi uvećavajuće puteve i uvećava protok dok ne postigne maksimalni protok. Ovi algoritmi su važan alat za rješavanje različitih problema u području grafova i optimizacije., Dijkstra’s algorithm and Bellman-Ford algorithm are algorithms used to find the shortest path in a weighted graph. Dijkstra’s algorithm works with positive edge weights and is used to find the shortest path from a single source node to all other nodes in the graph. On the other hand, the Bellman-Ford algorithm can handle graphs with negative edge weights but has a higher time complexity compared to Dijkstra’s algorithm. The Ford-Fulkerson algorithm is used to find the maximum flow in a network and is based on augmenting paths. This algorithm iteratively finds augmenting paths and increases the flow until it reaches the maximum flow. All algorithms are important tools for solving various graph and optimization problems.
- Published
- 2023
4. Varijante Hermite-Hadamardove nejednakosti
- Author
-
Margaretić, Ivana, Perić, Jurica, Klaričić Bakula, Milica, and Laštre, Ana
- Subjects
m-konveksne funkcije ,convex functions ,m-convex functions ,r-convex functions ,Jensenova nejednakost ,Fejérove nejednakosti ,Lipschitz-neprekidne funkcije ,log-konveksne funkcije ,Jensen’s inequality ,r-konveksne funkcije ,s-konveksne funkcije ,isotonic linear functions ,log-convex functions ,s-convex functions ,isotonic sublinear functions ,Fejér inequalities ,PRIRODNE ZNANOSTI. Matematika ,izotonični linearni funkcionali ,h-konveksne funkcije ,Lipschitz-continuous functions ,NATURAL SCIENCES. Mathematics ,konveksne funkcije ,izotonični sublinearni funkcionali ,h-convex functions - Abstract
Ovaj rad istražuje ključni pojam konveksnih funkcija u matematičkoj analizi i optimizaciji, s fokusom na Hermitovu-Hadamardovu nejednakost. Cilj rada je proučiti generalizacije Hermite-Hadamardove nejednakosti, procijeniti njihovu preciznost i promjene rezultata u kontekstu različitih vrsta konveksnosti. Također, želi se proširiti primjenjivost Hermitove-Hadamardove nejednakosti na različite klase konveksnih funkcija i istražiti kako različite vrste konveksnosti utječu na tu nejednakost., This paper explores the key notion of convex functions in mathematical analysis and optimization, with a focus on the Hermit-Hadamard inequality. The aim of the paper is to study the generalizations of the Hermit-Hadamard inequality, evaluate their precision and changes in results in the context of different types of convexity. Additionally, it aims to extend the applicability of the Hermit-Hadamard inequality to various classes of convex functions and investigate how different types of convexity influence this inequality.
- Published
- 2023
5. Tree-search algorithms
- Author
-
Pintur, Antonela, Vojković, Tanja, Laštre, Ana, and Erceg, Goran
- Subjects
Jarnik-Prim ,Boruvka-Kruskal ,PRIRODNE ZNANOSTI. Matematika ,Dijkstra ,minimal spanning tree ,minimalno razapinjuće stablo ,graf ,graph ,NATURAL SCIENCES. Mathematics - Abstract
Teorija grafova je danas iznimno popularna grana matematike sa širokim primjenama. Najčešće primjene su u rješavanju problema pronalaska najkraćih puteva kako bi se minimizirali razni troškovi pa je korisno pogledati različite algoritme pretrage koje imamo u stablima. Najpoznatiji algoritmi su Jarnik-Prim algoritam i Boruvka-Kruskal kojima je jedina razlika u redoslijedu odabira bridova (”puteva”), a kao rezultat daju jednako stablo., Graph theory is lately an extremely popular branch of mathematics with wide applications. The most common applications are in solving problems of finding the shortest paths to minimize various costs, so it is useful to look and understand different types of search algorithms that are used in trees. The most famous algorithms are Jarnik-Prim algorithm and Boruvka-Kruskal. The only difference between these two is in the order selection of edges (”paths“) but the result is the same tree in both cases.
- Published
- 2023
6. Volume in the curriculum
- Author
-
Šain, Meri, Vojković, Tanja, Laštre, Ana, and Zorić, Željka
- Subjects
geometric solids ,mathematics competitions ,mjerenje ,mathematics ,državna matura ,PRIRODNE ZNANOSTI. Interdisciplinarne prirodne znanosti. Metodike nastavnih predmeta prirodnih znanosti ,geometrijska tijela ,NATURAL SCIENCES. Interdisciplinary Natural Sciences. Teaching Methods in the Natural Sciences ,measure ,rotacijska tijela ,PRIRODNE ZNANOSTI. Matematika ,matematika ,natjecanje iz matematike ,state graduation exam ,NATURAL SCIENCES. Mathematics ,solids of revolution - Abstract
Cilj ovog rada je prikazati kako se s godinama obrazovanja učenika proširuje njihovo znanje o obujmu. Istražen je koncept i tip zadataka koji se proteže kroz školovanje učenika, iz njihovih udžbenika. Obrazovanje o obujmu kreće sa obradom obujma tekućine, nakon toga uči se o obujmu tijela i to znanje se primjenjuje prvo na kocki i kvadru, a nakon toga na svim uspravnim geometrijskim tijelima. Zatim se uči o obujmu geometrijskih tijela primjenjujući pri tome načelo Cavalierijev princip. Osim na geometrijskim tijelima, obujam se tada primjenjuje i na rotacijskim tijelima., This paper aims to show how the student’s knowledge of the volume expands with the years of education. The concept and type of tasks that extend throughout the education of students were investigated from students’ textbooks. Education about volume starts with processing the volume of a liquid after which you learn about the volume of solids and this knowledge is applied first to the cube and cuboid and then to all right geometric solids. Then they learn about the volume of geometric solids by applying Cavalieri’s principle. In addition to geometric solids, the volume is also applied to solids of revolution.
- Published
- 2023
7. Introduction to extreme value theory
- Author
-
Vulin, Lea, Gotovac Đogaš, Vesna, Laštre, Ana, and Mandarić, Marcela
- Subjects
left-continuous inverse ,limit distributions ,Fisher-Tippett-Gnedenko theorem ,von Mises’ condition - Abstract
Teorija ekstremnih vrijednosti elegantna je i matematički fascinantna teorija koja omogućuje raznoliku primjenu. U prvom dijelu rada cilj nam je pronaći graničnu distribuciju za maksimum nezavisnih i jednako distribuiranih slučajnih varijabli. Definiran je pojam maksimalne domene privlačnosti te klasa funkcija distribucije ekstremnih vrijednosti. Potom je dokazan Fisher i Tippett, Gnedenko teorem koji nam govori kako granične funkcije distribucije čine jednostavnu eksplicitnu jednoparametarsku familiju. U središnjem poglavlju rada predstavljen je prvi pristup domeni privlačnosti te je naveden von Misesov uvjet koji govori o dovoljnom uvjetu za pripadnost domeni privlačnosti. U završnom dijelu rada ustanovili smo nužne i dovoljne uvjete da bi funckija distribucije F pripadala domeni privlačnosti od Gγ., Extreme value theory is an elegant and mathematically fascinating theory which ensures wide application. In the first part of the paper our interest is in finding possible limit distributions for sample maxima of independent and identically distributed random variables. Then the maximum domain of attraction and extreme value distributions were defined. Next Fisher and Tippett, Gnedenko theorem is proved and it tells us that the limit distribution functions form a simple explicit one-parameter family. In the central chapter of the paper the first approach to the domain of attraction is presented and von Mises condition was defined which state a sufficient condition for belonging to a domain of attraction. In the final part of the thesis we established necessary and sufficient conditions for a distribution function F to belong to the domain of attraction of Gγ.
- Published
- 2023
8. Statistical goodness-of-fit tests based on empirical distribution function
- Author
-
Brkljačić, Matea, Gotovac Đogaš, Vesna, Laštre, Ana, and Marić, Stipe
- Subjects
Cramér-von-Misesov test ,Watsonov test ,Kolmogorov-Smirnovljev test ,Anderson-Darlingov test - Abstract
U ovom radu obrađeni su problemi prilagodbe jednog i K, K ≥ 2 uzorka. Kod problema jednog uzorka, statistički testovi prilagodbe su testovi koji nam govore predstavljaju li određeni podaci uzorka podatke koje biste očekivali pronaći u stvarnoj populaciji. Statistički testovi prilagodbe za problem K uzorka daju odgovore o jednakosti distribuciji dva ili više nezavisnih uzoraka. Svi obrađeni testovi razjašnjeni su kroz svoje testne statistike, osnovne komponente dekompozicije statistike te nulte distribucije. Kod problema jednog uzorka obrađeni su testovi prilagodbe redom: Kolmogorov-Smirnovljev, Anderson-Darlingov, Cramér-von-Misesov i Watsonov. Kao primjer ispitujemo kvalitetu uniformnog pseudo-slučajnog generatora u softveru R. Skup 100,000 slučajno izgeneriranih brojeva može se naći pod nazivom PRG. U podacima o koncetraciji PCB (poliklorirani bifenil) 65 Anacapa ptica je od interesa testiranje normalnosti. U poglavlju o problemu K uzoraka, bavimo se Kolmogorov-Smirnovljevim testom i Anderson-Darlingovim. Sličnosti i razlike testova za probleme jednog i K uzorka su objašnjene. Rad završavamo problemom usporedbe distribucija dva uzorka slučajnih brojeva i K-uzorka iz skupa podataka "Iris". Ovaj poznati skup podataka Iris o perunici daje mjere u centimetrima varijabli duljine i širine čašice i duljine i širine latice za 50 cvjetova svake od 3 vrste perunike. Vrste su Iris setosa, versicolor i virginica., In this paper, the goodness-of-fit problems of one and K, K ≥ 2 samples are dealt with. In one-sample problems, statistical goodness-of-fit tests are tests that tell us whether certain sample data represent the data you would expect to find in the real population. Statistical goodness-of-fit tests for the K sample problem provide answers about the equality of the distribution of two or more independent samples. All processed tests are explained through their test statistics, the basic components of the decomposition of statistics and the null distribution. In the case of one-sample problems, the Kolmogorov-Smirnov, Anderson-Darling, Cramér-von-Mises and Watson tests were processed in order. We analyze the distributions of the data sets PCB and PRG. In the chapter on the K samples problem, we deal with the Kolmogorov-Smirnov test and the Anderson-Darling test. The similarities and differences of the tests for the one-sample and K-sample problems are explained. We end the paper with the problem of comparing the distributions of two samples of random numbers and the K-sample from the "Iris" data set.
- Published
- 2023
9. Discharging method
- Author
-
Čondić, Ante, Vojković, Tanja, Laštre, Ana, and Jelić, Ivan
- Subjects
PRIRODNE ZNANOSTI. Matematika ,graph theory ,bojenje grafova ,graph coloring ,graf ,graph ,NATURAL SCIENCES. Mathematics ,planarni grafovi ,teorija grafova ,planar graphs - Abstract
Cilj ovog rada bio je objasniti primjenu metode pražnjenja koja ima važnu ulogu u teoriji grafova i korištena je u slavnom dokazu teorema o četiri boje. Metoda se provodi kroz dva koraka, dodjeljivanje naboja vrhovima, bridovima ili stranama grafa te premještanje tih naboja po određenom skupu pravila. Kroz razne primjere u planarnim grafovima i bojenjima smo pokazali kako navedena metoda funkcionira., The aim of this work was to explain the application of discharging method, which has an important role in graph theory and was used in the famous proof of the four color theorem. The method is implemented through two steps, assigning charges to the vertices, edges or faces of the graph and moving these charges according to a certain set of rules. Through various examples in planar graphs and colorings, we have shown how the specified method works.
- Published
- 2023
10. The application of logistic regression in modelling visitor loyalty
- Author
-
Zovko, Mila, Martinić Bilać, Tea, Perišić, Ana, and Laštre, Ana
- Subjects
predictive model ,logistička regresija ,PRIRODNE ZNANOSTI. Matematika ,logistic regression ,vjernost posjetitelja ,visitor loyalty ,prediktivni model ,NATURAL SCIENCES. Mathematics - Abstract
Logička regresija analizira odnos izmedu dihotomne zavisne varijable i jedne ili više nezavisnih varijabli. Najčešće se koristi u prediktivnom modeliranju, gdje model procjenjuje vjerojatnost kategorija u klasifikacijskim problemima. U prvom dijelu rada koji se odnosi na teorijsku podlogu logističke regresije upoznajemo se sa familijom generaliziranih linearnih modela. Zatim, izvodimo pripadajući univarijatni i multivarijatni logistički model, metodom maksimalne vjerodostojnosti procijenjujemo njihove parametre, testiramo značajnost parametara te objašnjavamo interpretaciju modela. U drugom dijelu prikazujemo primjenu logističke regresije u modeliranju vjernosti posjetitelja gdje ispitujemo možemo li vjernost posjetitelja predvidjeti na temelju njihovog zadovoljstva, te u svrhu prikaza izgradnje modela sa različitim vrstama varijabli, vjernost modeliramo i uz jednu kategorijalnu varijablu koja se odnosi na zemlju porijekla posjetitelja., Logistic regression is used to examine the association of one dichotomous variable with one or more independent variables. It is extensively used in predictive modeling, where the model estimates probabilities for classification problems with two possible outcomes. The first part of the thesis refers to the theoretical foundation of logistic regression. In this part, generalised linear models are introduced, which is followed by the theoretical background of univariate and multivariate logistic regression modelling. We present the method of maximum likelihood parameter estimation, significance testing and explain the interpretation of the model. In the second part of the thesis, we present the application of logistic regression in visitor loyalty modeling. We perform logistic regression in order to examine whether visitor loyalty can be predicted by visitor satisfaction. Also, to present the model building with different types of variables, loyalty is modeled with one categorical variable referring to the country of origin.
- Published
- 2022
11. Analytical and numerical integration
- Author
-
Radić, Marija, Perić, Jurica, Laštre, Ana, and Pleština, Jelena
- Subjects
trapezoidal rule ,Newton-Cotes formulas ,definite integral ,Simpson’s formula ,indefinite integral ,Newton-Leibniz formula - Abstract
Ideja ovog diplomskog rada bila je objasniti problem površine, definirati i pokazati kako se mogu riješiti određeni i neodređeni integrali te pokazati kako su oni povezani Newton-Leibnizovom formulom. Postoje neke situacije u kojima nije moguće primijeniti tu formulu kao npr. ako je funkcija koju integriramo poznata samo u pojedinim točkama ili ako je nemoguće pronaći antiderivaciju te funkcije koje integriramo. Za takve situacije postoji numeričko odnosno približno računanje integrala te su neke poznate metode objašnjene u drugom poglavlju kao posebni slučajevi poznatih Newton-Cotesovih formula., The main objective of this master’s thesis is to explain the surface problem, define and say how definite and indefinite integrals can be solved and show how they are connected by the Newton-Leibniz formula. There are some situations where it is not possible to apply that formula, for example, if a function that we are integrating is known only in certain points or if we cannot find the antiderivative of function that we integrate. For such situations there is a numerical or approximate calculation of integrals and some methods are explained in the second chapter as special cases of the well-known Newton-Cotes formulas.
- Published
- 2022
12. Reproducing kernel Hilbert spaces
- Author
-
Buljan, Antonio, Gotovac Đogaš, Vesna, Erceg, Goran, and Laštre, Ana
- Subjects
kernel methods ,Banach space ,completeness ,k-means algorithm ,positive semidefinite matrices ,Moore’s theorem ,kernel trick ,kernel functions - Abstract
U ovom radu upoznajemo se s teorijom Hilbertovih prostora reproducirajućih jezgri te objašnjavamo matematičku pozadinu primjene jezgrenih funkcija u umjetnoj inteligenciji. Istražujemo vezu između pozitivno semidefinitnih funkcija i jezgrenih funkcija te svojstva različitih pozitivno semidefinitnih funkcija na proizvoljnom skupu. U prvom poglavlju uvodimo pojam potpunih metričkih, normiranih te unitarnih prostora i istražujemo njihova svojstva. U drugom poglavlju gradimo teoriju Hilbertovih prostora reproducirajućih jezgri, a u zadnjem poglavlju pokazujemo kako se navedena teorija primjenjuje u umjetnoj inteligenciji., In this thesis, we introduce the theory of reproducing kernel Hilbert spaces and explain the mathematical background of the application of kernel functions in artificial intelligence. We investigate the relationship between positive semidefinite functions and kernel functions and the properties of different positive semidefinite functions on an arbitrary set. In the first chapter, we introduce the concept of complete metric, normed and pre-Hilbert spaces and explore their properties. In the second chapter we build a theory of reproducing kernel Hilbert spaces and in the last chapter we show how this theory is applied in artificial intelligence.
- Published
- 2021
13. Functions in curriculum
- Author
-
Blažević, Katarina, Erceg, Goran, Laštre, Ana, and Zorić, Željka
- Subjects
relations ,PRIRODNE ZNANOSTI. Matematika ,school ,Matematika ,PRIRODNE ZNANOSTI. Interdisciplinarne prirodne znanosti. Metodike nastavnih predmeta prirodnih znanosti ,NATURAL SCIENCES. Interdisciplinary Natural Sciences. Teaching Methods in the Natural Sciences ,NATURAL SCIENCES. Mathematics ,class ,Mathematics ,relacije ,nastava ,škola - Abstract
U ovom radu istraženo je koliko su funkcije zastupljene u kurikulumu osnovne i srednje škole te na koji način se uvode i obrađuju. Cilj je da se dobije jasan pregled zastupljenosti funkcija u kurikulumu uz komentare usmjerene na matematičku korektnost, postupnost i sistematičnost obrade funkcija na nastavi. Zaključak je da se funkcije ne obrađuju dovoljno u osnovnoj školi dok su u srednjoj školi funkcije velikim dijelom matematički korektno i postupno obrađene., In this paper I'll demonstrate how functions are represented in the primary and secondary school curriculum and how they are introduced and processed. The goal is to get a clear overview of the representation of functions in the curriculum with comments focused on the mathematical correctness, gradual and systematic processing functions in schools. Conclusion is that functions are not covered enough in primary school while in high school functions are largely mathematically correct and gradually processed.
- Published
- 2021
14. An introduction to Fourier analysis
- Author
-
Ferić, Ana, Krešić Jurić, Saša, Laštre, Ana, and Martinić Bilać, Tea
- Subjects
applications of the Fourier transform ,Fourier series ,Fourier transforms - Abstract
U ovom radu proučavaju se osnove Fourierove analize: Fourierov red i Fourierova transformacija. U prvom dijelu objašnjeno je kako se periodička funkcija f : [-π, π ] → ℝ može zapisati u obliku Fourierovog rada, te navedeno je nekoliko primjera razvoja elementarnih funkcija u Fourierov red. Pokazani su bitni rezultati o konvergenciji Fourierovog reda po točkama i uniformnoj konvergenciji. U drugom dijelu rada uvedena je Fourierova transformacija na prostorima L¹ (ℝ) i L² (ℝ). Također, navedeni su primjeri Fourierove transformacije za elementarne funkcije uz neka osnovna svojstva Fourierove transformacije na prostorima L¹ (ℝ) i L² (ℝ), te je definirana i inverzna Fourierova transformacija. Na kraju rada pokazani su neke primjene Fourierove transformacije na parcijalne diferencijalne jednadžbe i na diferencijalne i integralne jednadžbe., This thesis examines the fundamentals of Fouriers analysis: Fourier series and Fourier transform. The first part explains how periodic function f : [-π, π] → ℝ can be written in the form of a Fourier series and lists several examples of Fourier series for elementary functions. It shows important results for two kinds of convergence of a Fourier series: pointwise convergence and uniform convergence. In the second part of this thesis the definition of the Fourier transform in L¹ (ℝ) and L² (ℝ) is given as well as examples of Fourier transforms for elementary functions. We also consider some basic properties of Fourier transform in L¹ (ℝ) and L² (ℝ). We also give the definition of the inverse Fourier transform. In the last part of the thesis we show some applications of the Fourier transform to partial differential equations, integral and ordinary differential equations.
- Published
- 2019
15. Jensen´s inequality
- Author
-
Kukoč, Marina, Perić, Jurica, Klaričić Bakula, Milica, and Laštre, Ana
- Abstract
Rad ne sadrži sažetak.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.