18 results on '"Laajala M"'
Search Results
2. SAR Analysis of Novel Coxsackie virus A9 Capsid Binders.
- Author
-
Tammaro C, Plavec Z, Myllymäki L, Mitchell C, Consalvi S, Biava M, Ciogli A, Domanska A, Leppilampi V, Buckner C, Manetto S, Sciò P, Coluccia A, Laajala M, Dondio GM, Bigogno C, Marjomäki V, Butcher SJ, and Poce G
- Subjects
- Structure-Activity Relationship, Humans, Capsid Proteins metabolism, Capsid Proteins chemistry, Capsid Proteins antagonists & inhibitors, Models, Molecular, Chlorocebus aethiops, Antiviral Agents pharmacology, Antiviral Agents chemistry, Antiviral Agents chemical synthesis, Enterovirus B, Human drug effects, Capsid drug effects, Capsid metabolism, Capsid chemistry
- Abstract
Enterovirus infections are common in humans, yet there are no approved antiviral treatments. In this study we concentrated on inhibition of one of the Enterovirus B (EV-B), namely Coxsackievirus A9 (CVA9), using a combination of medicinal chemistry, virus inhibition assays, structure determination from cryogenic electron microscopy and molecular modeling, to determine the structure activity relationships for a promising class of novel N -phenylbenzylamines. Of the new 29 compounds synthesized, 10 had half maximal effective concentration (EC
50 ) values between 0.64-10.46 μM, and of these, 7 had 50% cytotoxicity concentration (CC50 ) values higher than 200 μM. In addition, this new series of compounds showed promising physicochemical properties and act through capsid stabilization, preventing capsid expansion and subsequent release of the genome.- Published
- 2024
- Full Text
- View/download PDF
3. Comparison of structure and immunogenicity of CVB1-VLP and inactivated CVB1 vaccine candidates.
- Author
-
Soppela S, Plavec Z, Gröhn S, Jartti M, Oikarinen S, Laajala M, Marjomaki V, Butcher SJ, and Hankaniemi MM
- Abstract
Coxsackievirus B1 (CVB1) is a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. In this study, we investigated the immunogenicity of virus-like particle (VLP) and inactivated whole-virus vaccines for CVB1 when administrated to mice via either subcutaneous or intranasal routes formulated with and without commercial and experimental adjuvants. Here, the potential of utilizing epigallocatechin-3-gallate (EGCG) as a mucosal adjuvant synergistically with its ability to inactivate the virus were investigated. EGCG had promising adjuvant properties for CVB1-VLP when administered via the parenteral route but limited efficacy via intranasal administration. However, intranasal administration of the formalin-inactivated virus induced high CVB1-specific humoral, cellular, and mucosal immune responses. Also, based on CVB1-specific IgG-antibody responses, we conclude that CVB1-VLP can be taken up by immune cells when administrated intranasally and further structural engineering for the VLP may increase the mucosal immunogenicity. The preparations contained mixtures of compact and expanded A particles with 85% expanded in the formalin-inactivated virus, but only 52% in the VLP observed by cryogenic electron microscopy. To correlate the structure to immunogenicity, we solved the structures of the CVB1-VLP and the formalin-inactivated CVB1 virus at resolutions ranging from 2.15 A to 4.1 A for the expanded and compact VLP and virus particles by image reconstruction. These structures can be used in designing mutations increasing the stability and immunogenicity of CVB1-VLP in the future. Overall, our results highlight the potential of using formalin inactivated CVB1 vaccine in mucosal immunization programs and provide important information for future development of VLP-based vaccines against all enteroviruses., Competing Interests: Competing interests The authors declare that they have no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
4. Antiviral action of a functionalized plastic surface against human coronaviruses.
- Author
-
Shroff S, Haapakoski M, Tapio K, Laajala M, Leppänen M, Plavec Z, Haapala A, Butcher SJ, Ihalainen JA, Toppari JJ, and Marjomäki V
- Subjects
- Humans, SARS-CoV-2, Hydrophobic and Hydrophilic Interactions, Antiviral Agents, Viruses
- Abstract
Viruses may persist on solid surfaces for long periods, which may contribute to indirect transmission. Thus, it is imperative to develop functionalized surfaces that will lower the infectious viral load in everyday life. Here, we have tested a plastic surface functionalized with tall oil rosin against the seasonal human coronavirus OC43 as well as severe acute respiratory syndrome coronavirus 2. All tested non-functionalized plastic surfaces showed virus persistence up to 48 h. In contrast, the functionalized plastic showed good antiviral action already within 15 min of contact and excellent efficacy after 30 min over 90% humidity. Excellent antiviral effects were also observed at lower humidities of 20% and 40%. Despite the hydrophilic nature of the functionalized plastic, viruses did not adhere strongly to it. According to helium ion microscopy, viruses appeared flatter on the rosin-functionalized surface, but after flushing away from the rosin-functionalized surface, they showed no apparent structural changes when imaged by transmission electron microscopy of cryogenic or negatively stained specimens or by atomic force microscopy. Flushed viruses were able to bind to their host cell surface and enter endosomes, suggesting that the fusion with the endosomal membrane was halted. The eluted rosin from the functionalized surface demonstrated its ability to inactivate viruses, indicating that the antiviral efficacy relied on the active leaching of the antiviral substances, which acted on the viruses coming into contact. The rosin-functionalized plastic thus serves as a promising candidate as an antiviral surface for enveloped viruses.IMPORTANCEDuring seasonal and viral outbreaks, the implementation of antiviral plastics can serve as a proactive strategy to limit the spread of viruses from contaminated surfaces, complementing existing hygiene practices. In this study, we show the efficacy of a rosin-functionalized plastic surface that kills the viral infectivity of human coronaviruses within 15 min of contact time, irrespective of the humidity levels. In contrast, non-functionalized plastic surfaces retain viral infectivity for an extended period of up to 48 h. The transient attachment on the surface or the leached active components do not cause major structural changes in the virus or prevent receptor binding; instead, they effectively block viral infection at the endosomal stage., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
5. Antiviral functionalization of cellulose using tannic acid and tannin-rich extracts.
- Author
-
Haapakoski M, Emelianov A, Reshamwala D, Laajala M, Tienaho J, Kilpeläinen P, Liimatainen J, Jyske T, Pettersson M, and Marjomäki V
- Abstract
Due to seasonally appearing viruses and several outbreaks and present pandemic, we are surrounded by viruses in our everyday life. In order to reduce viral transmission, functionalized surfaces that inactivate viruses are in large demand. Here the endeavor was to functionalize cellulose-based materials with tannic acid (TA) and tannin-rich extracts by using different binding polymers to prevent viral infectivity of both non-enveloped coxsackievirus B3 (CVB3) and enveloped human coronavirus OC43 (HCoV-OC43). Direct antiviral efficacy of TA and spruce bark extract in solution was measured: EC
50 for CVB3 was 0.12 and 8.41 μg/ml and for HCoV-OC43, 78.16 and 95.49 μg/ml, respectively. TA also led to an excellent 5.8- to 7-log reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infectivity. TA functionalized materials reduced infectivity already after 5-min treatment at room temperature. All the tested methods to bind TA showed efficacy on paperboard with 0.1 to 1% (w/v) TA concentrations against CVB3 whereas material hydrophobicity decreased activities. Specific signatures for TA and HCoV-OC43 were discovered by Raman spectroscopy and showed clear co-localization on the material. qPCR study suggested efficient binding of CVB3 to the TA functionalized cellulose whereas HCoV-OC43 was flushed out from the surfaces more readily. In conclusion, the produced TA-materials showed efficient and broadly acting antiviral efficacy. Additionally, the co-localization of TA and HCoV-OC43 and strong binding of CVB3 to the functionalized cellulose demonstrates an interaction with the surfaces. The produced antiviral surfaces thus show promise for future use to increase biosafety and biosecurity by reducing pathogen persistence., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Haapakoski, Emelianov, Reshamwala, Laajala, Tienaho, Kilpeläinen, Liimatainen, Jyske, Pettersson and Marjomäki.)- Published
- 2023
- Full Text
- View/download PDF
6. Willow ( Salix spp.) bark hot water extracts inhibit both enveloped and non-enveloped viruses: study on its anti-coronavirus and anti-enterovirus activities.
- Author
-
Reshamwala D, Shroff S, Liimatainen J, Tienaho J, Laajala M, Kilpeläinen P, Viherä-Aarnio A, Karonen M, Jyske T, and Marjomäki V
- Abstract
Introduction: Recurring viral outbreaks have a significant negative impact on society. This creates a need to develop novel strategies to complement the existing antiviral approaches. There is a need for safe and sustainable antiviral solutions derived from nature., Objective: This study aimed to investigate the antiviral potential of willow ( Salix spp.) bark hot water extracts against coronaviruses and enteroviruses. Willow bark has long been recognized for its medicinal properties and has been used in traditional medicines. However, its potential as a broad-spectrum antiviral agent remains relatively unexplored., Methods: Cytopathic effect inhibition assay and virucidal and qPCR-based assays were used to evaluate the antiviral potential of the bark extracts. The mechanism of action was investigated using time-of-addition assay, confocal microscopy, TEM, thermal, and binding assays. Extracts were fractionated and screened for their chemical composition using high-resolution LC-MS., Results: The native Salix samples demonstrated their excellent antiviral potential against the non-enveloped enteroviruses even at room temperature and after 45 s. They were equally effective against the seasonal and pandemic coronaviruses. Confocal microscopy verified the loss of infection capacity by negligible staining of the newly synthesized capsid or spike proteins. Time-of-addition studies demonstrated that Salix bark extract had a direct effect on the virus particles but not through cellular targets. Negative stain TEM and thermal assay showed that antiviral action on enteroviruses was based on the added stability of the virions. In contrast, Salix bark extract caused visible changes in the coronavirus structure, which was demonstrated by the negative stain TEM. However, the binding to the cells was not affected, as verified by the qPCR study. Furthermore, coronavirus accumulated in the cellular endosomes and did not proceed after this stage, based on the confocal studies. None of the tested commercial reference samples, such as salicin, salicylic acid, picein, and triandrin, had any antiviral activity. Fractionation of the extract and subsequent MS analysis revealed that most of the separated fractions were very effective against enteroviruses and contained several different chemical groups such as hydroxycinnamic acid derivatives, flavonoids, and procyanidins., Conclusion: Salix spp. bark extracts contain several virucidal agents that are likely to act synergistically and directly on the viruses., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Reshamwala, Shroff, Liimatainen, Tienaho, Laajala, Kilpeläinen, Viherä-Aarnio, Karonen, Jyske and Marjomäki.)
- Published
- 2023
- Full Text
- View/download PDF
7. Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIβ.
- Author
-
Laajala M, Zwaagstra M, Martikainen M, Nekoua MP, Benkahla M, Sane F, Gervais E, Campagnola G, Honkimaa A, Sioofy-Khojine AB, Hyöty H, Ojha R, Bailliot M, Balistreri G, Peersen O, Hober D, Van Kuppeveld F, and Marjomäki V
- Subjects
- Animals, Mice, Humans, Vemurafenib pharmacology, Vemurafenib therapeutic use, 1-Phosphatidylinositol 4-Kinase, Proto-Oncogene Proteins B-raf genetics, Proto-Oncogene Proteins B-raf metabolism, Protein Kinase Inhibitors pharmacology, Mitogen-Activated Protein Kinase Kinases, Mutation, Enterovirus, Melanoma drug therapy, Enterovirus Infections drug therapy
- Abstract
Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAF
V600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses., Competing Interests: The authors declare a conflict of interest. H.Hy is a minor shareholder and member of the board of Vactech Ltd, which develops vaccines against picornaviruses. No other potential conflicts of interest relevant to this article were reported.- Published
- 2023
- Full Text
- View/download PDF
8. Antiviral Mechanisms of N -Phenyl Benzamides on Coxsackie Virus A9.
- Author
-
Laajala M, Kalander K, Consalvi S, Amamuddy OS, Bishop ÖT, Biava M, Poce G, and Marjomäki V
- Abstract
Enteroviruses are one of the most abundant groups of viruses infecting humans, and yet there are no approved antivirals against them. To find effective antiviral compounds against enterovirus B group viruses, an in-house chemical library was screened. The most effective compounds against Coxsackieviruses B3 (CVB3) and A9 (CVA9) were CL212 and CL213, two N -phenyl benzamides. Both compounds were more effective against CVA9 and CL213 gave a better EC
50 value of 1 µM with high a specificity index of 140. Both drugs were most effective when incubated directly with viruses suggesting that they mainly bound to the virions. A real-time uncoating assay showed that the compounds stabilized the virions and radioactive sucrose gradient as well as TEM confirmed that the viruses stayed intact. A docking assay, taking into account larger areas around the 2-and 3-fold axes of CVA9 and CVB3, suggested that the hydrophobic pocket gives the strongest binding to CVA9 but revealed another binding site around the 3-fold axis which could contribute to the binding of the compounds. Together, our data support a direct antiviral mechanism against the virus capsid and suggest that the compounds bind to the hydrophobic pocket and 3-fold axis area resulting in the stabilization of the virion.- Published
- 2023
- Full Text
- View/download PDF
9. Detection of Viral -RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues.
- Author
-
Salmikangas S, Laiho JE, Kalander K, Laajala M, Honkimaa A, Shanina I, Oikarinen S, Horwitz MS, Hyöty H, and Marjomäki V
- Abstract
The current methods to study the distribution and dynamics of viral RNA molecules inside infected cells are not ideal, as electron microscopy and immunohistochemistry can only detect mature virions, and quantitative real-time PCR does not reveal localized distribution of RNAs. We demonstrated here the branched DNA in situ hybridization (bDNA ISH) technology to study both the amount and location of the emerging -RNA and +RNA during acute and persistent enterovirus infections. According to our results, the replication of the viral RNA started 2-3 h after infection and the translation shortly after at 3-4 h post-infection. The replication hotspots with newly emerging -RNA were located quite centrally in the cell, while the +RNA production and most likely virion assembly took place in the periphery of the cell. We also discovered that the pace of replication of -RNA and +RNA strands was almost identical, and -RNA was absent during antiviral treatments. ViewRNA ISH with our custom probes also showed a good signal during acute and persistent enterovirus infections in cell and mouse models. Considering these results, along with the established bDNA FISH protocol modified by us, the effects of antiviral drugs and the emergence of enterovirus RNAs in general can be studied more effectively.
- Published
- 2020
- Full Text
- View/download PDF
10. Therapeutic targets for enterovirus infections.
- Author
-
Laajala M, Reshamwala D, and Marjomäki V
- Subjects
- Animals, Capsid metabolism, Drug Development, Drug Resistance, Viral, Enterovirus Infections virology, High-Throughput Screening Assays, Humans, Viral Load drug effects, Antiviral Agents pharmacology, Enterovirus Infections drug therapy, Molecular Targeted Therapy
- Abstract
Introduction: Enteroviruses are among the most common viruses causing a huge number of acute and chronic infections leading to high economic costs. Novel nontoxic antivirals that reduce the virus load in acutely infected individuals and from various surfaces are needed to efficiently combat these viruses., Areas Covered: This review summarizes the recent findings of compounds and tools targeting the enteroviruses and host cell molecules that are crucial for virus infection. In addition, the review states the modern methods to find new targets and tools that help to understand the mechanisms of action., Expert Opinion: High-throughput molecular screens have revealed important aspects of virus life cycle in host cells and, concomitantly, some of the targets and compounds found serve as potential anti-virals combatting enterovirus infections. The risk of resistance development found for direct capsid binders lowers their usefulness, but combining them with compounds targeting evolutionarily conserved processes such as replication/translation makes them potentially a valid therapy for the future. Further automation and access to structural molecular tools such as cryo-EM and further development of, e.g. docking and simulation of large virus particles requiring heavy computation will contribute to better understanding of molecular mechanisms of action of future antivirals.
- Published
- 2020
- Full Text
- View/download PDF
11. Early Entry Events in Echovirus 30 Infection.
- Author
-
Vandesande H, Laajala M, Kantoluoto T, Ruokolainen V, Lindberg AM, and Marjomäki V
- Subjects
- A549 Cells, Animals, CHO Cells, Cell Line, Cricetulus, Disease Outbreaks, Echovirus Infections virology, Enterovirus genetics, Enterovirus B, Human pathogenicity, Enterovirus Infections virology, Humans, Phylogeny, RNA, Viral genetics, Receptors, Fc genetics, Sequence Analysis, DNA methods, Virus Internalization, Virus Replication, Echovirus Infections physiopathology, Enterovirus B, Human genetics, Enterovirus B, Human metabolism
- Abstract
Echovirus 30 (E30), a member of the enterovirus B species, is a major cause of viral meningitis, targeting children and adults alike. While it is a frequently isolated enterovirus and the cause of several outbreaks all over the world, surprisingly little is known regarding its entry and replication strategy within cells. In this study, we used E30 strain Bastianni (E30B) generated from an infectious cDNA clone in order to study early entry events during infection in human RD cells. E30B required the newly discovered Fc echovirus receptor (FcRn) for successful infection, but not the coxsackievirus and adenovirus receptor (CAR) or decay-accelerating factor (DAF), although an interaction with DAF was observed. Double-stranded RNA replication intermediate was generated between 2 and 3 h postinfection (p.i.), and viral capsid production was initiated between 4 and 5 h p.i. The drugs affecting Rac1 (NSC 23766) and cholesterol (filipin III) compromised infection, whereas bafilomycin A1, dyngo, U-73122, wortmannin, and nocodazole did not, suggesting the virus follows an enterovirus-triggered macropinocytic pathway rather than the clathrin pathway. Colocalization with early endosomes and increased infection due to constitutively active Rab5 expression suggests some overlap and entry to classical early endosomes. Taken together, these results suggest that E30B induces an enterovirus entry pathway, leading to uncoating in early endosomes. IMPORTANCE Echovirus 30 (E30) is a prevalent enterovirus causing regular outbreaks in both children and adults in different parts of the world. It is therefore surprising that relatively little is known of its infectious entry pathway. We set out to generate a cDNA clone and gradient purified the virus in order to study the early entry events in human cells. We have recently studied other enterovirus B group viruses, like echovirus 1 (EV1) and coxsackievirus A9 (CVA9), and found many similarities between those viruses, allowing us to define a so-called "enterovirus entry pathway." Here, E30 is reminiscent of these viruses, for example, by not relying on acidification for infectious entry. However, despite not using the clathrin entry pathway, E30 accumulates in classical early endosomes., (Copyright © 2020 American Society for Microbiology.)
- Published
- 2020
- Full Text
- View/download PDF
12. Real-time Fluorescence Measurement of Enterovirus Uncoating.
- Author
-
Ruokolainen V, Laajala M, and Marjomäki V
- Abstract
Viruses need to open, i.e. , uncoat, in order to release their genomes for efficient replication and translation. Especially for non-enveloped viruses, such as enteroviruses, the cues leading to uncoating are less well known. The status of the virus has previously been observed mainly by transmission electron microscopy using negative staining, cryo electron microscopy, X-ray crystallography or gradient separation (reviewed in Tuthill et al. , 2010 , Myllynen et al. , 2016 , Ruokolainen et al. , 2019 ). However, monitoring of uncoating has been limited by the lack of methods detecting dynamic changes of the virions. Here, we present a real-time fluorescence based protocol, which detects the viral genome (RNA) during various stages of uncoating in vitro , while RNA is still inside the particle that has been expanded before the actual RNA release, and when the RNA has been totally released from the viral particle. Our method allows to explore how various molecular factors may promote or inhibit virus uncoating., Competing Interests: Competing interestsThere are no competing interests by the authors of this article., (Copyright © 2020 The Authors; exclusive licensee Bio-protocol LLC.)
- Published
- 2020
- Full Text
- View/download PDF
13. Human Enterovirus Group B Viruses Rely on Vimentin Dynamics for Efficient Processing of Viral Nonstructural Proteins.
- Author
-
Turkki P, Laajala M, Flodström-Tullberg M, and Marjomäki V
- Subjects
- A549 Cells, DNA Helicases genetics, DNA Helicases metabolism, Enterovirus B, Human genetics, HSP90 Heat-Shock Proteins genetics, HSP90 Heat-Shock Proteins metabolism, HeLa Cells, Humans, Poly-ADP-Ribose Binding Proteins genetics, Poly-ADP-Ribose Binding Proteins metabolism, RNA Helicases genetics, RNA Helicases metabolism, RNA Recognition Motif Proteins genetics, RNA Recognition Motif Proteins metabolism, Vimentin genetics, Viral Nonstructural Proteins genetics, Enterovirus B, Human metabolism, Protein Biosynthesis, Vimentin metabolism, Viral Nonstructural Proteins biosynthesis
- Abstract
We report that several viruses from the human enterovirus group B cause massive vimentin rearrangements during lytic infection. Comprehensive studies suggested that viral protein synthesis was triggering the vimentin rearrangements. Blocking the host cell vimentin dynamics with β, β'-iminodipropionitrile (IDPN) did not significantly affect the production of progeny viruses and only moderately lowered the synthesis of structural proteins such as VP1. In contrast, the synthesis of the nonstructural proteins 2A, 3C, and 3D was drastically lowered. This led to attenuation of the cleavage of the host cell substrates PABP and G3BP1 and reduced caspase activation, leading to prolonged cell survival. Furthermore, the localization of the proteins differed in the infected cells. Capsid protein VP1 was found diffusely around the cytoplasm, whereas 2A and 3D followed vimentin distribution. Based on protein blotting, smaller amounts of nonstructural proteins did not result from proteasomal degradation but from lower synthesis without intact vimentin cage structure. In contrast, inhibition of Hsp90 chaperone activity, which regulates P1 maturation, lowered the amount of VP1 but had less effect on 2A. The results suggest that the vimentin dynamics regulate viral nonstructural protein synthesis while having less effect on structural protein synthesis or overall infection efficiency. The results presented here shed new light on differential fate of structural and nonstructural proteins of enteroviruses, having consequences on host cell survival. IMPORTANCE A virus needs the host cell in order to replicate and produce new progeny viruses. For this, the virus takes over the host cell and modifies it to become a factory for viral proteins. Irrespective of the specific virus family, these proteins can be divided into structural and nonstructural proteins. Structural proteins are the building blocks for the new progeny virions, whereas the nonstructural proteins orchestrate the takeover of the host cell and its functions. Here, we have shown a mechanism that viruses exploit in order to regulate the host cell. We show that viral protein synthesis induces vimentin cages, which promote production of specific viral proteins that eventually control apoptosis and host cell death. This study specifies vimentin as the key regulator of these events and indicates that viral proteins have different fates in the cells depending on their association with vimentin cages., (Copyright © 2020 Turkki et al.)
- Published
- 2020
- Full Text
- View/download PDF
14. Host Cell Calpains Can Cleave Structural Proteins from the Enterovirus Polyprotein.
- Author
-
Laajala M, Hankaniemi MM, Määttä JAE, Hytönen VP, Laitinen OH, and Marjomäki V
- Subjects
- Animals, Capsid metabolism, Cells, Cultured, Glycoproteins pharmacology, Humans, Mass Spectrometry, Peptides metabolism, Proteolysis, Rats, Viral Proteins metabolism, Calpain metabolism, Capsid Proteins metabolism, Enterovirus metabolism, Enterovirus Infections virology, Polyproteins metabolism
- Abstract
Enteroviruses are small RNA viruses that cause diseases with various symptoms ranging from mild to severe. Enterovirus proteins are translated as a single polyprotein, which is cleaved by viral proteases to release capsid and nonstructural proteins. Here, we show that also cellular calpains have a potential role in the processing of the enteroviral polyprotein. Using purified calpains 1 and 2 in an in vitro assay, we show that addition of calpains leads to an increase in the release of VP1 and VP3 capsid proteins from P1 of enterovirus B species, detected by western blotting. This was prevented with a calpain inhibitor and was dependent on optimal calcium concentration, especially for calpain 2. In addition, calpain cleavage at the VP3-VP1 interface was supported by a competition assay using a peptide containing the VP3-VP1 cleavage site. Moreover, a mass spectrometry analysis showed that calpains can cleave this same peptide at the VP3-VP1 interface, the cutting site being two amino acids aside from 3C's cutting site. Furthermore, we show that calpains cannot cleave between P1 and 2A. In conclusion, we show that cellular proteases, calpains, can cleave structural proteins from enterovirus polyprotein in vitro. Whether they assist polyprotein processing in infected cells remains to be shown., Competing Interests: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
- Published
- 2019
- Full Text
- View/download PDF
15. Slow Infection due to Lowering the Amount of Intact versus Empty Particles Is a Characteristic Feature of Coxsackievirus B5 Dictated by the Structural Proteins.
- Author
-
Turkki P, Laajala M, Stark M, Vandesande H, Sallinen-Dal Maso H, Shroff S, Sävneby A, Galitska G, Lindberg AM, and Marjomäki V
- Subjects
- Capsid metabolism, Cell Line, Tumor, Humans, Viral Nonstructural Proteins metabolism, Virus Replication, Enterovirus B, Human physiology, Enterovirus Infections virology, Host-Pathogen Interactions, Viral Structural Proteins metabolism
- Abstract
Enterovirus B species typically cause a rapid cytolytic infection leading to efficient release of progeny viruses. However, they are also capable of persistent infections in tissues, which are suggested to contribute to severe chronic states such as myocardial inflammation and type 1 diabetes. In order to understand the factors contributing to differential infection strategies, we constructed a chimera by combining the capsid proteins from fast-cytolysis-causing echovirus 1 (EV1) with nonstructural proteins from coxsackievirus B5 (CVB5), which shows persistent infection in RD cells. The results showed that the chimera behaved similarly to parental EV1, leading to efficient cytolysis in both permissive A549 and semipermissive RD cells. In contrast to EV1 and the chimera, CVB5 replicated slowly in permissive cells and showed persistent infection in semipermissive cells. However, there was no difference in the efficiency of uptake of CVB5 in A549 or RD cells in comparison to the chimera or EV1. CVB5 batches constantly contained significant amounts of empty capsids, also in comparison to CVB5's close relative CVB3. During successive passaging of batches containing only intact CVB5, increasing amounts of empty and decreasing amounts of infective capsids were produced. Our results demonstrate that the increase in the amount of empty particles and the lowering of the amount of infective particles are dictated by the CVB5 structural proteins, leading to slowing down of the infection between passages. Furthermore, the key factor for persistent infection is the small amount of infective particles produced, not the high number of empty particles that accumulate. IMPORTANCE Enteroviruses cause several severe diseases, with lytic infections that lead to rapid cell death but also persistent infections that are more silent and lead to chronic states of infection. Our study compared a cytolytic echovirus 1 infection to persistent coxsackievirus B5 infection by making a chimera with the structural proteins of echovirus 1 and the nonstructural proteins of coxsackievirus B5. Coxsackievirus B5 infection was found to lead to the production of a high number of empty viruses (empty capsids) that do not contain genetic material and are unable to continue the infection. Coinciding with the high number of empty capsids, the amount of infective virions decreased. This characteristic property was not observed in the constructed chimera virus, suggesting that structural proteins are in charge of these phenomena. These results shed light on the mechanisms that may cause persistent infections. Understanding events leading to efficient or inefficient infections is essential in understanding virus-caused pathologies., (Copyright © 2019 American Society for Microbiology.)
- Published
- 2019
- Full Text
- View/download PDF
16. Extracellular Albumin and Endosomal Ions Prime Enterovirus Particles for Uncoating That Can Be Prevented by Fatty Acid Saturation.
- Author
-
Ruokolainen V, Domanska A, Laajala M, Pelliccia M, Butcher SJ, and Marjomäki V
- Subjects
- Animals, Capsid Proteins chemistry, Cell Line, Chlorocebus aethiops, Cryoelectron Microscopy, Enterovirus B, Human chemistry, Hot Temperature, Models, Molecular, Albumins pharmacology, Endosomes virology, Enterovirus B, Human drug effects, Fatty Acids metabolism
- Abstract
There is limited information about the molecular triggers leading to the uncoating of enteroviruses under physiological conditions. Using real-time spectroscopy and sucrose gradients with radioactively labeled virus, we show at 37°C, the formation of albumin-triggered, metastable uncoating intermediate of echovirus 1 without receptor engagement. This conversion was blocked by saturating the albumin with fatty acids. High potassium but low sodium and calcium concentrations, mimicking the endosomal environment, also induced the formation of a metastable uncoating intermediate of echovirus 1. Together, these factors boosted the formation of the uncoating intermediate, and the infectivity of this intermediate was retained, as judged by end-point titration. Cryo-electron microscopy reconstruction of the virions treated with albumin and high potassium, low sodium, and low calcium concentrations resulted in a 3.6-Å resolution model revealing a fenestrated capsid showing 4% expansion and loss of the pocket factor, similarly to altered (A) particles described for other enteroviruses. The dimer interface between VP2 molecules was opened, the VP1 N termini disordered and most likely externalized. The RNA was clearly visible, anchored to the capsid. The results presented here suggest that extracellular albumin, partially saturated with fatty acids, likely leads to the formation of the infectious uncoating intermediate prior to the engagement with the cellular receptor. In addition, changes in mono- and divalent cations, likely occurring in endosomes, promote capsid opening and genome release. IMPORTANCE There is limited information about the uncoating of enteroviruses under physiological conditions. Here, we focused on physiologically relevant factors that likely contribute to opening of echovirus 1 and other B-group enteroviruses. By combining biochemical and structural data, we show that, before entering cells, extracellular albumin is capable of priming the virus into a metastable yet infectious intermediate state. The ionic changes that are suggested to occur in endosomes can further contribute to uncoating and promote genome release, once the viral particle is endocytosed. Importantly, we provide a detailed high-resolution structure of a virion after treatment with albumin and a preset ion composition, showing pocket factor release, capsid expansion, and fenestration and the clearly visible genome still anchored to the capsid. This study provides valuable information about the physiological factors that contribute to the opening of B group enteroviruses., (Copyright © 2019 American Society for Microbiology.)
- Published
- 2019
- Full Text
- View/download PDF
17. A Common Receptor Found for Echoviruses.
- Author
-
Laajala M and Marjomäki V
- Subjects
- Histocompatibility Antigens Class I, Humans, Infant, Receptors, Fc, Enterovirus B, Human, Enterovirus Infections
- Abstract
It has remained a puzzle why infants, during the first weeks of life, are especially prone to enterovirus infections. New work (Proc. Natl. Acad. Sci. U. S. A. 2019;116: 3758-3763) shines light on this matter by showing that the neonatal Fc receptor, prevalent in several tissues, acts as a pan receptor for several echoviruses., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
18. Novel activities of safe-in-human broad-spectrum antiviral agents.
- Author
-
Ianevski A, Zusinaite E, Kuivanen S, Strand M, Lysvand H, Teppor M, Kakkola L, Paavilainen H, Laajala M, Kallio-Kokko H, Valkonen M, Kantele A, Telling K, Lutsar I, Letjuka P, Metelitsa N, Oksenych V, Bjørås M, Nordbø SA, Dumpis U, Vitkauskiene A, Öhrmalm C, Bondeson K, Bergqvist A, Aittokallio T, Cox RJ, Evander M, Hukkanen V, Marjomaki V, Julkunen I, Vapalahti O, Tenson T, Merits A, and Kainov D
- Subjects
- Drug Repositioning, Humans, Antiviral Agents pharmacology, DNA Viruses drug effects, RNA Viruses drug effects, Virus Diseases drug therapy
- Abstract
According to the WHO, there is an urgent need for better control of viral diseases. Re-positioning existing safe-in-human antiviral agents from one viral disease to another could play a pivotal role in this process. Here, we reviewed all approved, investigational and experimental antiviral agents, which are safe in man, and identified 59 compounds that target at least three viral diseases. We tested 55 of these compounds against eight different RNA and DNA viruses. We found novel activities for dalbavancin against echovirus 1, ezetimibe against human immunodeficiency virus 1 and Zika virus, as well as azacitidine, cyclosporine, minocycline, oritavancin and ritonavir against Rift valley fever virus. Thus, the spectrum of antiviral activities of existing antiviral agents could be expanded towards other viral diseases., (Copyright © 2018 Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.