1. Nrf2 mediates the effects of shionone on silica-induced pulmonary fibrosis
- Author
-
Guiyun Wang, Weixi Xie, Lang Deng, Xiaoting Huang, Mei Sun, Wei Liu, and Siyuan Tang
- Subjects
Shionone ,Nrf2 ,Oxidative stress ,Myofibroblast differentiation ,Macrophage activation ,Silicosis ,Other systems of medicine ,RZ201-999 - Abstract
Abstract Background Extended contact with silica particles can lead to Silicosis, a chronic lung condition lacking established treatment protocols or clear mechanisms of development. The urgency for innovative treatments arises from the unavailability of effective treatment methodologies. The origin of silica-induced pulmonary fibrosis includes essential processes such as macrophage activation and the conversion of fibroblasts into myofibroblasts, with oxidative stress playing a pivotal role. Shionone (SHI), a triterpenoid extracted from the Aster tataricus plant, is recognized for its extensive health benefits. This study explores the capability of SHI to alleviate the effects of silica-induced lung fibrosis in mice. Methods This investigation explored the impact of SHI on lung inflammation and fibrosis at different stages (early and late) triggered by silica in mice, focusing specifically on the initial and more developed phases. It comprised an analysis of isolated peritoneal macrophages and fibroblasts extracted from mice to elucidate SHI's therapeutic potential and its underlying mechanism. The methodology employed encompassed quantitative PCR, immunofluorescence, flow cytometry, and western blotting to examine macrophage activity and their transition into myofibroblasts. The activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by SHI was confirmed via immunofluorescence and western blot studies. SHI's antioxidative properties were evidenced by the measurement of reactive oxygen species (ROS) and mitochondrial ROS within both macrophages and fibroblasts, using 2′, 7′-dichlorodihydrofluorescein diacetate and MitoSOX, respectively. The relevance of SHI was further underscored by applying ML385 and Nrf2 siRNA to gauge its effectiveness. Results Starting SHI treatment early countered the harmful effects of lung inflammation and fibrosis caused by silica, while initiating SHI at a later phase decelerated the advancement of fibrosis. SHI's action was linked to the activation of the Nrf2 signaling pathway, a boost in antioxidant enzyme levels, and a decrease in oxidative stress and inflammation in macrophages affected by silica. Furthermore, SHI prevented the conversion of fibroblasts into myofibroblasts prompted by TGF-β, along with the resultant oxidative stress. The beneficial outcomes of SHI were negated when ML385 and Nrf2 siRNA were applied, highlighting the pivotal role of the Nrf2 pathway in SHI's efficacy. Conclusion SHI plays a significant role in stimulating the Nrf2 pathway, thereby defending against silica-induced oxidative stress and inflammatory reactions in macrophages, and inhibiting the conversion of fibroblasts to myofibroblasts due to TGF-β. This suggests that SHI is a viable option for treating lung inflammation and fibrosis in mice suffering from silicosis.
- Published
- 2024
- Full Text
- View/download PDF