46 results on '"Lansard, B."'
Search Results
2. LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry
- Author
-
van Beek, P., Souhaut, M., Lansard, B., Bourquin, M., Reyss, J.-L., von Ballmoos, P., and Jean, P.
- Published
- 2013
- Full Text
- View/download PDF
3. Live (stained) benthic foraminifera from the Rhône prodelta (Gulf of Lion, NW Mediterranean): Environmental controls on a river-dominated shelf
- Author
-
Goineau, A., Fontanier, C., Jorissen, F.J., Lansard, B., Buscail, R., Mouret, A., Kerhervé, P., Zaragosi, S., Ernoult, E., Artéro, C., Anschutz, P., Metzger, E., and Rabouille, C.
- Published
- 2011
- Full Text
- View/download PDF
4. Spatial distribution of live benthic foraminifera in the Rhône prodelta: Faunal response to a continental–marine organic matter gradient
- Author
-
Mojtahid, M., Jorissen, F., Lansard, B., Fontanier, C., Bombled, B., and Rabouille, C.
- Published
- 2009
- Full Text
- View/download PDF
5. The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?
- Author
-
Massicotte, P., Amon, R.M.W., Antoine, D., Archambault, P., Balzano, S., Bélanger, S., Benner, R., Boeuf, D., Bricaud, A., Bruyant, F., Chaillou, G., Chami, M., Charrière, B., Chen, J., Claustre, H., Coupel, P., Delsaut, N., Doxaran, D., Ehn, J., Fichot, C., Forget, M.-H., Fu, P., Gagnon, J., Garcia, N., Gasser, B., Ghiglione, J.-F., Gorsky, G., Gosselin, M., Gourvil, P., Gratton, Y., Guillot, P., Heipieper, Hermann-Josef, Heussner, S., Hooker, S.B., Huot, Y., Jeanthon, C., Jeffrey, W., Joux, F., Kawamura, K., Lansard, B., Leymarie, E., Link, H., Lovejoy, C., Marec, C., Marie, D., Martín, J., Massé, G., Matsuoka, A., McKague, V., Mignot, A., Miller, W.L., Miquel, J.-C., Mucci, A., Ono, K., Ortega-Retuerta, E., Panagiotopoulos, C., Papakyriakou, T., Picheral, M., Piepenburg, D., Prieur, L., Raimbault, P., Ras, J., Reynolds, R.A., Rochon, A., Rontani, J.-F., Schmechtig, C., Schmidt, S., Sempéré, R., Shen, Y., Song, G., Stramski, D., Tachibana, E., Thirouard, A., Tolosa, I., Tremblay, J.-E., Vaïtilingom, M., Vaulot, D., Vaultier, F., Volkman, J.K., Xie, H., Zheng, G., Babin, M., Massicotte, P., Amon, R.M.W., Antoine, D., Archambault, P., Balzano, S., Bélanger, S., Benner, R., Boeuf, D., Bricaud, A., Bruyant, F., Chaillou, G., Chami, M., Charrière, B., Chen, J., Claustre, H., Coupel, P., Delsaut, N., Doxaran, D., Ehn, J., Fichot, C., Forget, M.-H., Fu, P., Gagnon, J., Garcia, N., Gasser, B., Ghiglione, J.-F., Gorsky, G., Gosselin, M., Gourvil, P., Gratton, Y., Guillot, P., Heipieper, Hermann-Josef, Heussner, S., Hooker, S.B., Huot, Y., Jeanthon, C., Jeffrey, W., Joux, F., Kawamura, K., Lansard, B., Leymarie, E., Link, H., Lovejoy, C., Marec, C., Marie, D., Martín, J., Massé, G., Matsuoka, A., McKague, V., Mignot, A., Miller, W.L., Miquel, J.-C., Mucci, A., Ono, K., Ortega-Retuerta, E., Panagiotopoulos, C., Papakyriakou, T., Picheral, M., Piepenburg, D., Prieur, L., Raimbault, P., Ras, J., Reynolds, R.A., Rochon, A., Rontani, J.-F., Schmechtig, C., Schmidt, S., Sempéré, R., Shen, Y., Song, G., Stramski, D., Tachibana, E., Thirouard, A., Tolosa, I., Tremblay, J.-E., Vaïtilingom, M., Vaulot, D., Vaultier, F., Volkman, J.K., Xie, H., Zheng, G., and Babin, M.
- Abstract
The MALINA oceanographic campaign was conducted during summer 2009 to investigate the carbon stocks and the processes controlling the carbon fluxes in the Mackenzie River estuary and the Beaufort Sea. During the campaign, an extensive suite of physical, chemical and biological variables was measured across seven shelf–basin transects (south-north) to capture the meridional gradient between the estuary and the open ocean. Key variables such as temperature, absolute salinity, radiance, irradiance, nutrient concentrations, chlorophyll-a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, and carbon stocks and fluxes were routinely measured onboard the Canadian research icebreaker CCGS Amundsen and from a barge in shallow coastal areas or for sampling within broken ice fields. Here, we present the results of a joint effort to tidy and standardize the collected data sets that will facilitate their reuse in further studies of the changing Arctic Ocean. The dataset is available at https://doi.org/10.17882/75345 (Massicotte2020b).
- Published
- 2021
6. Live foraminifera from the open slope between Grand Rhône and Petit Rhône Canyons (Gulf of Lions, NW Mediterranean)
- Author
-
Fontanier, C., Jorissen, F.J., Lansard, B., Mouret, A., Buscail, R., Schmidt, S., Kerhervé, P., Buron, F., Zaragosi, S., Hunault, G., Ernoult, E., Artero, C., Anschutz, P., and Rabouille, C.
- Published
- 2008
- Full Text
- View/download PDF
7. Benthic foraminiferal dissolution index for marine sediments in the Svalabard (Storfjorden)
- Author
-
Mojtahid, Meryem, A., Jouini, Howa, Hélène, Lansard, B, Michel, Elisabeth, Peron, Olivier, Baltzer, Agnès, Nardelli, Maria Pia, Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN), Université de Nantes (UN)-Université de Nantes (UN), Bio-Indicateurs Actuels et Fossiles (BIAF), Université d'Angers (UA), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN)
- Subjects
[SDE]Environmental Sciences ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
8. Heavy silicon isotopic composition of silicic acid and biogenic silica in Arctic waters over the Beaufort shelf and the Canada Basin
- Author
-
Varela, D., Brzezinski, M., Beucher, C., Jones, J., Giesbrecht, K., Lansard, B., Mucci, A., British Columbia, School of Earth and Ocean Sciences [Victoria] (SEOS), University of Victoria [Canada] (UVIC), University of California [Santa Barbara] (UCSB), University of California, Department of Ecology, Evolution and Marine Biology [Santa Barbara] (EEMB), University of California-University of California, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Océan et Interfaces (OCEANIS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Research Centre on the Dynamics of the Earth System (GEOTOP), Concordia University [Montreal]-École Polytechnique de Montréal (EPM)-McGill University = Université McGill [Montréal, Canada]-Université de Montréal (UdeM)-Université du Québec en Abitibi-Témiscamingue (UQAT)-Université du Québec à Rimouski (UQAR)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), University of California [Santa Barbara] (UC Santa Barbara), University of California (UC), University of California (UC)-University of California (UC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and École Polytechnique de Montréal (EPM)-McGill University = Université McGill [Montréal, Canada]-Université de Montréal (UdeM)-Université du Québec en Abitibi-Témiscamingue (UQAT)-Université du Québec à Rimouski (UQAR)-Concordia University [Montreal]-Université du Québec à Montréal = University of Québec in Montréal (UQAM)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; The silicon isotopic composition of silicic acid (δ 30 Si(OH) 4) and biogenic silica (δ 30 Si-bSiO 2) were measured for the first time in marine Arctic waters from the Mackenzie River delta to the deep Canada Basin in the late summer of 2009. In the upper 100 m of the water column, δ 30 Si(OH) 4 signals (+1.82‰ to +3.08‰) were negatively correlated with the relative contribution of Mackenzie River water. The biogenic Si isotope fractionation factor estimated using an open system model, 30 ε = À0.97 ± 0.17‰, agrees well with laboratory and global-ocean estimates. Nevertheless, the δ 30 Si dynamics of this region may be better represented by closed system isotope models that yield lower values of 30 ε, between À0.33‰ and À0.41‰, depending on how the contribution of sea-ice diatoms is incorporated. In the upper 400 m, δ 30 Si-bSiO 2 values were among the heaviest ever measured in marine suspended bSiO 2 (+2.03‰ to +3.51‰). A positive correlation between δ 30 Si-bSiO 2 and sea-ice cover implies that heavy signals can result from isotopically heavy sea-ice diatoms introduced to pelagic assemblages. Below the surface bSiO 2 production zone, the δ 30 Si(OH) 4 distribution followed that of major water masses. Vertical δ 30 Si(OH) 4 profiles showed a minimum (average of +1.84 ± 0.10‰) in the upper halocline (125-200 m) composed of modified Pacific water and heavier average values (+2.04 ± 0.11‰) in Atlantic water (300-500 m deep). In the Canada Basin Deep Water (below 2000 m), δ 30 Si(OH) 4 averaged +1.88 ± 0.12‰, which represents the most positive value ever measured anywhere in the deep ocean. Since most Si(OH) 4 enters the Arctic from shallow depths in the Atlantic Ocean, heavy deep Arctic δ 30 Si(OH) 4 signals likely reflect the influx of relatively heavy intermediate Atlantic waters. A box model simulation of the global marine δ 30 Si(OH) 4 distribution successfully reproduced the observed patterns, with the δ 30 Si(OH) 4 of the simulated deep Arctic Ocean being the heaviest of all deep-ocean basins.
- Published
- 2016
9. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air–sea CO2 fluxes
- Author
-
Forest, A., Coupel, P., Else, B., Nahavandian, S., Lansard, B., Raimbault, P., Papakyriakou, T., Gratton, Y., Fortier, L., Tremblay, J. -É., Babin, M., Université Laval [Québec] (ULaval), University of Manitoba [Winnipeg], Centre Eau Terre Environnement [Québec] (INRS - ETE), Institut National de la Recherche Scientifique [Québec] (INRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Océan et Interfaces (OCEANIS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'océanographie de Villefranche (LOV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN), Centre d'océanologie de Marseille (COM), Université de la Méditerranée - Aix-Marseille 2-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
lcsh:Geology ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,lcsh:QH501-531 ,[SDU]Sciences of the Universe [physics] ,lcsh:QH540-549.5 ,lcsh:QE1-996.5 ,lcsh:Life ,Earth Science ,lcsh:Ecology ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography - Abstract
International audience; The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the organic carbon delivery by river inputs (~ 241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the whole area and as much as ~ 72.0% seaward of the shelf break. In the upper 100 m, bacteria dominated (54%) total community respiration (~ 250 mg C m-2 d-1), whereas protozoans, metazoans, and benthos, contributed to 24, 10, and 12%, respectively. The range of production-to-biomass ratios of bacteria was wide (1-27% d-1), while we estimated a narrower range for protozoans (6-11% d-1) and metazoans (1-3% d-1). Over the shelf, benthic biomass was twofold (~ 5.9 g C m-2) the biomass of pelagic heterotrophs (~ 2.4 g C m-2), in accord with high vertical carbon fluxes on the shelf (956 ± 129 mg C m-2 d-1). Threshold PP (PP at which NCP becomes positive) in the surface layer oscillated from 20 to 152 mg C m-2 d-1, with a pattern from low-to-high values as the distance from the Mackenzie River decreased. We conclude that (1) climate change is exacerbating the already extreme biological gradient across the Beaufort shelf-basin system; (2) the Mackenzie Shelf acts as a weak sink for atmospheric CO2, suggesting that PP might exceed the respiration of terrigenous and marine organic matter in the surface layer; and (3) shelf break upwelling can transfer CO2 to the atmosphere, but CO2 outgassing can be attenuated if nutrients brought also by upwelling support diatom production. Our study underscores that cross-shelf exchange of waters, nutrients and particles is a key mechanism that needs to be properly monitored as the Arctic transits to a new state.
- Published
- 2014
10. Use of Ra isotopes to deduce rapid transfer of sediment-derived inputs off Kerguelen
- Author
-
Sanial, V., Van Beek, P., Lansard, B., Souhaut, M., Kestenare, E., D'Ovidio, F., Zhou, M., Blain, S., Sanial, V., Van Beek, P., Lansard, B., Souhaut, M., Kestenare, E., D'Ovidio, F., Zhou, M., and Blain, S.
- Abstract
The Southern Ocean is known to be the largest high-nutrient, low-chlorophyll (HNLC) region of the global ocean due to iron limitation. However, a large phytoplankton bloom develops annually downstream of the Kerguelen Islands, a bloom which is sustained partly by iron released from the sediments deposited onto the shelves. In the framework of the KEOPS-2 project, we used radium isotopes (Ra-224, T-1/2 = 3.66 d; Ra-223, T-1/2 = 11.4 d; Ra-228, T-1/2 = 5.75 yr) to provide information on the origin of iron fertilization and on the timescales of the transfer of sedimentderived inputs (including iron and other micronutrients) towards offshore waters. Significant Ra-224 and Ra-223 activities were found in the near vicinity of the Kerguelen Islands, in agreement with the short half-lives of these isotopes. Significant Ra-224 and Ra-223 activities were also detected up to 200 km downstream of the islands and more unexpectedly in offshore waters south of the polar front. These observations thus clearly indicate (i) that the sediment-derived inputs are rapidly transferred towards offshore waters (on timescales on the order of several days up to several weeks) and (ii) that the polar front is not a physical barrier for the chemical elements released from the sediments of the Kerguelen Plateau. The Ra data set suggests that iron and other micronutrients released by the shelves of the Kerguelen Islands may contribute to fueling the phytoplankton bloom downstream of the islands, despite the presence of the polar front. However, the heterogeneous distribution of the Ra-224 and Ra-223 activities in surface waters suggests that this supply across the front is not a continuous process but rather a process that is highly variable in space and time.
- Published
- 2015
- Full Text
- View/download PDF
11. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes
- Author
-
Forest, A., Coupel, P., Else, B., Nahavandian, S., Lansard, B., Raimbault, Patrick, Papakyriakou, T., Gratton, Y., Fortier, L., Tremblay, J.-É., Babin, M., Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval [Québec] (ULaval)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut méditerranéen d'océanologie (MIO), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)
- Subjects
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
International audience; The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally
- Published
- 2013
12. Further Observations Of A Decreasing Atmospheric Co2 Uptake Capacity In The Canada Basin (Arctic Ocean) Due To Sea Ice Loss
- Author
-
Else, B.G.T., Galley, R.J., Lansard, B., Barber, D.G., Brown, K., Miller, L.A., Mucci, A., Papakyriakou, T.N., Tremblay, J.-È., Rysgaard, Søren, CEOS, University of Manitoba [Winnipeg], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Océan et Interfaces (OCEANIS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Department of Earth and Ocean Sciences [Vancouver] (EOS), University of British Columbia (UBC), Institute of Ocean Sciences, Fisheries and Oceans Canada, GEOTOP and Department of Earth and Planetary Sciences, McGill University = Université McGill [Montréal, Canada], Department de Biologie, Université Laval [Québec] (ULaval), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Laval, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,FRESH-WATER ,SEAWATER ,CONSTANTS ,CARBONIC-ACID ,DISSOCIATION ,ACIDIFICATION - Abstract
ISI Document Delivery No.: 148AY Times Cited: 1 Cited Reference Count: 34 Cited References: AMAP, 2011, SNOW WAT IC PERM ARC Anderson LG, 2010, DEEP-SEA RES PT I, V57, P869, DOI 10.1016/j.dsr.2010.03.012 Anderson LG, 2004, J GEOPHYS RES-OCEANS, V109, DOI [10.1029/2003JC002120, 10.1029/2003JC001773] Arrigo KR, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL035028 Barber DG, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL041434 Bates NR, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2006GL027028 Bates NR, 2009, BIOGEOSCIENCES, V6, P2433 Cai WJ, 2010, SCIENCE, V329, P556, DOI 10.1126/science.1189338 DICKSON AG, 1987, DEEP-SEA RES, V34, P1733, DOI 10.1016/0198-0149(87)90021-5 Else B. G. T., 2013, GLOBAL BIOG IN PRESS Else BGT, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2010JC006760 Else BGT, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2012JC007901 Else BGT, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007346 Galley R. J., 2013, ARCTIC, V66 Hutchings JK, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007182 Jutterstrom S, 2010, MAR CHEM, V122, P96, DOI 10.1016/j.marchem.2010.07.002 Lansard B, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007299 Lewis E., 1998, ORNLCDIAC105 US DEP Macdonald RW, 2002, DEEP-SEA RES PT I, V49, P1769, DOI 10.1016/S0967-0637(02)00097-3 Mathis JT, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL051574 McPhee MG, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL037525 MEHRBACH C, 1973, LIMNOL OCEANOGR, V18, P897 Miller LA, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2009JC006058 Morison J, 2012, NATURE, V481, P66, DOI 10.1038/nature10705 Mucci A, 2010, J GEOPHYS RES-OCEANS, V115, DOI 10.1029/2009JC005330 Pierrot D, 2009, DEEP-SEA RES PT II, V56, P512, DOI 10.1016/j.dsr2.2008.12.005 Rysgaard S, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC005088 Shadwick EH, 2011, LIMNOL OCEANOGR, V56, P303, DOI 10.4319/lo.2011.56.1.0303 Toole JM, 2010, J GEOPHYS RES-OCEANS, V115, DOI 10.1029/2009JC005660 Tremblay JE, 2011, GEOPHYS RES LETT, V38, DOI 10.1029/2011GL048825 Tremblay JE, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004547 Wanninkhof R, 2002, GEOPH MONOG SERIES, V127, P351 Yamamoto-Kawai M, 2009, SCIENCE, V326, P1098, DOI 10.1126/science.1174190 Yamamoto-Kawai M, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC005000 Else, Brent G. T. Galley, R. J. Lansard, B. Barber, D. G. Brown, K. Miller, L. A. Mucci, A. Papakyriakou, T. N. Tremblay, J. -E. Rysgaard, S. NCE; NSERC; CIHR; SSHRC; Canada Excellence Research Chair in Arctic Geomicrobiology and Climate Change; Centre for Earth Observation Science at the University of Manitoba Authors of this paper are members of ArcticNet (funded in part by NCE, NSERC, CIHR, and SSHRC) and the Arctic Science Partnership. Additional support was provided through the Canada Excellence Research Chair in Arctic Geomicrobiology and Climate Change, and from the Centre for Earth Observation Science at the University of Manitoba. Many thanks are owed to the captains, crew, and research technicians onboard the CCGS Amundsen. 1 AMER GEOPHYSICAL UNION WASHINGTON GEOPHYS RES LETT; Using data collected in 2009, we evaluated the potential for the southeastern Canada Basin (Arctic Ocean) to act as an atmospheric CO2 sink under the summertime ice-free conditions expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high pCO(2sw) (similar to 290-320 mu atm), considering that surface water temperatures were low and the influence of ice melt was strong. A simple model simulating melt of the remaining ice and exposure of the surface water for 100 days revealed a weak capacity for atmospheric CO2 uptake (mean flux: -2.4mmol m(-2) d(-1)), due largely to warming of the shallow mixed layer. Our results confirm a previous finding that the Canada Basin is not a significant sink of atmospheric CO2 under summertime ice-free conditions and that increased ventilation of the surface mixed layer due to sea ice loss is weakening the sink even further.
- Published
- 2013
13. Seasonal variability of water mass distribution in the southeastern Beaufort Sea determined by total alkalinity and delta O-18
- Author
-
Lansard, B., Mucci, A., Miller, L. A., Macdonald, R. W., Gratton, Y., GEOMAR LEGOS, Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), GEOTOP and Department of Earth and Planetary Sciences, McGill University = Université McGill [Montréal, Canada], Centre for Ocean Climate Chemistry, Institute of Ocean Sciences, Centre Eau Terre Environnement [Québec] (INRS - ETE), Institut National de la Recherche Scientifique [Québec] (INRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
OXYGEN-ISOTOPE ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,MACKENZIE SHELF ESTUARY ,CLIMATE-CHANGE ,ARCTIC-OCEAN ,CANADA BASIN ,SURFACE-WATER ,CAPE BATHURST ,CARBONATE CHEMISTRY DYNAMICS ,ICE COVER ,PACIFIC WATER - Abstract
ISI Document Delivery No.: 903QF Times Cited: 10 Cited Reference Count: 120 Cited References: AAGAARD K, 1981, DEEP-SEA RES, V28, P529, DOI 10.1016/0198-0149(81)90115-1 Alkire MB, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2005JC003446 ANDERSON LG, 1990, J GEOPHYS RES-OCEANS, V95, P1703, DOI 10.1029/JC095iC02p01703 Anderson LG, 2001, POLAR RES, V20, P225, DOI 10.1111/j.1751-8369.2001.tb00060.x Anderson LG, 2004, J GEOPHYS RES-OCEANS, V109, DOI [10.1029/2003JC002120, 10.1029/2003JC001773] [Anonymous], 2008, CLIM CHANG 2007 SYNT Arrigo KR, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2003GL018978 Arrigo KR, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL035028 Barber DG, 2004, J GEOPHYS RES-OCEANS, V109, DOI 10.1029/2003JC002027 Bates NR, 2009, BIOGEOSCIENCES, V6, P2433 Bauch D, 2005, GLOBAL PLANET CHANGE, V48, P165, DOI 10.1016/j.gloplacha.2004.12.011 Benner R, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2003GL019251 Bidleman TF, 2007, ENVIRON SCI TECHNOL, V41, P2688, DOI 10.1021/es062375b BYRNE RH, 1987, ANAL CHEM, V59, P1479, DOI 10.1021/ac00137a025 Cai WJ, 2010, SCIENCE, V329, P556, DOI 10.1126/science.1189338 CARMACK EC, 1989, J GEOPHYS RES-OCEANS, V94, P18043, DOI 10.1029/JC094iC12p18043 Carmack EC, 2004, MAR ECOL PROG SER, V277, P37, DOI 10.3354/meps277037 Carmack EC, 2002, ARCTIC, V55, P29 CLAYTON TD, 1993, DEEP-SEA RES PT I, V40, P2115, DOI 10.1016/0967-0637(93)90048-8 Cooper LW, 1997, J GEOPHYS RES-OCEANS, V102, P12563, DOI 10.1029/97JC00015 Cooper LW, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL035007 Cooper LW, 2005, J GEOPHYS RES-BIOGEO, V110, DOI 10.1029/2005JG000031 Delille B, 2007, LIMNOL OCEANOGR, V52, P1367, DOI 10.4319/lo.2007.52.4.1367 Dickson A. G., 1994, ORNLCDIAC74 DEP EN DICKSON AG, 1990, J CHEM THERMODYN, V22, P113, DOI 10.1016/0021-9614(90)90074-Z DICKSON AG, 1987, DEEP-SEA RES, V34, P1733, DOI 10.1016/0198-0149(87)90021-5 Eicken H, 2002, J GEOPHYS RES-OCEANS, V107, DOI 10.1029/2000JC000583 Ekwurzel B, 2001, J GEOPHYS RES-OCEANS, V106, P9075, DOI 10.1029/1999JC000024 Else BGT, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2010JC006760 EPSTEIN S, 1953, GEOCHIM COSMOCHIM AC, V4, P213, DOI 10.1016/0016-7037(53)90051-9 Fransson A, 2009, CONT SHELF RES, V29, P1317, DOI 10.1016/j.csr.2009.03.008 Gibson JAE, 1999, MAR CHEM, V66, P187, DOI 10.1016/S0304-4203(99)00040-7 Grasshoff K., 1983, METHODS SEAWATER ANA Gratton Y., 2006, 2006 GEN M CAN ARCT Guay CK, 1997, DEEP-SEA RES PT II, V44, P1543, DOI 10.1016/S0967-0645(97)00066-0 Guay CKH, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC005099 Guo LD, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2007GL030689 Howell SEL, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL037681 Jeansson E, 2008, PROG OCEANOGR, V78, P12, DOI 10.1016/j.pocean.2007.08.031 JOHNSON KM, 1993, MAR CHEM, V44, P167, DOI 10.1016/0304-4203(93)90201-X JONES EP, 1981, J GEOPHYS RES-OC ATM, V86, P1041, DOI 10.1029/JC086iC11p11041 JONES EP, 1986, J GEOPHYS RES-OCEANS, V91, P759, DOI 10.1029/JC091iC09p10759 Jones EP, 2003, J GEOPHYS RES-OCEANS, V108, DOI 10.1029/2001JC001141 Jones EP, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004124 Jones EP, 1998, GEOPHYS RES LETT, V25, P765, DOI 10.1029/98GL00464 Karcher MJ, 2002, J GEOPHYS RES-OCEANS, V107, DOI 10.1029/2000JC000530 Karstensen J., 2005, Journal of Geophsical Research-Part C-Oceans, V110, DOI 10.1029/2004JC002510 Karstensen J., 2006, OMP OPTIMUM MULTIPAR Keeling RF, 2008, ATMOSPHERIC CO2 RECO KROUSE HR, 1971, CAN J EARTH SCI, V8, P1107 Leffanue H, 2004, J MARINE SYST, V48, P3, DOI 10.1016/j.jmarsys.2003.07.004 LEHMANN M, 1991, J GLACIOL, V37, P23 Lewis E., 1998, ORNLCDIAC105 US DEP Macdonald R. W., 2006, HDB ENV CHEM, P91 Macdonald RW, 2002, DEEP-SEA RES PT I, V49, P1769, DOI 10.1016/S0967-0637(02)00097-3 Macdonald RW, 1999, GEOPHYS RES LETT, V26, P2223, DOI 10.1029/1999GL900508 MACDONALD RW, 1995, J GEOPHYS RES-OCEANS, V100, P895, DOI 10.1029/94JC02700 MACDONALD RW, 1989, J GEOPHYS RES-OCEANS, V94, P18057, DOI 10.1029/JC094iC12p18057 Macdonald RW, 1999, MAR CHEM, V65, P3, DOI 10.1016/S0304-4203(99)00007-9 MACDONALD RW, 1987, J GEOPHYS RES-OCEANS, V92, P2939, DOI 10.1029/JC092iC03p02939 MACKAS DL, 1987, J GEOPHYS RES-OCEANS, V92, P2907, DOI 10.1029/JC092iC03p02907 Mathis JT, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003899 McGuire AD, 2009, ECOL MONOGR, V79, P523, DOI 10.1890/08-2025.1 McLaughlin FA, 2004, DEEP-SEA RES PT I, V51, P107, DOI 10.1016/j.dsr.2003.09.010 McLaughlin FA, 1996, J GEOPHYS RES-OCEANS, V101, P1183, DOI 10.1029/95JC02634 MEHRBACH C, 1973, LIMNOL OCEANOGR, V18, P897 MELLING H, 1993, CONT SHELF RES, V13, P1123, DOI 10.1016/0278-4343(93)90045-Y MELLING H, 1995, CONT SHELF RES, V15, P89, DOI 10.1016/0278-4343(94)P1814-R Miller LA, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2009JC006058 MILLERO FJ, 1993, MAR CHEM, V44, P143, DOI 10.1016/0304-4203(93)90199-X Millot R, 2003, GEOCHIM COSMOCHIM AC, V67, P1305, DOI 10.1016/S0016-7037(02)01207-3 Mucci A, 2010, J GEOPHYS RES-OCEANS, V115, DOI 10.1029/2009JC005330 Mundy CJ, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL038837 Newton R, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004111 Nilsen F, 2008, CONT SHELF RES, V28, P1838, DOI 10.1016/j.csr.2008.04.015 Nomura D, 2006, TELLUS B, V58, P418, DOI 10.1111/j.1600-0889.2006.00204.x OSTLUND HG, 1984, J GEOPHYS RES-OCEANS, V89, P6373, DOI 10.1029/JC089iC04p06373 Overpeck J., 2005, EOS, V86, P312, DOI DOI 10.1029/2005EO340001 Overpeck JT, 2005, EOS, V86, P309, DOI [10.1029/2005EO340001, DOI 10.1029/2005E0340001, DOI 10.1029/2005EO340001] Papadimitriou S, 2004, GEOCHIM COSMOCHIM AC, V68, P1749, DOI 10.1016/j.gca.2003.07.004 Pickart RS, 2004, J GEOPHYS RES-OCEANS, V109, DOI 10.1029/2003JC001912 Pickart RS, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC005009 Pipko II, 2002, PROG OCEANOGR, V55, P77, DOI 10.1016/S0079-6611(02)00071-X Retamal L, 2008, POLAR BIOL, V31, P363, DOI 10.1007/s00300-007-0365-0 ROBERTBALDO GL, 1985, ANAL CHEM, V57, P2564, DOI 10.1021/ac00290a030 Rudels B, 1996, J GEOPHYS RES-OCEANS, V101, P8807, DOI 10.1029/96JC00143 Rudels B, 2004, POLAR RES, V23, P181, DOI 10.1111/j.1751-8369.2004.tb00007.x Rysgaard S, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003572 Schlitzer R., 2009, OCEAN DATA VIEW Schlosser P, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL013135 Semiletov IP, 2007, J MARINE SYST, V66, P204, DOI 10.1016/j.jmarsys.2006.05.012 Serreze MC, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2005JC003424 Serreze MC, 2007, SCIENCE, V315, P1533, DOI 10.1126/science.1139426 Shadwick E. H., 2009, BIOGEOSCI DISCUSS, V6, P971, DOI [10.5194/bgd-6-971-2009, DOI 10.5194/BGD-6-971-2009] Shadwick EH, 2011, LIMNOL OCEANOGR, V56, P303, DOI 10.4319/lo.2011.56.1.0303 Shadwick EH, 2011, CONT SHELF RES, V31, P806, DOI 10.1016/j.csr.2011.01.014 Shaw WJ, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC004991 Shcherbina AY, 2003, SCIENCE, V302, P1952, DOI 10.1126/science.1088692 Sherr BF, 2003, DEEP-SEA RES PT I, V50, P529, DOI 10.1016/S0967-0637(03)00030-X Shimada K, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2005GL025624 Skogseth R, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004452 Spall MA, 2008, J PHYS OCEANOGR, V38, P1644, DOI 10.1175/2007JPO3829.1 Stroeve JC, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2004GL021810 Symon C., 2005, ARCTIC CLIMATE IMPAC Taylor JR, 2003, J GEOPHYS RES-OCEANS, V108, DOI 10.1029/2002JC001635 Telang S. A., 1991, BIOGEOCHEMISTRY MAJO, P75 Thomas H, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2011JC007120 Timmermans ML, 2008, J PHYS OCEANOGR, V38, P133, DOI 10.1175/2007JPO3782.1 TOMCZAK M, 1989, J GEOPHYS RES-OCEANS, V94, P16141, DOI 10.1029/JC094iC11p16141 Tremblay JE, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004547 Vallieres C, 2008, J MARINE SYST, V74, P756, DOI 10.1016/j.jmarsys.2007.12.002 White D, 2007, J GEOPHYS RES-BIOGEO, V112, DOI 10.1029/2006JG000353 Williams WJ, 2006, CONT SHELF RES, V26, P2352, DOI 10.1016/j.csr.2006.06.012 Williams WJ, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2006JC003591 Williams WJ, 2008, J MAR RES, V66, P645 Woodgate RA, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2006GL026931 Yamamoto-Kawai M, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2006JC003858 Yamamoto-Kawai M, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC005000 Yamamoto-Kawai M, 2005, J GEOPHYS RES-OCEANS, V110, DOI 10.1029/2004JC002793 Yi Y, 2010, J HYDROL, V383, P223, DOI 10.1016/j.jhydrol.2009.12.038 Lansard, Bruno Mucci, Alfonso Miller, Lisa A. Macdonald, Robie W. Gratton, Yves Macdonald, Robie/A-7896-2012 Macdonald, Robie/0000-0002-1141-8520 CCGS Amundsen; CASES (Canadian Arctic Shelf Exchange Study) NSERC network (Natural Sciences and Engineering Research Council of Canada); Canadian Fund for Innovation; Canadian Coast Guard; Department of Fisheries and Oceans Canada; NSERC Discovery We thank the officers and crew of the CCGS Amundsen for their support and dedication to the CASES expedition. We are indebted to Constance Guignard, Nes Sutherland, Pascale Collin, Simon Belanger, Jens Ehn, Mike Arychuk and Owen Owens for their care and perseverance in collecting and analyzing the TA, TIC and pH samples at sea. Thanks must go to the CTD data acquisition group for these basic but critical measurements and the calibration of the various probes. Most of the plots and maps in this study were created with the ODV Software [Schlitzer, 2009]. We also thank A. Proshutinsky and two anonymous reviewers who provided constructive comments that helped to improve our manuscript. This study was funded through the CASES (Canadian Arctic Shelf Exchange Study) NSERC network (Natural Sciences and Engineering Research Council of Canada) and a Canadian Fund for Innovation grant to support the upgrade and operation of the CCGS Amundsen. Additional financial contributions were provided by the Canadian Coast Guard, the Strategic Science Fund of the Department of Fisheries and Oceans Canada, and NSERC Discovery grants to A. Mucci and Y. Gratton. 10 AMER GEOPHYSICAL UNION WASHINGTON J GEOPHYS RES-OCEANS; We examined the seasonal variability of water mass distributions in the southeastern Beaufort Sea from data collected between September 2003 and August 2004. Salinity, total alkalinity (TA) and isotopic composition (delta O-18) of seawater were used together as tracers of freshwater input, i.e., meteoric water and sea ice meltwater. We used an optimum multiparameter analysis to identify the different water masses, including the Mackenzie River, sea ice melt (SIM), winter polar mixed layer (PML), upper halocline water (UHW) with core salinity of 33.1 psu (Pacific origin) and Atlantic Water. Computed values of CO2 fugacity in seawater (fCO(2)-sw) show that the surface mixed layer (SML) remains mostly undersaturated (328 +/- 55 mu atm, n = 552) with respect to the average atmospheric CO2 concentration (380 +/- 5 mu atm) over the study period. The influence of the Mackenzie River (fCO(2-SW) > 500 mu atm) was relatively small in the southeastern Beaufort Sea, and significant fractions were only observed on the inner Mackenzie Shelf. The contribution of sea ice melt (fCO(2-SW) < 300 mu atm) to the SML could reach 30% beyond the shelf break and close to the ice pack in autumn. The density of the PML increased through the winter due to cooling and brine rejection. The winter PML reached a maximum depth of 70 m in late April. The UHW (fCO(2-SW) > 600 mu atm) was usually located between 120 and 180 m depth, but could contribute to the SML during wind-driven upwelling events, in summer and autumn, and during brine-driven eddies, in winter.
- Published
- 2012
14. Barium and Carbon fluxes in the Canadian Arctic Archipelago
- Author
-
Thomas, H., Shadwick, E., DeHairs, F., Lansard, B., Navez, J., Gratton, Y., Prowe, F., Mucci, A., Chierici, M., Fransson, A., Papakyriakou, T., Sternberg, E., and Miller, L.A.
- Published
- 2011
15. Use of Ra isotopes to deduce rapid transfer of sediment-derived inputs off Kerguelen
- Author
-
Sanial, V., primary, van Beek, P., additional, Lansard, B., additional, Souhaut, M., additional, Kestenare, E., additional, d'Ovidio, F., additional, Zhou, M., additional, and Blain, S., additional
- Published
- 2015
- Full Text
- View/download PDF
16. An 'Integrated sediment distruber' (ISD) to study the impact of repeated physical perturbations on sediment geochemistry and the small benthic biota
- Author
-
Soltwedel, T., Lansard, B., Gilbert, F., Hasemann, Ch., Bell, E., Sablotny, B., Eagle, M., Kershaw, P., Rabouille, Christophe, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Dunstaffnage Marine Laboratory, Scottish Association for Marine Science (SAMS), Potsdam University, Am Neuen Palais 10, Centre for Environment, Fisheries & aquaculture science, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2008
17. New technologies to study effects of physical disturbances at the sediment-water interface: the development of an Integrated Sediment Disturber (ISD)
- Author
-
Hasemann C. (1), Fiesoletti F. (2), Lansard B. (3), Sablotny B. (1), Spagnoli F. (2), and Soltwedel T. (1)
- Subjects
benthic communities ,Integrated Sediment Disturber (ISD) - Published
- 2007
18. Spatial and temporal variations of plutonium isotopes (Pu-238 and Pu-239,Pu-240) in sediments off the Rhone River mouth (NW Mediterranean)
- Author
-
Lansard, B., Charmasson, S., Gasco, C., Anton, M. P., GRENZ, Christian, Arnaud, M., Laboratoire d'étude radioécologique du milieu continental et marin (LERCM), Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Direction de l'Environnement et de l'Intervention, Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN), Laboratoire d'Etudes Radioécologiques des milieux Continental et marin (IRSN/PRP-ENV/SESURE/LERCM), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,SEA ,GULF ,plutonium ,INVENTORY ,marine sediment ,ARTIFICIAL RADIONUCLIDES ,SOUTHERN FRANCE ,BIOGEOCHEMICAL IMPLICATIONS ,CONTINENTAL-MARGIN ,LIONS ,PLUME ,Rhone River ,DISPERSION ,Gulf of Lions ,Mediterranean Sea ,contaminant dispersion - Abstract
The dispersion and fate of the Rhone River inputs to the Gulf of Lions (Northwestern Mediterranean Sea) have been studied through the spatial and temporal distributions of plutonium isotopes in continental shelf sediments. Plutonium isotopes (Pu-238 and Pu-239,Pu-240) are appropriate tracers to follow the dispersion of particulate matter due both to their high affinity for particles and their long half-lives. In the Rhone River valley, plutonium isotopes originate from both the weathering of the catchment basin contaminated by global atmospheric fallout, and the liquid effluents released from the Marcoule reprocessing plant since 1961.;This work presents a first detailed study on Pu-238 and Pu-239,Pu-240 distributions in sediments from the Rhone prodelta to the adjacent continental shelf, since the decommissioning of Marcoule in 1997. The vertical distribution of Pu isotopes has been analysed in a 4.75 in long core sampled in 2001 at the Rhone mouth. Despite this length, plutonium is found at the last 10 cm, manifesting the high sedimentation rate of the prodeltaic area and its ability for trapping fine-grained sediments and associated contaminants. The highest Pu-238 and Pu-239,Pu-240 concentrations reached 1.26 and 5.97 Bq kg(-1) respectively and were found within the layer 280-290 cm. The Pu-238/Pu-239,Pu-240 activity ratios (AR) demonstrated an efficient and huge trapping of the Pu isotopes derived from Marcoule. The fresh sediments, located on the top of the core, show lower plutonium activity concentrations and lower Pu-238/Pu-239,Pu-240 ratios. This decrease is in close relation with the shut down of the Marcoule reprocessing plant in 1997.;In 2001, plutonium isotopes were also analysed in 21 surface sediments located offshore and concentrations ranged from 0.03 to 0.17 Bq kg(-1) for Pu-238 and from 0.33 to 1.72 Bq kg(-1) for Pu-239,24(0). The Pu-238/Pu-239,Pu-240 AR ranged from 0.24 close to the river mouth to 0.06 southwards, indicating the decreasing influence of the Marcoule releases (global fallout AR 0.03-0.05 and Marcoule AR 0.30). This is in good agreement with the main direction spread of the Rhone River plume and the bottom current. This dataset has been compared to those obtained in the same area in 1984 and 1990 in order to follow the time trend in Pit concentrations. This comparison highlights the decrease with time in plutonium concentrations close to the Rhone River mouth, but further away this reduction is not so evident. (c) 2007 Elsevier B.V. All rights reserved.
- Published
- 2007
19. Use of Ra isotopes to deduce rapid transfer of sediment-derived inputs off Kerguelen
- Author
-
Sanial, V., primary, van Beek, P., additional, Lansard, B., additional, Souhaut, M., additional, Kestenare, E., additional, d'Ovidio, F., additional, Zhou, M., additional, and Blain, S., additional
- Published
- 2014
- Full Text
- View/download PDF
20. Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf
- Author
-
Tremblay, J.-É., primary, Raimbault, P., additional, Garcia, N., additional, Lansard, B., additional, Babin, M., additional, and Gagnon, J., additional
- Published
- 2014
- Full Text
- View/download PDF
21. The fate of river organic carbon in coastal areas : A study in the Rhone River delta using multiple isotopic (delta C-13, Delta C-14) and organic tracers
- Author
-
Cathalot, C., Rabouille, C., Tisnerat-Laborde, N., Toussaint, F., Kerherve, P., Buscail, R., Loftis, K., Sun, M. -Y, Tronczynski, J., Azoury, S., Lansard, B., Treignier, C., Pastor, L., Tesi, Tommaso, Cathalot, C., Rabouille, C., Tisnerat-Laborde, N., Toussaint, F., Kerherve, P., Buscail, R., Loftis, K., Sun, M. -Y, Tronczynski, J., Azoury, S., Lansard, B., Treignier, C., Pastor, L., and Tesi, Tommaso
- Abstract
A significant fraction of the global carbon flux to the ocean occurs in River-dominated Ocean Margins (RiOMar) although large uncertainties remain in the cycle of organic matter (OM) in these systems. In particular, the OM sources and residence time have not been well clarified. Surface (0-1 cm) and sub-surface (3-4 cm) sediments and water column particles (bottom and intermediate depth) from the Rhone River delta system were collected in June 2005 and in April 2007 for a multi-proxy study. Lignin phenols, black carbon (BC), proto-kerogen/BC mixture, polycyclic aromatic hydrocarbons (PAHs), carbon stable isotope (delta C-13(OC)), and radiocarbon measurements (delta C-14(OC)) were carried out to characterize the source of sedimentary organic material and to address degradation and transport processes. The bulk OM in the prodelta sediment appears to have a predominantly modern terrigenous origin with a significant contribution of modern vascular C-3 plant detritus (Delta C-14(OC) = 27.9 parts per thousand, delta C-13(OC) = -27.4 parts per thousand). In contrast, the adjacent continental shelf, below the river plume, seems to be dominated by aged OM (Delta C-14(OC) = -400 parts per thousand, delta C-13(OC) = -24.2 parts per thousand), and shows no evidence of dilution and/or replacement by freshly produced marine carbon. Our data suggest an important contribution of black carbon (50% of OC) in the continental shelf sediments. Selective degradation processes occur along the main dispersal sediment system, promoting the loss of a modern terrestrial OM but also proto-kerogen-like OM. In addition, we hypothesize that during the transport across the shelf, a long term resuspension/deposition loop induces efficient long term degradation processes able to rework such refractory-like material until the OC is protected by the mineral matrix of particles., AuthorCount:14;Funding Agencies:French National Research Agency ANR-06-VULN-001; French INSU-EC2CO program RiOMar.fr; MISTRALS/Mermex programme; CEA
- Published
- 2013
- Full Text
- View/download PDF
22. Microhabitat selection of benthic foraminifera in sediments off the Rhone River mouth (NW Mediterranean)
- Author
-
Mojtahid, M., Jorissen, F., Lansard, B., Fontanier, C., Mojtahid, M., Jorissen, F., Lansard, B., and Fontanier, C.
- Published
- 2010
23. Organic matter budget in the Southeast Atlantic continental margin close to the Congo Canyon: In situ measurements of sediment oxygen consumption
- Author
-
Rabouille, C., Caprais, Jean-claude, Lansard, B., Crassous, Philippe, Dedieu, K., Reyss, J. L., Khripounoff, Alexis, Rabouille, C., Caprais, Jean-claude, Lansard, B., Crassous, Philippe, Dedieu, K., Reyss, J. L., and Khripounoff, Alexis
- Abstract
A study of organic carbon mineralization from the Congo continental shelf to the abyssal plain through the Congo submarine channel and Angola Margin was undertaken using in situ measurements of sediment oxygen demand as a tracer of benthic carbon recycling. Two measurement techniques were coupled on a single autonomous platform: in situ benthic chambers and microelectrodes, which provided total and diffusive oxygen uptake as well as oxygen microdistributions in porewaters. In addition, sediment trap fluxes, sediment composition (Org-C, Tot-N, CaCO3, porosity) and radionuclide profiles provided measurements of, respectively input fluxes and burial rate of organic and inorganic compounds. The in situ results show that the oxygen consumption on this margin close to the Congo River is high with values of total oxygen uptake (TOU) of 4 +/- 0.6, 3.6 +/- 0.5 mmol m(-2) d(-1) at 1300 and 3100m depth, respectively, and between 1.9 +/- 0.3 and 2.4 +/- 0.2 mmol m(-2) d(-1) at 4000 m depth. Diffusive oxygen uptakes (DOU) were 2.8 +/- 1.1, 2.3 +/- 0.8, 0.8 +/- 0.3 and 1.2 +/- 0.1 mmol m(-2) d(-1), respectively at the same depths. The magnitude of the oxygen demands on the slope is correlated with water depth but is not correlated with the proximity of the submarine channel-levee system, which indicates that cross-slope transport processes are active over the entire margin. Comparison of the vertical flux of organic carbon with its mineralization and burial reveal that this lateral input is very important since the sum of recycling and burial in the sediments is 5-8 times larger than the vertical flux recorded in traps. Transfer of material from the Congo River occurs through turbidity currents channelled in the Congo valley, which are subsequently deposited in the Lobe zone in the Congo fan below 4800 m. Ship board measurements of oxygen profiles indicate large mineralization rates of organic carbon in this zone, which agrees with the high organic carbon content (3%) and the lar
- Published
- 2009
- Full Text
- View/download PDF
24. Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhone rivers
- Author
-
Rabouille, C., Conley, D.J., Dai, M.H., Cai, W.J., Chen, C.T.A., Lansard, B., Green, R., Yin, K., Harrison, P.J., Dagg, M., McKee, B., Rabouille, C., Conley, D.J., Dai, M.H., Cai, W.J., Chen, C.T.A., Lansard, B., Green, R., Yin, K., Harrison, P.J., Dagg, M., and McKee, B.
- Abstract
We examined the occurrence of seasonal hypoxia (O-2 < 2 mg l(-1)) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhone Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhone and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1-10g C m(-2) d(-1)), and lower off the Rhone River (< 1 g C m(-2) d(-1)), which could be one of the reasons of the absence of hypoxia on the Rhone shelf The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhone partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summ
- Published
- 2008
25. Integrating new technologies for the study of benthic ecosystems response to human activity: towards a coastal ocean benthic observatory (COBO)
- Author
-
Bell, E., Apitz, S. E., Breuer, E., Damgaard, L., Gilbert, F., Glud, R., Hall, P., Jamieson, A., Kershaw, P., Lansard, B., Nickell, L., Parker, R., Rabouille, C., Shimmield, G., Solan, M., Soltwedel, Thomas, Spagnoli, F., Stahl, H., Tengberg, A., Walpersdorf, E., Witte, U., Bell, E., Apitz, S. E., Breuer, E., Damgaard, L., Gilbert, F., Glud, R., Hall, P., Jamieson, A., Kershaw, P., Lansard, B., Nickell, L., Parker, R., Rabouille, C., Shimmield, G., Solan, M., Soltwedel, Thomas, Spagnoli, F., Stahl, H., Tengberg, A., Walpersdorf, E., and Witte, U.
- Published
- 2008
26. An 'Integrated Sediment Disturber' (ISD) to study the impact of repeated physical perturbations on the sediment geochemistry and related effects on the small benthic biota
- Author
-
Soltwedel, Thomas, Lansard, B., Gilbert, F., Hasemann, Christiane, Bell, E., Sablotny, Burkhard, Eagle, M., Kershaw, P., Rabouille, C., Soltwedel, Thomas, Lansard, B., Gilbert, F., Hasemann, Christiane, Bell, E., Sablotny, Burkhard, Eagle, M., Kershaw, P., and Rabouille, C.
- Published
- 2008
27. Supplementary material to "Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf"
- Author
-
Tremblay, J.-É., primary, Raimbault, P., additional, Garcia, N., additional, Lansard, B., additional, Babin, M., additional, and Gagnon, J., additional
- Published
- 2013
- Full Text
- View/download PDF
28. Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf
- Author
-
Tremblay, J.-É., primary, Raimbault, P., additional, Garcia, N., additional, Lansard, B., additional, Babin, M., additional, and Gagnon, J., additional
- Published
- 2013
- Full Text
- View/download PDF
29. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air–sea CO<sub>2</sub> fluxes
- Author
-
Forest, A., primary, Coupel, P., additional, Else, B., additional, Nahavandian, S., additional, Lansard, B., additional, Raimbault, P., additional, Papakyriakou, T., additional, Gratton, Y., additional, Fortier, L., additional, Tremblay, J.-É., additional, and Babin, M., additional
- Published
- 2013
- Full Text
- View/download PDF
30. The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ 13 C, Δ 14 C) and organic tracers
- Author
-
Cathalot, C., primary, Rabouille, C., additional, Tisnérat-Laborde, N., additional, Toussaint, F., additional, Kerhervé, P., additional, Buscail, R., additional, Loftis, K., additional, Sun, M.-Y., additional, Tronczynski, J., additional, Azoury, S., additional, Lansard, B., additional, Treignier, C., additional, Pastor, L., additional, and Tesi, T., additional
- Published
- 2013
- Full Text
- View/download PDF
31. Further observations of a decreasing atmospheric CO2uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss
- Author
-
Else, Brent G.T., primary, Galley, R.J., additional, Lansard, B., additional, Barber, D.G., additional, Brown, K., additional, Miller, L.A., additional, Mucci, A., additional, Papakyriakou, T.N., additional, Tremblay, J.-É., additional, and Rysgaard, S., additional
- Published
- 2013
- Full Text
- View/download PDF
32. Perturbation of carbon recycling in sedimentsof the coastal ocean: the need for observation of spatial and temporal variability (Vortrag)
- Author
-
Rabouille, C., Lansard, B., Soltwedel, Thomas, Kershaw, P., Damgaard, L., Rabouille, C., Lansard, B., Soltwedel, Thomas, Kershaw, P., and Damgaard, L.
- Published
- 2007
33. New technologies to study effects of physical disturbances at the sediment-water interface: The development of an Integrated Sediment Disturber (ISD)(Vortrag)
- Author
-
Soltwedel, Thomas, Fiesoletti, F., Lansard, B., Sablotny, Burkhard, Spagnoli, F., Hasemann, Christiane, Soltwedel, Thomas, Fiesoletti, F., Lansard, B., Sablotny, Burkhard, Spagnoli, F., and Hasemann, Christiane
- Abstract
New, innovative technologies were developed and integrated within the EU-project COBO (Coastal Ocean Benthic Observatory) to investigate benthic responses to natural and anthropogenic impacts. The Alfred Wegener Institute for Polar and Marine Research (AWI) leads a work-package developing the so-called Integrated Sediment Disturber (ISD) to study the complex interactions between the biota and environmental perturbations and relaxations. The ISD carries three rotating fork-like disturber units able to rework the upper sediment layers at chosen time intervals. An Autonomous Positioning Drive allows the positioning of oxygen micro-sensors within and between the disturbed zones. A camera system continuously monitors all ISD actions. The ISD was deployed for a 2 months experiment in summer/autumn 2006. Sediment sampling has been carried out at the start, after one month and at the end of the long-term deployment. Scientific aims of the experiment are: to investigate benthic community function, with a focus on carbon and nutrient regeneration to investigate response to physical and chemical perturbation (organic additions, resuspension, anoxia) by benthic communities to examine functional resistance and resilience to single and combined pressures
- Published
- 2007
34. 3D geospatial modelling and visualization for marine environment: Study of the marine pelagic ecosystem of the south-eastern Beaufort Sea, Canadian Arctic
- Author
-
Sahlin, J., primary, Mostafavi, M. A., additional, Forest, A., additional, Babin, M., additional, and Lansard, B., additional
- Published
- 2012
- Full Text
- View/download PDF
35. Variability in benthic oxygen fluxes during the winter-spring transition in coastal sediments: an estimation by in situ micro-electrodes and laboratory mini-electrodes
- Author
-
Lansard, B, Rabouille, C, Massias, D, Lansard, B, Rabouille, C, and Massias, D
- Abstract
Two expeditions were achieved at the winter-spring transition in the Golfe de Fos (Mediterranean Sea) at a site situated at 21 m depth. An in situ autonomous oxygen profiler and laboratory oxygen mini-electrodes were used to measure the oxygen distribution in the sediments and calculate the diffusive oxygen fluxes. Clearer waters during the second expedition promoted a rapid shift from a net heterotrophic environment to a photosynthesis-dominated sediment. The diffusive exchange fluxes of oxygen through the sediment-water interface varied from an average consumption of 5.3 mmol m(-2) d(-1) (February) to a net production of 12 mmol m(-2) d(-1) (March). At both periods, a large spatial heterogeneity was recorded by the different electrodes, with a larger difference between oxygen profiles when photosynthesis was active. This is probably indicative of a coupling between photosynthesis and respiration in hot spots located close to the photosynthetic organisms. The comparison between in situ micro-electrode profiles and laboratory mini-electrode measurements revealed a good agreement when respiration was dominant, but photosynthetic activity was not detected by the laboratory mini-electrode profiles., Deux campagnes ont été effectuées lors de la transition entre l’hiver et le printemps dans le golfe de Fos (mer Méditerranée) à un site situé à 21 mètres de profondeur. Un profileur benthique autonome et des mini-electrodes de laboratoire ont été utilisés pour mesurer la distribution d’oxygène dans les sédiments et calculer les flux diffusifs d’oxygène. Lors de la seconde campagne, la présence d’eau moins turbide a entraîné un changement rapide passant d’un environnement dominé par l’hétérotrophie à un environnement où la photosynthèse est le processus le plus actif. Les flux d’échanges d’oxygène à l’interface eau-sédiment varient d’une consommation nette de 5.3 mmol m–2d–1 (février) à une production nette de 12 mmol m–2 d–1 (mars). A chaque période, une grande hétérogénéité spatiale est enregistrée par les différentes électrodes; des différences plus importantes sont notées quand la photosynthèse est active. Ceci indique probablement un couplage entre photosynthèse et respiration dans des « points chauds » situés à proximité des organismes photosynthétiques. La comparaison entre les mesures effectuées par micro-électrodes in situ et par mini-électrodes de laboratoire montrent un bon accord dans des conditions où la respiration est dominante, mais la photosynthèse n’est pas detectée sur les profils des mini-électrodes de laboratoire.
- Published
- 2003
- Full Text
- View/download PDF
36. MICROHABITAT SELECTION OF BENTHIC FORAMINIFERA IN SEDIMENTS OFF THE RHONE RIVER MOUTH (NW MEDITERRANEAN)
- Author
-
Mojtahid, M., primary, Jorissen, F., additional, Lansard, B., additional, and Fontanier, C., additional
- Published
- 2010
- Full Text
- View/download PDF
37. Organic matter budget in the Southeast Atlantic continental margin close to the Congo Canyon: In situ measurements of sediment oxygen consumption
- Author
-
Rabouille, C., primary, Caprais, J.-C., additional, Lansard, B., additional, Crassous, P., additional, Dedieu, K., additional, Reyss, J.L., additional, and Khripounoff, A., additional
- Published
- 2009
- Full Text
- View/download PDF
38. Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers
- Author
-
Rabouille, C., primary, Conley, D.J., additional, Dai, M.H., additional, Cai, W.-J., additional, Chen, C.T.A., additional, Lansard, B., additional, Green, R., additional, Yin, K., additional, Harrison, P.J., additional, Dagg, M., additional, and McKee, B., additional
- Published
- 2008
- Full Text
- View/download PDF
39. Spatial and temporal variations of plutonium isotopes (238Pu and 239,240Pu) in sediments off the Rhone River mouth (NW Mediterranean)
- Author
-
Lansard, B., primary, Charmasson, S., additional, Gascó, C., additional, Antón, M.P., additional, Grenz, C., additional, and Arnaud, M., additional
- Published
- 2007
- Full Text
- View/download PDF
40. Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations
- Author
-
Rabouille, C, primary, Denis, L, additional, Dedieu, K, additional, Stora, G, additional, Lansard, B, additional, and Grenz, C, additional
- Published
- 2003
- Full Text
- View/download PDF
41. Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf.
- Author
-
Tremblay, J.-É., Raimbault, P., Garcia, N., Lansard, B., Babin, M., and Gagnon, J.
- Subjects
STREAM measurements ,UPWELLING (Oceanography) ,VERTICAL mixing (Earth sciences) ,DISSOLVED organic matter ,STOICHIOMETRY - Abstract
The concentrations and elemental stoichiometry of particulate and dissolved pools of carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) in the southeast Beaufort Sea during summer 2009 were assessed and compared with those of surface waters provided by the Mackenzie river as well as by winter mixing and upwelling of upper halocline waters at the shelf break. Neritic surface waters showed a clear enrichment in dissolved and particulate organic carbon (DOC and POC, respectively), nitrate, total particulate nitrogen (TPN) and dissolved organic nitrogen (DON) originating from the river. Silicate as well as bulk DON and DOC declined in a conservative manner away from the delta's outlet, whereas nitrate dropped non-conservatively to very low background concentrations inside the brackish zone. By contrast, the excess of soluble reactive P (SRP) present in oceanic waters declined in a non-conservative manner toward the river outlet, where concentrations were very low and consistent with P shortage in the Mackenzie River. These opposite gradients imply that the admixture of Pacific-derived, SRP-rich water is necessary to allow phytoplankton to use river-derived nitrate and to a lesser extent DON. A coarse budget based on concurrent estimates of primary production shows that river N deliveries support a small fraction of primary production when considering the entire shelf, due to the ability of phytoplankton to thrive in the subsurface chlorophyll maximum beneath the thin, nitrate-depleted river plume. Away from shallow coastal bays, local elevations in the concentration of primary production and dissolved organic constituents were consistent with upwelling at the shelf break. By contrast with shallow winter mixing, nutrient deliveries by North American rivers and upwelling relax surface communities from N limitation and permit a more extant utilization of the excess SRP entering through Bering Strait. In this context, increased nitrogen supply by rivers and upwelling potentially alter the vertical distribution of the excess P exported into the North Atlantic. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
42. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air--sea CO2 fluxes.
- Author
-
Forest, A., Coupel, P., Else, B., Nahavandian, S., Lansard, B., Raimbault, P., Papakyriakou, T., Gratton, Y., Fortier, L., Tremblay, J.-É., and Babin, M.
- Subjects
CARBON cycle ,SYNOPTIC climatology ,METABOLISM ,MARINE ecology ,CARBON dioxide ,OCEAN-atmosphere interaction - Abstract
The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air--sea CO
2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air--sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air--sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 kmh-1 ) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0±3.3 mmolCm-2 d-1 . We attribute this discrepancy to: (1) elevated PP rates (> 600mgCm-2 d-1 ) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmolCm-2 d-1 ). Although generally <100mgCm-2 d-1 , daily PP rates cumulated to a total PP of ~437.6x10³ tC, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 x 10³ tC). Subsurface PP represented 37.4% of total PP for the whole area and as much as ~72.0% seaward of the shelf break. In the upper 100 m, bacteria dominated (54 %) total community respiration (~250mgCm-2 d-1 ), whereas protozoans, metazoans, and benthos, contributed to 24 %, 10 %, and 12 %, respectively. The range of production-to-biomass ratios of bacteria was wide (1-27%d-1 ), while we estimated a narrower range for protozoans (6-11%d-1 ) and metazoans (1-3%d-1 ). Over the shelf, benthic biomass was twice higher (~5.9 gCm-2 ) than the biomass of pelagic heterotrophs (~2.4 gCm-2 ), in accord with high vertical carbon fluxes on the shelf (956±129mgCm-2 d-1 ). Threshold PP (PP at which NCP becomes positive) in the surface layer oscillated from 20-152mgCm-2 d-1 , with a pattern from low-to-high values as the distance from the Mackenzie River decreased. We conclude that: (1) climate change is exacerbating the already extreme biological gradient across the Arctic shelf-basin system; (2) the Mackenzie Shelf acts as a weak sink for atmospheric CO2 , implying that PP exceeds the respiration of terrigenous and marine organic matter in the surface layer; and (3) shelf break upwelling can transfer CO2 to the atmosphere, but massive outgassing can be attenuated if nutrients brought also by upwelling support diatom production. Our study underscores that cross-shelf exchange of waters, nutrients and particles is a key mechanism that needs to be properly monitored as the Arctic transits to a new state. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF
43. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss.
- Author
-
Else, Brent G.T., Galley, R.J., Lansard, B., Barber, D.G., Brown, K., Miller, L.A., Mucci, A., Papakyriakou, T.N., Tremblay, J.-É., and Rysgaard, S.
- Published
- 2013
- Full Text
- View/download PDF
44. Spatial and temporal variations of plutonium isotopes (238Pu and 239,240Pu) in sediments off the Rhone River mouth (NW Mediterranean)
- Author
-
Lansard, B., Charmasson, S., Gascó, C., Antón, M.P., Grenz, C., and Arnaud, M.
- Subjects
- *
PLUTONIUM isotopes , *SPATIO-temporal variation , *REACTOR fuel reprocessing , *SEDIMENTS - Abstract
The dispersion and fate of the Rhone River inputs to the Gulf of Lions (Northwestern Mediterranean Sea) have been studied through the spatial and temporal distributions of plutonium isotopes in continental shelf sediments. Plutonium isotopes (238Pu and 239,240Pu) are appropriate tracers to follow the dispersion of particulate matter due both to their high affinity for particles and their long half-lives. In the Rhone River valley, plutonium isotopes originate from both the weathering of the catchment basin contaminated by global atmospheric fallout, and the liquid effluents released from the Marcoule reprocessing plant since 1961. This work presents a first detailed study on 238Pu and 239,240Pu distributions in sediments from the Rhone prodelta to the adjacent continental shelf, since the decommissioning of Marcoule in 1997. The vertical distribution of Pu isotopes has been analysed in a 4. 75 m long core sampled in 2001 at the Rhone mouth. Despite this length, plutonium is found at the last 10 cm, manifesting the high sedimentation rate of the prodeltaic area and its ability for trapping fine-grained sediments and associated contaminants. The highest 238Pu and 239,240Pu concentrations reached 1. 26 and 5. 97 Bq kg−1 respectively and were found within the layer 280–290 cm. The 238Pu/239,240Pu activity ratios (AR) demonstrated an efficient and huge trapping of the Pu isotopes derived from Marcoule. The fresh sediments, located on the top of the core, show lower plutonium activity concentrations and lower 238Pu/239,240Pu ratios. This decrease is in close relation with the shut down of the Marcoule reprocessing plant in 1997. In 2001, plutonium isotopes were also analysed in 21 surface sediments located offshore and concentrations ranged from 0. 03 to 0. 17 Bq kg−1 for 238Pu and from 0. 33 to 1. 72 Bq kg−1 for 239,240Pu. The 238Pu/239,240Pu AR ranged from 0. 24 close to the river mouth to 0. 06 southwards, indicating the decreasing influence of the Marcoule releases (global fallout AR 0. 03–0. 05 and Marcoule AR 0. 30). This is in good agreement with the main direction spread of the Rhone River plume and the bottom current. This dataset has been compared to those obtained in the same area in 1984 and 1990 in order to follow the time trend in Pu concentrations. This comparison highlights the decrease with time in plutonium concentrations close to the Rhone River mouth, but further away this reduction is not so evident. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
45. The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ13C, °14C) and organic tracers.
- Author
-
Cathalot, C., Rabouille, C., Tisnérat-Laborde, N., Toussaint, F., Kerhervé, P., Buscail, R., Loftis, K., Sun, M.-Y., Tronczynski, J., Azoury, S., Lansard, B., Treignier, C., Pastor, L., and Tesi, T.
- Subjects
- *
ORGANIC compounds , *COASTAL sediments , *CARBON , *DELTAS , *STABLE isotope tracers , *CARBON cycle , *POLYCYCLIC aromatic hydrocarbons - Abstract
Abstract: A significant fraction of the global carbon flux to the ocean occurs in River-dominated Ocean Margins (RiOMar) although large uncertainties remain in the cycle of organic matter (OM) in these systems. In particular, the OM sources and residence time have not been well clarified. Surface (0–1cm) and sub-surface (3–4cm) sediments and water column particles (bottom and intermediate depth) from the Rhône River delta system were collected in June 2005 and in April 2007 for a multi-proxy study. Lignin phenols, black carbon (BC), proto-kerogen/BC mixture, polycyclic aromatic hydrocarbons (PAHs), carbon stable isotope (δ13COC), and radiocarbon measurements (Δ14COC) were carried out to characterize the source of sedimentary organic material and to address degradation and transport processes. The bulk OM in the prodelta sediment appears to have a predominantly modern terrigenous origin with a significant contribution of modern vascular C3 plant detritus (Δ14COC =27.9‰, δ13COC =−27.4‰). In contrast, the adjacent continental shelf, below the river plume, seems to be dominated by aged OM (Δ14COC =−400‰, δ13COC =−24.2‰), and shows no evidence of dilution and/or replacement by freshly produced marine carbon. Our data suggest an important contribution of black carbon (50% of OC) in the continental shelf sediments. Selective degradation processes occur along the main dispersal sediment system, promoting the loss of a modern terrestrial OM but also proto-kerogen-like OM. In addition, we hypothesize that during the transport across the shelf, a long term resuspension/deposition loop induces efficient long term degradation processes able to rework such refractory-like material until the OC is protected by the mineral matrix of particles. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
46. Evidence of the radioactive fallout in France due to the Fukushima nuclear accident.
- Author
-
Evrard O, Van Beek P, Gateuille D, Pont V, Lefèvre I, Lansard B, and Bonté P
- Subjects
- Aerosols, France, Geologic Sediments analysis, Japan, Poaceae chemistry, Radiation Monitoring, Rivers, Soil analysis, Cesium Radioisotopes analysis, Fukushima Nuclear Accident, Iodine Radioisotopes analysis, Radioactive Pollutants analysis
- Abstract
Radioactive fallout due to the Fukushima reactor explosion in Japan was detected in environmental samples collected in France. The presence of (131)I in aerosols (200±6 μBq m(-3)) collected at the Pic du Midi observatory, located at 2877 m altitude in the French Pyrénées, indicated that the Japanese radioactive cloud reached France between 22 and 29 March, i.e. less than two weeks after the initial emissions, as suggested by a (137)Cs/(134)Cs ratio of 1.4. Cesium radioisotopes ((134)Cs and (137)Cs) were not detected in this sample but they were present in the aerosol sample collected the next week, i.e. between 29 March and 05 April (about 10 μBq m(-3)). We also report (131)I activities measured in grass (1.1-11 Bq kg(-1); fresh weight) and soil samples (0.4 Bq kg(-1)) collected in the Seine River basin between 30 March and 10 April. The (134)Cs from the damaged Fukushima power plant was also detected in grass collected in the Seine River basin between 31 March and 10 April (0.2-1.6 Bq kg(-1) fresh weight, with a (137)Cs/(134)Cs ratio close to 1, which is consistent with Fukushima radioactive release). Despite the installation of a network of nested stations to collect suspended matter in the upstream part of the Seine River basin, (131)I was only detected in suspended matter (4.5-60 Bq kg(-1)) collected at the most upstream stations between 30 March and 12 April. Neither (131)I nor (134)Cs has been detected in environmental samples since the end of April 2011, because of the rapid decay of (131)I and the very low activities of (134)Cs (about 400 times lower than after Chernobyl accident)., (Copyright © 2012 Elsevier Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.