1. Stimulation of the internal superior laryngeal nerve as a potential therapy for obstructive sleep apnea in a porcine model.
- Author
-
Maurer JT, Huseynov J, Hochreiter J, and Perkins JD
- Subjects
- Animals, Swine, Disease Models, Animal, Electric Stimulation Therapy methods, Electric Stimulation methods, Pressure, Sleep Apnea, Obstructive physiopathology, Sleep Apnea, Obstructive therapy, Laryngeal Nerves physiopathology, Laryngeal Nerves physiology, Pharynx physiopathology, Pharynx innervation
- Abstract
Impaired pharyngeal sensing of negative pressure (NP) can lead to a blunted response of the upper airway dilator muscles and contribute to the development of obstructive sleep apnea (OSA). This response is modulated by the nerve fibers in the internal branch of the superior laryngeal nerve (iSLN), mediating negative pressure sensation. Artificial excitation of these fibers could be a potential treatment target for OSA. To evaluate this, electrostimulation of the iSLN was performed in a porcine-isolated upper airway model. Artificial obstructions were induced by varying the levels of negative pressure, and the ability of the animal to resolve these obstructions was evaluated. The pressure at which the animal was still able to resolve the obstruction was quantified as "Resolvable Pressure." Thereby, the effects on pharyngeal patency ( n = 35) and the duration of the therapeutic effect outlasting the stimulation ( n = 6) were quantified. Electrostimulation before the introduction of an artificial obstruction improved the median resolvable pressure from -28.3 cmH
2 O [IQR: -45.9; -26.1] to -92.6 cmH2 O [IQR: -105.1; -78.6]. The median therapeutic effect was found to outlast the last stimulation burst applied by 163 s when five stimulation bursts were applied in short succession [IQR: 58; 231], 58 s when two were applied [IQR: 7; 65], and 6 s when one was applied [IQR: 0; 51]. Stimulation of the iSLN increased electromyography (EMG) in the genioglossus (GG). The proposed treatment concept can improve pharyngeal patency in the model. Transfer of the results to clinical application could enable the development of a new neuromodulation therapy for OSA. NEW & NOTEWORTHY Electrostimulation before the introduction of an artificial obstruction to induce artificial sleep apnea in the pig model improves the response of the upper airway to negative pressure (NP). The electrostimulation creates a sustained therapeutic effect that outlasts the initial electrostimulation. The use of this therapy in clinical practice has the potential to treat obstructive sleep apnea (OSA).- Published
- 2024
- Full Text
- View/download PDF