33 results on '"Laurent Delière"'
Search Results
2. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest
- Author
-
Claude Rispe, Fabrice Legeai, Paul D. Nabity, Rosa Fernández, Arinder K. Arora, Patrice Baa-Puyoulet, Celeste R. Banfill, Leticia Bao, Miquel Barberà, Maryem Bouallègue, Anthony Bretaudeau, Jennifer A. Brisson, Federica Calevro, Pierre Capy, Olivier Catrice, Thomas Chertemps, Carole Couture, Laurent Delière, Angela E. Douglas, Keith Dufault-Thompson, Paula Escuer, Honglin Feng, Astrid Forneck, Toni Gabaldón, Roderic Guigó, Frédérique Hilliou, Silvia Hinojosa-Alvarez, Yi-min Hsiao, Sylvie Hudaverdian, Emmanuelle Jacquin-Joly, Edward B. James, Spencer Johnston, Benjamin Joubard, Gaëlle Le Goff, Gaël Le Trionnaire, Pablo Librado, Shanlin Liu, Eric Lombaert, Hsiao-ling Lu, Martine Maïbèche, Mohamed Makni, Marina Marcet-Houben, David Martínez-Torres, Camille Meslin, Nicolas Montagné, Nancy A. Moran, Daciana Papura, Nicolas Parisot, Yvan Rahbé, Mélanie Ribeiro Lopes, Aida Ripoll-Cladellas, Stéphanie Robin, Céline Roques, Pascale Roux, Julio Rozas, Alejandro Sánchez-Gracia, Jose F. Sánchez-Herrero, Didac Santesmasses, Iris Scatoni, Rémy-Félix Serre, Ming Tang, Wenhua Tian, Paul A. Umina, Manuella van Munster, Carole Vincent-Monégat, Joshua Wemmer, Alex C. C. Wilson, Ying Zhang, Chaoyang Zhao, Jing Zhao, Serena Zhao, Xin Zhou, François Delmotte, and Denis Tagu
- Subjects
Arthropod genomes ,Daktulosphaira vitifoliae ,Gene duplications ,Host plant interactions ,Effectors ,Biological invasions ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. Conclusions The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.
- Published
- 2020
- Full Text
- View/download PDF
3. Correction to: The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest
- Author
-
Claude Rispe, Fabrice Legeai, Paul D. Nabity, Rosa Fernández, Arinder K. Arora, Patrice Baa-Puyoulet, Celeste R. Banfill, Leticia Bao, Miquel Barberà, Maryem Bouallègue, Anthony Bretaudeau, Jennifer A. Brisson, Federica Calevro, Pierre Capy, Olivier Catrice, Thomas Chertemps, Carole Couture, Laurent Delière, Angela E. Douglas, Keith Dufault-Thompson, Paula Escuer, Honglin Feng, Astrid Forneck, Toni Gabaldón, Roderic Guigó, Frédérique Hilliou, Silvia Hinojosa-Alvarez, Yi-min Hsiao, Sylvie Hudaverdian, Emmanuelle Jacquin-Joly, Edward B. James, Spencer Johnston, Benjamin Joubard, Gaëlle Le Goff, Gaël Le Trionnaire, Pablo Librado, Shanlin Liu, Eric Lombaert, Hsiao-ling Lu, Martine Maïbèche, Mohamed Makni, Marina Marcet-Houben, David Martínez-Torres, Camille Meslin, Nicolas Montagné, Nancy A. Moran, Daciana Papura, Nicolas Parisot, Yvan Rahbé, Mélanie Ribeiro Lopes, Aida Ripoll-Cladellas, Stéphanie Robin, Céline Roques, Pascale Roux, Julio Rozas, Alejandro Sánchez-Gracia, Jose F. Sánchez-Herrero, Didac Santesmasses, Iris Scatoni, Rémy-Félix Serre, Ming Tang, Wenhua Tian, Paul A. Umina, Manuella van Munster, Carole Vincent-Monégat, Joshua Wemmer, Alex C. C. Wilson, Ying Zhang, Chaoyang Zhao, Jing Zhao, Serena Zhao, Xin Zhou, François Delmotte, and Denis Tagu
- Subjects
Biology (General) ,QH301-705.5 - Abstract
An amendment to this paper has been published and can be accessed via the original article.
- Published
- 2020
- Full Text
- View/download PDF
4. Downy mildew is able to carry out its sexual cycle on resistant grape varieties
- Author
-
Lionel Delbac, Laurent Delière, Christophe Schneider, and François Delmotte
- Subjects
Agriculture (General) ,S1-972 ,Plant culture ,SB1-1110 - Abstract
Previous studies have shown that new resistant grape cultivars limit epidemics caused by asexual reproduction of downy mildew. However, until now, there was a lack of knowledge on the sexual phase of the pathogen. This study demonstrates that host resistance has little effect on the sexual cycle of downy mildew. Thus, the pathogen can complete its life cycle (asexual and sexual phases) on partially resistant grapevine varieties. The persistence of pathogen populations on partially resistant varieties from one year to the next represents a major challenge for the sustainability of genetic resistance of grapevines.
- Published
- 2020
- Full Text
- View/download PDF
5. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic
- Author
-
Thomas Fort, Cécile Robin, Xavier Capdevielle, Laurent Delière, and Corinne Vacher
- Subjects
Bioaerosols ,Dispersal ,Landscape ,Grapevine ,Forest ,Selection ,Medicine ,Biology (General) ,QH301-705.5 - Abstract
Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats.
- Published
- 2016
- Full Text
- View/download PDF
6. Less Field-Level Insecticides, But Not Fungicides, in Small Perennial Crop Fields and Landscapes with Woodlands and Organic Farming
- Author
-
Lucas Etienne, Adrien Rusch, Claire Lavigne, Esther Fouillet, Laurent Delière, and Pierre Franck
- Subjects
History ,Polymers and Plastics ,Animal Science and Zoology ,Business and International Management ,Agronomy and Crop Science ,Industrial and Manufacturing Engineering - Published
- 2022
- Full Text
- View/download PDF
7. Pesticide Use Trajectories During Agroecological Transitions in Vineyards: The Case of the French Dephy Network
- Author
-
Esther Fouillet, Laurent Delière, Albert Flori, Bruno Rapidel, and Anne Merot
- Subjects
History ,Polymers and Plastics ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 2022
- Full Text
- View/download PDF
8. New Scenarios for a Shift towards Agroecology in Viticulture
- Author
-
Nawel Aouadi, Francis Macary, Jean-Philippe Roby, Laurent Delière, Environnement, territoires et infrastructures (UR ETBX), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Santé et agroécologie du vignoble (UMR SAVE), Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Vigne et Vin (UVV), and Ecophysiologie et Génomique Fonctionnelle de la Vigne (UMR EGFV)
- Subjects
Computer science ,Best practice ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy ,010501 environmental sciences ,01 natural sciences ,12. Responsible consumption ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Pesticide drift ,[SDV.SA.STA]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture ,11. Sustainability ,Sustainable agriculture ,Viticultural System ,ELECTRE ,Pesticides ,Agroecology ,Environmental planning ,0105 earth and related environmental sciences ,2. Zero hunger ,business.industry ,[SDV.SA.AEP]Life Sciences [q-bio]/Agricultural sciences/Agriculture, economy and politics ,04 agricultural and veterinary sciences ,General Medicine ,Biodiversity ,15. Life on land ,[SDE.ES]Environmental Sciences/Environmental and Society ,Multicriteria Decision Aid Methods ,13. Climate action ,Agriculture ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Profitability index ,ELECTRE Methods ,business ,Biological regulation - Abstract
International audience; In the light of its negative impacts on the environment and human health,conventional agriculture is currently facing new challenges; for example, reducing pesticide reliance, improving biodiversity, adapting to climate change and reconciling winegrowers with consumers, which require changes to be made to vineyard management. A shift towards more sustainable agriculture via the development of agroecological systems may be key to meeting these environmental, economic and social challenges. This study aimed to evaluate the performance of existing viticultural systems, as well as that of three new scenarios that we built to change conventional vine production systems and their related practices. The end aim is to adopt the principles of agroecology and more virtuously, to ensure that vine production remains in line with societal expectations. First, thirty-eight different viticultural systems were chosen. Three realistic scenarios for changing these production systems were then built by working with stakeholders and incorporating the best practices that had been identified in the vineyard. Conventional practices were optimised in the first scenario and an agroecological approach was adopted for the other two scenarios: an Agroecological scenario (using synthetic chemicals) and an Agroecological-Bio scenario (organic system). All three scenarios were based on a combination of good practices which contribute to enhancing vineyard biodiversity, and which thus restore biological regulation and in turn reduce pesticides. The viticultural systems performances have been evaluated with a methodology involving multicriteria decision aid usingELECTRE Tri-C and ELECTRE III methods. Seven evaluation criteria were selected which covered socio-economic performance (economic profitability workload and system complexity) and environmental performance (pesticide pressure, pesticide ecotoxicity, agroecological practices and pesticide drift).The best performances were achieved by the two agroecological scenarios, and this methodology can be adaptable to different production systems everywhere in different viticultural regions..
- Published
- 2021
- Full Text
- View/download PDF
9. OSCAR, a national observatory to support the durable deployment of disease-resistant grapevine cultivars
- Author
-
C. Schneider, S. Guimier, F. Delmotte, I. Mazet, A. S. Miclot, Laurent Delière, F. Fabre, and C. Couture
- Subjects
education.field_of_study ,Resistance (ecology) ,Agroforestry ,Population ,food and beverages ,Horticulture ,Geography ,Software deployment ,Observatory ,Downy mildew ,Cultivar ,Viticulture ,Cropping system ,education - Abstract
The cultivation of disease-resistant grapevine cultivars makes it possible to reduce considerably the number of pesticide treatments applied in viticulture. The recent, but increasingly widespread deployment of these cultivars raises several important issues. The first concerns the qualitative potential of the cultivars and their marketing. The second issue is more generally important and concerns the management of durability of resistance. Several cases of erosion or breakdown of resistance have already been reported in Europe. The evolution of pathogen populations targeted by varietal resistance should therefore be closely monitored, to ensure that grapevine resistance remains effective in the long term. Another key issue is the design of the cropping system, which should be adapted to resistant cultivars so as to maintain production objectives, promote the durability of resistance and minimize the use of pesticides. INRA has set up the National Observatory for the Deployment of Resistant Cultivars (OSCAR; http://observatoire-cepages-resistants.fr) to meet these challenges. OSCAR is a participative network based on plots in production situations planted by growers. The participative dimension of the network promotes the sharing of experiences relating to agronomic behavior, the potential for mechanization, ease of cultivation and wine quality. This observatory also monitors the emergence of new diseases or of virulent strains. Powdery and downy mildew (diseases targeted by varietal resistance) isolates are collected and tested under laboratory conditions, to monitor changes in population aggressiveness. We present here the first results obtained for the 34 plots of OSCAR monitored in 2017. This observatory is currently being extended to a larger number of plots in France and other European countries. The data obtained will be fed into mathematical models to determine the effects of deployment strategies and landscape features on the epidemiological dynamics of resistance erosion.
- Published
- 2019
- Full Text
- View/download PDF
10. Evidence for sexual reproduction and fertile oospore production by Plasmopara viticola on the leaves of partially resistant grapevine cultivars
- Author
-
F. Delmotte, Laurent Delière, L. Delbac, C. Schneider, and Delbac, Lionel
- Subjects
[SDE] Environmental Sciences ,biology ,food and beverages ,Asexual reproduction ,Horticulture ,Plant disease resistance ,biology.organism_classification ,Spore ,Sexual reproduction ,Plasmopara viticola ,Oospore ,Downy mildew ,Cultivar - Abstract
Downy mildew, caused by Plasmopara viticola, is a highly destructive disease of grapevine. In recent decades, European breeding programs for disease resistance have led to the creation of new cultivars resistant to downy mildew. This resistance limits mycelium growth and the sporulation of P. viticola, thereby decreasing disease epidemics due to the asexual reproduction of the pathogen. However, we still lack biological insight into the effects of partial host resistance on pathogen survival during the sexual stage of its lifecycle. We present here the results of a two-year experiment in which we assessed the production of sexual forms of P. viticola (oospores) and the success of subsequent infections on resistant cultivars with the Rpv1 and Rpv3 loci. We found that disease resistance had little effect on the sexual cycle of the pathogen. Plasmopara viticola produced four times more oospores on susceptible Vitis vinifera cultivars than on disease-resistant cultivars. Macrosporangia resulting from the germination of oospores were found on both resistant and susceptible genotypes, and were produced in surprisingly large numbers on some Rpv1 genotypes. Rates of primary contamination due to macrosporangia were lower on Rpv3 than on conventional cultivars, but higher on Rpv1 genotypes. Thus, P. viticola can complete its lifecycle (both asexual and sexual phases) on partially resistant grapevine cultivars. The maintenance of downy mildew populations from one year to the next presents a significant challenge to the sustainability of genetic resistance in grapevine.
- Published
- 2019
- Full Text
- View/download PDF
11. Europe as a bridgehead in the worldwide invasion history of grapevine downy mildew, Plasmopara viticola
- Author
-
Yann Dussert, Tatiana Giraud, Sylvie Richart-Cervera, François Delmotte, Frédéric Labbé, Michael C. Fontaine, Laurent Delière, Fontaine lab, Diversity, ecology, evolution & Adaptation of arthropod vectors (MIVEGEC-DEEVA), Evolution des Systèmes Vectoriels (ESV), Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Groningen Institute for Evolutionary Life Sciences [Groningen] (GELIFES), University of Groningen [Groningen], Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, AgroParisTech, Ecologie Systématique et Evolution (ESE), AgroParisTech-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Santé et agroécologie du vignoble (UMR SAVE), Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-07-BDIV-0003,EMERFUNDIS,Comprendre les émergences de maladies fongiques de plantes : vers une estimation des risques liés aux changements globaux(2007), ANR-12-ADAP-0009,GANDALF,Génomique et adaptation des traits de vie des champignons impliqués dans les interactions plante-pathogène(2012), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Subjects
0301 basic medicine ,microsatellite ,[SDV]Life Sciences [q-bio] ,Population ,[SDV.BID]Life Sciences [q-bio]/Biodiversity ,emerging crop disease ,General Biochemistry, Genetics and Molecular Biology ,law.invention ,approximate Bayesian computation ,03 medical and health sciences ,0302 clinical medicine ,law ,Quarantine ,Vitis ,education ,[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology ,Disease Resistance ,Plant Diseases ,2. Zero hunger ,Oomycete ,recent introduction ,education.field_of_study ,Genetic diversity ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,biology ,Ecology ,population genetics ,food and beverages ,Bayes Theorem ,biology.organism_classification ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,Europe ,Genetics, Population ,030104 developmental biology ,Oomycetes ,Vitis vinifera ,Plasmopara viticola ,Threatened species ,Biological dispersal ,Downy mildew ,invasive plant pathogen ,fungi ,General Agricultural and Biological Sciences ,030217 neurology & neurosurgery ,Microsatellite Repeats - Abstract
International audience; Europe is the historical cradle of viticulture, but grapevines (Vitis vinifera) have been increasingly threatened by pathogens of American origin. The invasive oomycete Plasmopara viticola causes downy mildew, one of the most devastating grapevine diseases worldwide. Despite major economic consequences, its invasion history remains poorly understood. We analyzed a comprehensive dataset of ∼2,000 samples, collected from the most important wine-producing countries, using nuclear and mitochondrial gene sequences and microsatellite markers. Population genetic analyses revealed very low genetic diversity in invasive downy mildew populations worldwide and little evidence of admixture. All the invasive populations originated from only one of the five native North American lineages, the one parasitizing wild summer grape (V. aestivalis). An approximate Bayesian computation-random forest approach allowed inferring the worldwide invasion scenario of P. viticola. After an initial introduction into Europe, invasive European populations served as a secondary source of introduction into vineyards worldwide, including China, South Africa, and twice independently, Australia. Only the invasion of Argentina probably represents a tertiary introduction, from Australia. Our findings provide a striking example of a global pathogen invasion resulting from secondary dispersal of a successful invasive population. Our study will also help designing quarantine regulations and efficient breeding for resistance against grapevine downy mildew.
- Published
- 2021
- Full Text
- View/download PDF
12. Methyl salicylate, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases
- Author
-
Philippe Darriet, Xavier Poitou, Axel Marchal, Laurence Geny-Denis, Céline Cholet, Alexandre Pons, Emilie Bruez, Pascaline Redon, Laurent Delière, Unité de Recherche Oenologie [Villenave d'Ornon], Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Santé et agroécologie du vignoble (UMR SAVE), and Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Vine ,Cryptogamic diseases ,Guignardia ,Wine ,Methyl salicylate ,Stem ,Red wines ,01 natural sciences ,Gas Chromatography-Mass Spectrometry ,Analytical Chemistry ,chemistry.chemical_compound ,0404 agricultural biotechnology ,Chemical marker ,Ascomycota ,Green aromas ,Humans ,Vitis ,Chromatography, High Pressure Liquid ,Plant Diseases ,Grapevine Trunk Disease (Esca) ,Black rot ,biology ,010401 analytical chemistry ,Solid Phase Extraction ,fungi ,food and beverages ,04 agricultural and veterinary sciences ,General Medicine ,biology.organism_classification ,040401 food science ,Salicylates ,0104 chemical sciences ,Horticulture ,chemistry ,Plasmopara viticola ,Fruit ,Taste ,[SDE]Environmental Sciences ,Downy mildew ,Grape black rot ,Food Science - Abstract
International audience; Methyl salicylate (MeSA) is a plant metabolite that induces plant defence resistance and an odorous volatile compound presenting green nuances. This volatile compound was shown to be present in wine samples, sometimes at concentrations above its olfactory detection threshold. MeSA is localized in grapes, particularly in the skins and stems, and is extracted during red wine vinification. It was detected at the highest concentrations in wines of several grape varieties, made from grapes affected by cryptogamic diseases, namely downy mildew caused by Plasmopara viticola, and black rot caused by Guignardia bidwellii. It has also been detected in wines from vines affected by Esca, a Grapevine Trunk Disease. MeSA can also be considered to be a chemical marker in grapes and wine indicative of the level of development of several vine cryptogamic diseases.
- Published
- 2021
- Full Text
- View/download PDF
13. Europe as a bridgehead in the worldwide invasion history of grapevine downy mildew,Plasmopara viticola
- Author
-
Michael C. Fontaine, François Delmotte, Laurent Delière, Yann Dussert, Sylvie Richart-Cervera, Tatiana Giraud, and Frédéric Labbé
- Subjects
Oomycete ,education.field_of_study ,Genetic diversity ,Ecology ,Population ,Biology ,biology.organism_classification ,law.invention ,law ,Plasmopara viticola ,Quarantine ,Threatened species ,Biological dispersal ,Downy mildew ,education - Abstract
Europe is the historical cradle of viticulture, but grapevines have been increasingly threatened by pathogens of American origin. The invasive oomycetePlasmopara viticolacauses downy mildew, one of the most devastating grapevine diseases worldwide. Despite major economic consequences, its invasion history remains poorly understood. Comprehensive population genetic analyses of ~2000 samples from the most important wine-producing countries revealed very low genetic diversity in invasive downy mildew populations worldwide. All the populations originated from one of five native North American lineages, the one parasitizing wild summer grape. After an initial introduction into Europe, invasive European populations served as a secondary source of introduction into vineyards worldwide, including China, South Africa and, twice independently, Australia. Invasion of Argentina probably represents a tertiary introduction from Australia. Our findings provide a striking example of a global pathogen invasion resulting from secondary dispersal of a successful invasive population. It will help designing quarantine regulations and efficient breeding for resistance against grapevine downy mildew.
- Published
- 2020
- Full Text
- View/download PDF
14. Correction to: The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest
- Author
-
Marina Marcet-Houben, Spencer Johnston, Roderic Guigó, Claude Rispe, François Delmotte, Yvan Rahbé, Edward B. James, Carole Couture, Keith Dufault-Thompson, Laurent Delière, Fabrice Legeai, Patrice Baa-Puyoulet, Hsiao-ling Lu, Julio Rozas, Gaël Le Trionnaire, Sylvie Hudaverdian, Rosa Fernández, Chaoyang Zhao, Olivier Catrice, Manuella van Munster, Federica Calevro, Honglin Feng, Alex C.C. Wilson, Arinder K. Arora, Anthony Bretaudeau, Martine Maïbèche, Yi Min Hsiao, Thomas Chertemps, Maryem Bouallègue, Paula Escuer, Jing Zhao, Céline Roques, Aida Ripoll-Cladellas, Pierre Capy, Alejandro Sánchez-Gracia, Wenhua Tian, Paul D. Nabity, Pablo Librado, David Martínez-Torres, Paul A Umina, Joshua Wemmer, Stéphanie Robin, Rémy Félix Serre, Frédérique Hilliou, Nancy A. Moran, Iris Scatoni, Jennifer A. Brisson, Shanlin Liu, Mélanie Ribeiro Lopes, Gaëlle Le Goff, Pascale Roux, Nicolas Montagné, Nicolas Parisot, Jose Francisco Sánchez-Herrero, Silvia Hinojosa-Alvarez, Daciana Papura, Emmanuelle Jacquin-Joly, Ming Tang, Mohamed Makni, Astrid Forneck, Eric Lombaert, Xin Zhou, Ying Zhang, Carole Vincent-Monégat, Leticia Bao, Celeste R. Banfill, Miquel Barberà, Didac Santesmasses, Angela E. Douglas, Benjamin Joubard, Camille Meslin, Denis Tagu, Toni Gabaldón, and Serena Zhao
- Subjects
Physiology ,Genome, Insect ,Adaptation, Biological ,Plant Science ,General Biochemistry, Genetics and Molecular Biology ,Hemiptera ,Structural Biology ,Animals ,Vitis ,Phylloxera ,lcsh:QH301-705.5 ,Ecology, Evolution, Behavior and Systematics ,Whole genome sequencing ,biology ,Correction ,Cell Biology ,Biological Sciences ,biology.organism_classification ,Biological Evolution ,lcsh:Biology (General) ,Evolutionary biology ,PEST analysis ,Adaptation ,General Agricultural and Biological Sciences ,Introduced Species ,Animal Distribution ,Biotechnology ,Developmental Biology - Abstract
Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture.Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world.The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.
- Published
- 2020
15. Consideration of latent infections improves the prediction of Botrytis bunch rot severity in vineyards
- Author
-
Vittorio Rossi, Giorgia Fedele, Ana María Díez-Navajas, Elisa González-Domínguez, Laurent Delière, Università cattolica del Sacro Cuore [Milano] (Unicatt), Horta Srl, Santé et agroécologie du vignoble (UMR SAVE), Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Instituto Vasco de Investigación y Desarrollo Agrario [Derio] (NEIKER)
- Subjects
0106 biological sciences ,Vine ,Farms ,food.ingredient ,Plant Science ,Infections ,01 natural sciences ,Vineyard ,Botrytis cinerea ,food ,Disease severity ,Validation ,Humans ,Vitis ,Plant Diseases ,Botrytis ,biology ,biology.organism_classification ,010602 entomology ,Horticulture ,Italy ,Spain ,Weather data ,Latency ,[SDE]Environmental Sciences ,Mechanistic model ,France ,Settore AGR/12 - PATOLOGIA VEGETALE ,Agronomy and Crop Science ,010606 plant biology & botany - Abstract
The current study validated a mechanistic model for Botrytis cinerea on grapevine with data from 23 independent Botrytis bunch rot (BBR) epidemics (combinations of vineyards × year) that occurred between 1997 and 2018 in Italy, France, and Spain. The model was operated for each vineyard by using weather data and vine growth stages to anticipate, at any day of the vine-growing season, the disease severity (DS) at harvest (severe, DS $ 15%; intermediate, 5 < DS < 15%; and mild, DS # 5%). To determine the ability of the model to account for latent infections, postharvest incubation assays were also conducted using mature berries without symptoms or signs of BBR. The model correctly classified the severity of 15 of 23 epidemics (65% of epidemics) when the classification was based on field assessments of BBR severity; when the model was operated to include BBR severity after incubation assays, its ability to correctly predict BBR severity increased from 65% to >87%. This result showed that the model correctly accounts for latent infections, which is important because latent infections can substantially increase DS. The model was sensitive and specific, with the false-positive and false-negative proportion of model predictions equal to 0.24 and 0, respectively. Therefore, the model may be considered a reliable tool for decision-making for BBR control in vineyards. © 2020 The American Phytopathological Society  
- Published
- 2020
- Full Text
- View/download PDF
16. Reducing pesticide use in vineyards. Evidence from the analysis of the French DEPHY network
- Author
-
Esther Fouillet, Laurent Delière, Nicolas Chartier, Nicolas Munier-Jolain, Sébastien Cortel, Bruno Rapidel, and Anne Merot
- Subjects
Viticulture ,F08 - Systèmes et modes de culture ,Vignoble ,Lutte antipollution ,Soil Science ,H02 - Pesticides ,Plant Science ,Pesticide ,Application des pesticides ,Rendement des cultures ,Agronomy and Crop Science - Abstract
High quantities of pesticides are applied on vineyards. For example, the average treatment frequency index (TFI) for French vineyards was 13.5 in 2016, whereas the average TFI for wheat (a major annual crop in France) was 4.9 in 2017. Reducing pesticide use is a key issue to improve viticulture sustainability. The aims of this study were (i) to analyse the evolution of pesticide use in vineyard farms voluntarily participating in a pesticide reduction programme, and (ii) to understand the options winegrowers used to reduce their pesticide use. We analysed data from the DEPHY farm network, including 244 cropping systems followed over 10 years and spread across 12 winegrowing regions. We used the TFI to assess the intensity of pesticide use. Mean pesticide use within the network decreased over the 10-year period and mostly concerned fungicide use. By analysing several indicators such as the number of treatments and the mean TFI per fungicide treatment, we were able to identify some of the management options mobilised for achieving this pesticide reduction. The use of biocontrol products and the reduction of sprayed doses were often associated with a low TFI. The analysis of yield evolution showed a significant mean reduction, although it was smaller than the TFI reduction. This raised the question of the impact of pesticide reduction on productivity. Further trade-off analyses are required in the future.
- Published
- 2022
- Full Text
- View/download PDF
17. A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards
- Author
-
David Gramaje, Giorgia Fedele, Emilia Díaz-Losada, Laurent Delière, Vittorio Rossi, Elisa González-Domínguez, José Luis Ramos-Saez De Ojer, Pierre Sauris, Paul Bengoa, Ana María Díez-Navajas, and Tito Caffi
- Subjects
0106 biological sciences ,0301 basic medicine ,Best disease ,food.ingredient ,biology ,Control (management) ,Scheduling (production processes) ,General Medicine ,biology.organism_classification ,01 natural sciences ,Veraison ,Fungicide ,03 medical and health sciences ,Horticulture ,030104 developmental biology ,food ,Insect Science ,Meta-analysis ,Agronomy and Crop Science ,010606 plant biology & botany ,Botrytis cinerea ,Mathematics ,Botrytis - Abstract
Background Control of Botrytis bunch rot (BBR) is currently based on the application of fungicides at four timings corresponding to specific growth stages of vines: end of flowering (A), pre-bunch closure (B), veraison (C) and before harvest (D). The current research provides a network meta-analysis of 116 studies conducted between 1963 and 2016 in nine countries, in which 14 strategies (based on combinations of 1, 2, 3, or 4 sprays applied in A, B, C, and/or D) were compared. Results When a one-spray strategy was applied, BBR control was more effective with sprays applied in A, C, or D than B. With a two-spray strategy, strategy AC provided similar control as strategy BC; strategy CD also provided good control. For a 3-spray strategy, the best disease control was consistently obtained with strategy ACD. Four-spray strategy ABCD provided the best control but often involved needless sprays so that the routine application of four sprays is not justified. Conclusions Spraying at timing A seems to be very important for achieving efficient and flexible disease control. Flexibility is reduced by spraying at timing B rather than A. © 2018 Society of Chemical Industry.
- Published
- 2018
- Full Text
- View/download PDF
18. French low-input winegrowing demonstration farms: A dataset of their operations traceability and sustainability performances
- Author
-
Olivier Nefti, Nicolas Chartier, Xavier Reboud, Thibault Peyrard, and Laurent Deliere
- Subjects
Agroecology ,Viticulture ,Pesticide ,Performance indicator ,Farm input ,Farming system ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Science (General) ,Q1-390 - Abstract
This article presents data on farming operations traceability and associated performances, for winegrowing systems with low phytosanitary inputs. 343 farms were sampled from the DEPHY network: a governmental initiative to produce references on phytosanitary-efficient cropping systems under real conditions of production. Data were collected every campaign between 2017 and 2020, by multiple extensionists who provide support to the voluntarily enlisted growers, in exchange for traceability of their practices and their commitment to reducing pesticide use. The dataset includes raw data of farming operations (date, machinery, inputs, products and doses, etc.), and performance indicators computed at farm level (Treatment Frequency Index, workload, expenses, greenhouse gas emissions, etc.). This information could be useful to researchers, policymakers and agricultural consultants. It provides leads to understand how winegrowers manage to successfully reduce their pesticide consumption, as well as assessing the triggers and entailments of such transitions.
- Published
- 2024
- Full Text
- View/download PDF
19. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest
- Author
-
Ying Zhang, Pascale Roux, Alex C.C. Wilson, Celeste R. Banfill, Roderic Guigó, Ming Tang, Carole Vincent-Monégat, Denis Tagu, Claude Rispe, Yi Min Hsiao, Angela E. Douglas, Daciana Papura, Keith Dufault-Thompson, Frédérique Hilliou, Shanlin Liu, Astrid Forneck, Nicolas Montagné, Eric Lombaert, Fabrice Legeai, Julio Rozas, Gaël Le Trionnaire, Yvan Rahbé, Anthony Bretaudeau, Jing Zhao, Silvia Hinojosa-Alvarez, Maryem Bouallègue, Joshua Wemmer, Stéphanie Robin, Jose Francisco Sánchez-Herrero, Pierre Capy, Federica Calevro, Xin Zhou, David Martínez-Torres, Martine Maïbèche, Patrice Baa-Puyoulet, Marina Marcet-Houben, Gaëlle Le Goff, Aida Ripoll-Cladellas, Mélanie Ribeiro Lopes, Wenhua Tian, Hsiao-ling Lu, François Delmotte, Toni Gabaldón, Arinder K. Arora, Paul A Umina, Rémy Félix Serre, Spencer Johnston, Olivier Catrice, Céline Roques, Paul D. Nabity, Serena Zhao, Pablo Librado, Miquel Barberà, Thomas Chertemps, Emmanuelle Jacquin-Joly, Benjamin Joubard, Leticia Bao, Jennifer A. Brisson, Camille Meslin, Honglin Feng, Manuella van Munster, Paula Escuer, Edward B. James, Rosa Fernández, Chaoyang Zhao, Mohamed Makni, Sylvie Hudaverdian, Nancy A. Moran, Iris Scatoni, Nicolas Parisot, Carole Couture, Didac Santesmasses, Laurent Delière, Alejandro Sánchez-Gracia, Biologie, Epidémiologie et analyse de risque en Santé Animale (BIOEPAR), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Scalable, Optimized and Parallel Algorithms for Genomics (GenScale), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Department of Botany and Plant Sciences [Riverside], University of California [Riverside] (UCR), University of California-University of California, Centre for Genomic Regulation [Barcelona] (CRG), Universitat Pompeu Fabra [Barcelona] (UPF)-Centro Nacional de Analisis Genomico [Barcelona] (CNAG), Institut de Biologia Evolutiva [Barcelona] (IBE / UPF - CSIC), Universitat Pompeu Fabra [Barcelona] (UPF), Cornell University [New York], Biologie Fonctionnelle, Insectes et Interactions (BF2I), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Miami [Coral Gables], Universidad de la República (UDELAR), Universitat de València (UV), Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis (FST), Université de Tunis El Manar (UTM), University of Rochester [USA], Evolution, génomes, comportement et écologie (EGCE), Institut de Recherche pour le Développement (IRD)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris ), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Santé et agroécologie du vignoble (UMR SAVE), Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Rhode Island (URI), Université de Barcelonne, Boyce Thompson Institute [Ithaca], Universität für Bodenkultur Wien [Vienne, Autriche] (BOKU), Center for Genomic Regulation (CRG-UPF), CIBER de Epidemiología y Salud Pública (CIBERESP), Institució Catalana de Recerca i Estudis Avançats (ICREA), Institut Sophia Agrobiotech (ISA), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Côte d'Azur (UCA), National Taiwan University [Taiwan] (NTU), Chang Gung Memorial Hospital [Taipei] (CGMH), Texas A&M University [College Station], Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Beijing Genomics Institute [Shenzhen] (BGI), China Agricultural University (CAU), MingDao University (MDU), University of Texas at Austin [Austin], Trafic et signalisation membranaires chez les bactéries (MTSB), Microbiologie, adaptation et pathogénie (MAP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Sciences pour l'environnement (SPE), Centre National de la Recherche Scientifique (CNRS)-Université Pascal Paoli (UPP), Génome et Transcriptome - Plateforme Génomique ( GeT-PlaGe), Plateforme Génome & Transcriptome (GET), Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Brigham & Women’s Hospital [Boston] (BWH), Harvard Medical School [Boston] (HMS), University of California, University of Melbourne, INRAE (France), Juan de la Cierva-Incorporacion Fellowship (Government of Spain) : IJCI-2015-26627, Marie Sklodowska-Curie Fellowship : 747607, US National Institute of Food and Agriculture : 12216941, University of Miami Maytag Fellowship from the Department of Biology, William H. Evoy Graduate Research Support Fund from the Department of Biology, Molecular Biosciences Graduate Research, Award from the Department of Biology, Springer Nature, European Project: 764840,IGNITE, École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Rennes (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), University of California [Riverside] (UC Riverside), University of California (UC)-University of California (UC), Department of Entomology [CALS], College of Agriculture and Life Sciences [Cornell University] (CALS), Cornell University [New York]-Cornell University [New York], Universidad de la República [Montevideo] (UDELAR), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Universitat de Barcelona (UB), Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU), Université Nice Sophia Antipolis (1965 - 2019) (UNS), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Université Pascal Paoli (UPP)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of California (UC), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon, European Commission, Ministerio de Economía y Competitividad (España), National Institute of Food and Agriculture (US), Miami University, Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Institut National de la Recherche Agronomique (INRA)-École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
- Subjects
0106 biological sciences ,Fil·loxera ,Physiology ,[SDV]Life Sciences [q-bio] ,Introduced species ,Plant Science ,01 natural sciences ,Genome ,Gene duplications ,Structural Biology ,Vitis ,lcsh:QH301-705.5 ,ComputingMilieux_MISCELLANEOUS ,2. Zero hunger ,0303 health sciences ,education.field_of_study ,Host plant interactions ,Endosymbiosis ,biology ,food and beverages ,Biological Sciences ,Biological Evolution ,General Agricultural and Biological Sciences ,Rootstock ,Infection ,Daktulosphaira vitifoliae ,Biotechnology ,Research Article ,Population ,010603 evolutionary biology ,General Biochemistry, Genetics and Molecular Biology ,Hemiptera ,03 medical and health sciences ,Genetics ,Insect pests ,Animals ,Plagues d'insectes ,Adaptation ,Biological invasions ,Genomes ,education ,Phylloxera ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,Obligate ,Human Genome ,Viticultura ,Cell Biology ,15. Life on land ,biology.organism_classification ,Biological ,Effectors ,Climate Action ,lcsh:Biology (General) ,13. Climate action ,Evolutionary biology ,Arthropod genomes ,Introduced Species ,Insect ,Animal Distribution ,Developmental Biology - Abstract
Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. Conclusions: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture., This work has been funded by INRAE (France) and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 764840 for the ITN IGNITE project. Rosa Fernandez was funded by a Juan de la Cierva-Incorporación Fellowship (Government of Spain, IJCI-2015-26627) and a Marie Skłodowska-Curie Fellowship (747607). Angela Douglas was supported by the US National Institute of Food and Agriculture Grant 12216941. Honglin Feng was supported by a University of Miami Maytag Fellowship, William H. Evoy Graduate Research Support Fund, and a Molecular Biosciences Graduate Research Award from the Department of Biology.
- Published
- 2020
- Full Text
- View/download PDF
20. Microbial networks inferred from environmental DNA data for biomonitoring ecosystem change: Strengths and pitfalls
- Author
-
Corinne Vacher, Charlie Pauvert, Jessica Vallance, David A. Bohan, Laurent Delière, Marc Buée, Didac Barroso-Bergadà, Agroécologie [Dijon], Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Biodiversité, Gènes & Communautés (BioGeCo), Université de Bordeaux (UB)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Santé et agroécologie du vignoble (UMR SAVE), Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Interactions Arbres-Microorganismes (IAM), Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), We thank the INRA MEM metaprogram (Meta-Omics of Microbial Ecosystems) for financial and scientific support. Sequencing was funded by the INRA MEM MetaBAR project and bioinformatic and statistical analyses were performed as part of the INRA MEM Learn-biocontrol project. Additional funding was received from the LABEX COTE (ANR-10-LABX-45), the LABEX CEBA (ANR-10-LABX-25-01) and INRA EcoServ metaprogram on ecosystem services (IBISC project) and the Aquitaine Region (Athene project, n°2016-1R20301-00007218). CP’s PhD grant was funded by the INRA and Bordeaux Sciences Agro (BSA). DBB’s grant was funded by the ANR (ANR-17-CE32-0011) and SYNGENTA CROP PROTECTION AG (TK527180). The management of the experimental site was partly funded by the AFB (French Agency for Biodiversity) within the DEPHY network., ANR-17-CE32-0011,NGB,Biosurveillance Next-Gen des changements dans la structure et le fonctionnement des écosystèmes(2017), ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010), and ANR-10-LABX-0025,CEBA,CEnter of the study of Biodiversity in Amazonia(2010)
- Subjects
0106 biological sciences ,0301 basic medicine ,Microbial Consortia ,Inference ,Environmental DNA ,Microbial networks ,Biology ,010603 evolutionary biology ,01 natural sciences ,Network inference ,Ecosystem services ,Ecologie des communautés ,03 medical and health sciences ,Biomonitoring ,Genetics ,Ecosystem ,Relevance (information retrieval) ,Community ecology ,Ecology, Evolution, Behavior and Systematics ,2. Zero hunger ,Community ,business.industry ,Environmental resource management ,Network comparison ,15. Life on land ,DNA, Environmental ,Ecological network ,030104 developmental biology ,Metabarcoding ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,business ,Biotechnology ,Environmental Monitoring - Abstract
International audience; Environmental DNA contains information on the species interaction networks that support ecosystem functions and services. Next‐Generation Biomonitoring proposes the use of this data to reconstruct ecological networks in real‐time and then compute network‐level properties to assess ecosystem change. We investigated the relevance of this proposal by assessing: (1) the replicability of DNA‐based networks in the absence of ecosystem change; and, (2) the benefits and shortcomings of community‐ and network‐level properties for monitoring change. We selected crop‐associated microbial networks as a case study since they support disease regulation services in agroecosystems and analyzed their response to change in agricultural practice between organic and conventional systems. Using two statistical methods of network inference, we showed that network‐level properties, especially β‐properties, could detect change. Moreover, consensus networks revealed robust signals of interactions between the most abundant species, that differed between agricultural systems. These findings complemented those obtained with community‐level data, that showed, in particular, a greater microbial diversity in the organic system. The limitations of network‐level data included (i) the very high variability of network replicates within each system; (ii) the low number of network replicates per system, due to the large number of samples needed to build each network; and, (iii) the difficulty in interpreting links of inferred networks. Tools and frameworks developed over the last decade to infer and compare microbial networks are therefore relevant to biomonitoring, provided that the DNA metabarcoding datasets are large enough to build many network replicates and progress is made to increase network replicability and interpretation.
- Published
- 2019
- Full Text
- View/download PDF
21. Inferred microbial networks lack replicability: consequences for next-generation biomonitoring
- Author
-
Charlie Pauvert, Corinne Vacher, David A. Bohan, Jessica Vallance, Marc Buée, and Laurent Delière
- Subjects
0106 biological sciences ,2. Zero hunger ,0303 health sciences ,Community ,business.industry ,Environmental resource management ,15. Life on land ,Biology ,010603 evolutionary biology ,01 natural sciences ,Crop protection ,Ecosystem services ,03 medical and health sciences ,13. Climate action ,Agriculture ,Biomonitoring ,Species evenness ,Species richness ,Cropping system ,business ,030304 developmental biology - Abstract
Plant-associated microbial interaction networks protect plants against disease. There is, therefore, a need to monitor in real time their responses to environmental changes to predict disease risk and adjust crop protection strategies. Next-Generation Biomonitoring (NGB) proposes to reconstruct automatically these networks from metabarcoding data, to complement ecological community properties commonly used for ecosystem health assessment. This study aimed to evaluate the benefits and shortcomings of community-level and network-level properties for biomonitoring. We specifically investigated whether microbial networks inferred from metabarcoding data show robust responses to agricultural practices, using the grapevine microbiota as a study system. Our results demonstrate a strong footprint of the agricultural practice on the metabarcoding data, when analyzed at the community level. The richness, diversity and evenness of fungal communities were significantly higher in organic than conventional plots. The cropping system also affected the composition of grapevine foliar fungal communities significantly. Contrary to our expectations, microbial networks were less sensitive to changes in agricultural practices than microbial communities, confirming that NGB should not only consider network-level properties but also community-level properties. Moreover, we found that microbial networks lacked replicability within a cropping system but that consensus networks, built from several network replicates, could generate relevant hypotheses of microbial interactions. As things stand, community-level properties appear to be a more reliable and statistically powerful monitoring option than network-level properties. Future developments, especially in network inference methods, are likely to challenge our findings and help to improve the monitoring of the ecosystem services provided by the plant microbiota.
- Published
- 2019
- Full Text
- View/download PDF
22. Field evaluation of an expertise-based formal decision system for fungicide management of grapevine downy and powdery mildews
- Author
-
Laurent Delière, Olivier Naud, Philippe Cartolaro, and Bertrand Léger
- Subjects
2. Zero hunger ,0106 biological sciences ,0303 health sciences ,Decision support system ,business.industry ,General Medicine ,01 natural sciences ,Biotechnology ,Crop protection ,Fungicide ,03 medical and health sciences ,Pesticide use ,Agronomy ,Decision system ,Disease management (agriculture) ,Agriculture ,Insect Science ,Business ,Viticulture ,Agronomy and Crop Science ,030304 developmental biology ,010606 plant biology & botany - Abstract
BACKGROUND: In France, viticulture accounts for 20% of the phytochemicals sprayed in agriculture, and 80% of grapevine pesticides target powdery and downy mildews. European policies promote pesticide use reduction, and new methods for low-input disease management are needed for viticulture. Here, we present the assessment, in France, of Mildium® ,an ew decision support system for the management of grapevine mildews. RESULTS: A 4 year assessment trial of Mildium has been conducted in a network of 83 plots distributed across the French vineyards. In most vineyards, Mildium has proved to be successful at protecting the crop while reducing by 30–50% the number of treatments required when compared with grower practices. CONCLUSION: The design of Mildium results from the formalisation of a common management of both powdery and downy mildews and eventually leads to a significant fungicide reduction at the plot scale. It could encourage stakeholders to design customised farm-scale and low-chemical-input decision support methods. © 2014 Society of Chemical Industry Supporting information may be found in the online version of this article.
- Published
- 2014
- Full Text
- View/download PDF
23. Geographic Distribution of Cryptic Species of Plasmopara viticola Causing Downy Mildew on Wild and Cultivated Grape in Eastern North America
- Author
-
François Delmotte, Mizuho Nita, Mélanie Rouxel, David M. Gadoury, Jiang Lu, Odile Carisse, Alice Wise, Sylvie Richard-Cervera, Anton Baudoin, Pere Mestre, Michael A. Ellis, Laurent Delière, A. M. C. Schilder, Santé et agroécologie du vignoble (UMR SAVE), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Santé de la vigne et qualité du vin (SVQV), Institut National de la Recherche Agronomique (INRA)-Université Louis Pasteur - Strasbourg I, Bioinformatics Institute, Virginia Polytechnic Institute and State University [Blacksburg], Agriculture and Agri-Food [Ottawa] (AAFC), Ohio State University [Columbus] (OSU), Cornell University [New York], Florida Agricultural and Mechanical University (FAMU), University of Florida [Gainesville] (UF), Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMRSV), Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut des Sciences de la Vigne et du Vin (ISVV), Michigan State University [East Lansing], Michigan State University System, French National Research Agency [ANR-07-BDIV-003], French Ministry for Agriculture and Fisheries [CTPS-006-2008-vigne], and Foundation Jean Poupelain (Javrezac, France)
- Subjects
Species complex ,Range (biology) ,[SDV]Life Sciences [q-bio] ,Molecular Sequence Data ,Parthenocissus quinquefolia ,Plant Science ,Host Specificity ,Plasmopara ,DNA, Ribosomal Spacer ,Botany ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Vitis ,Phylogeny ,Plant Diseases ,Appalachian Region ,Peronospora ,Base Sequence ,Geography ,biology ,Quebec ,Sequence Analysis, DNA ,Parthenocissus ,biology.organism_classification ,plant pathogen ,Center of origin ,Plant Leaves ,Plasmopara viticola ,Florida ,Downy mildew ,Great Lakes Region ,Sequence Alignment ,Agronomy and Crop Science - Abstract
Rouxel, M., Mestre, P., Baudoin, A., Carisse, O., Deliere, L., Ellis, M. A., Gadoury, D., Lu, J., Nita, M., Richard-Cervera, S., Schilder, A., Wise, A., and Delmotte, F. 2014. Geographic distribution of cryptic species of Plasmopara viticola causing downy mildew on wild and cultivated grape in eastern North America. Phytopathology 104:692-701. The putative center of origin of Plasmopara viticola, the causal agent of grape downy mildew, is eastern North America, where it has been described on several members of the family Vitaceae (e.g., Vitis spp., Parthenocissus spp., and Ampelopsis spp.). We have completed the first large-scale sampling of P. viticola isolates across a range of wild and cultivated host species distributed throughout the above region. Sequencing results of four partial genes indicated the presence of a new P. viticola species on Vitis vulpina in Virginia, adding to the four cryptic species of P. viticola recently recorded. The phylogenetic analysis also indicated that the P. viticola species found on Parthenocissus quinquefolia in North America is identical to Plasmopara muralis in Europe. The geographic distribution and host range of five pathogen species was determined through analysis of the internal transcribed spacer polymorphism of 896 isolates of P. viticola. Among three P. viticola species found on cultivated grape, one was restricted to Vitis interspecific hybrids within the northern part of eastern North America. A second species was recovered from V. vinifera and V. labrusca, and was distributed across most of the sampled region. A third species, although less abundant, was distributed across a larger geographical range, including the southern part of eastern North America. P. viticola clade aestivalis predominated (83% of isolates) in vineyards of the European winegrape V. vinifera within the sampled area, indicating that a single pathogen species may represent the primary threat to the European host species within eastern North America.
- Published
- 2014
- Full Text
- View/download PDF
24. Impact of Plasmopara viticola infection of Merlot and Cabernet Sauvignon grapes on wine composition and flavor
- Author
-
Pascal Guilbault, Alexandre Pons, Laurent Delière, Philippe Darriet, Ludivine Davidou, Nadia Mouakka, Pierre Sauris, Jean Christophe Crachereau, Unité de Recherche Oenologie [Villenave d'Ornon], Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV), Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMRSV), Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut des Sciences de la Vigne et du Vin (ISVV), Université de Bordeaux (UB), Institut des Sciences de la Vigne et du Vin, Seguin Moreau, Institut des Sciences de la Vigne et du Vin (ISVV)-Université de Bordeaux (UB)-Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMR SAVE), USC1366 Œnologie, and Institut National de la Recherche Agronomique (INRA)
- Subjects
0106 biological sciences ,Ripeness in viticulture ,Vin Rouge ,[SDV]Life Sciences [q-bio] ,Organoleptic ,wine aging ,Wine ,Berry ,01 natural sciences ,Analytical Chemistry ,Vitis ,Food science ,Flavor ,grape disease ,Composé volatil ,Pourriture brune ,Merlot ,biology ,010401 analytical chemistry ,Aging of wine ,Cabernet ,General Medicine ,red wine ,Herbaceous plant ,biology.organism_classification ,0104 chemical sciences ,wilting ,off-flavor ,Plasmopara viticola ,Vitis vinifera ,Fruit ,Pyrazines ,010606 plant biology & botany ,Food Science - Abstract
This work reports the identification of volatile compounds involved in the particular and atypical flavor detected in Vitis vinifera red Merlot and Cabernet Sauvignon wines made with grapes infected and wilted by brown rot (Plasmopara viticola). Must made from withered grapes had green aromas while red wines were marked by intense odor reminiscent of green, herbaceous notes but also figs and cooked fruit. Thanks to GC-O and GC–MS analysis, cooked fruit notes were identified as 3-methyl-2,4-nonanedione, γ-nonalactone and γ-decalactone, whereas herbaceous and green aromas were identified as (Z)-1,5-octadien-3-one and 3-isobutyl-2-methoxypyrazine. We show that the organoleptic impact of P. viticola is more pronounced in Merlot wines compared to Cabernet Sauvignon ones. The highest levels of 3-methyl-2,4-nonanedione (75.3 ng/L) were found in old Merlot wines made with 20% infected berries, suggesting the incidence of berry quality on the ability of a wine to age.
- Published
- 2017
- Full Text
- View/download PDF
25. Soft selective sweeps in fungicide resistance adaptation: recurrent mutations without fitness costs in grapevine downy mildew
- Author
-
Sylvie Richart Cervera, Chloé E. L. Delmas, Isabelle D. Mazet, Yann Dussert, Carole Couture, François Delmotte, Laurent Delière, Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMR SAVE), Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut des Sciences de la Vigne et du Vin (ISVV), and Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMRSV)
- Subjects
0106 biological sciences ,0301 basic medicine ,polymorphisme nucléotidique simple (SNP) ,Pesticide resistance ,[SDE.MCG]Environmental Sciences/Global Changes ,QoI ,Drug Resistance ,Genetic Fitness ,Drug resistance ,01 natural sciences ,Evolution, Molecular ,polymorphisme génétique ,03 medical and health sciences ,vitis vinifera ,Botany ,Genetics ,genetic polymorphism ,mildiou de la vigne ,Vitis ,Selection, Genetic ,Ecology, Evolution, Behavior and Systematics ,CAA ,Plant Diseases ,Local adaptation ,Polymorphism, Genetic ,biology ,aggressiveness ,biology.organism_classification ,plant pathogen ,Fungicides, Industrial ,grapevine ,Fungicide ,Phenotype ,030104 developmental biology ,Oomycetes ,13. Climate action ,Plasmopara viticola ,Mutation ,Downy mildew ,France ,Adaptation ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,vigne ,plasmopara viticola ,local adaptation ,Microsatellite Repeats ,010606 plant biology & botany - Abstract
Adaptation produces hard or soft selective sweeps depending on the supply of adaptive genetic polymorphism. The evolution of pesticide resistance in parasites is a striking example of rapid adaptation that can shed light on selection processes. Plasmopara viticola, which causes grapevine downy mildew, forms large populations, in which resistance has rapidly evolved due to excessive fungicide use. We investigated the pathways by which fungicide resistance has evolved in this plant pathogen, to determine whether hard or soft selective sweeps were involved. An analysis of nucleotide polymorphism in 108 field isolates from the Bordeaux region revealed recurrent mutations of cytb and CesA3 conferring resistance to quinone outside inhibiting (QoI) and carboxylic acid amide (CAA) fungicides, respectively. Higher levels of genetic differentiation were observed for nucleotide positions involved in resistance than for neutral microsatellites, consistent with local adaptation of the pathogen to fungicide treatments. No hitchhiking was found between selected sites and neighbouring polymorphisms in cytb and CesA3, confirming multiple origins of resistance alleles. We assessed resistance costs, by evaluating the fitness of the 108 isolates through measurements of multiple quantitative pathogenicity traits under controlled conditions. No significant differences were found between sensitive and resistant isolates, suggesting that fitness costs may be absent or negligible. Our results indicate that the rapid evolution of fungicide resistance in P. viticola has involved a soft sweep.
- Published
- 2017
- Full Text
- View/download PDF
26. Draft Genome Sequence of Plasmopara viticola , the Grapevine Downy Mildew Pathogen
- Author
-
Jérôme Gouzy, Marie-Christine Piron, Yann Dussert, Sylvie Richart-Cervera, Isabelle D. Mazet, François Delmotte, Pere Mestre, Laurent Delière, Carole Couture, Ludovic Legrand, Santé et agroécologie du vignoble (UMR SAVE), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Santé de la vigne et qualité du vin (SVQV), and Université de Strasbourg (UNISTRA)-Institut National de la Recherche Agronomique (INRA)
- Subjects
0301 basic medicine ,Eukaryotes ,[SDV]Life Sciences [q-bio] ,résistance de l'hôte ,Biology ,Genome ,analyse de génome ,03 medical and health sciences ,vitis vinifera ,Genetics ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Molecular Biology ,Pathogen ,Whole genome sequencing ,Oomycete ,interaction plante pathogène ,Host resistance ,Host (biology) ,food and beverages ,biology.organism_classification ,030104 developmental biology ,Plasmopara viticola ,[SDE]Environmental Sciences ,oomycète pathogène ,Downy mildew ,plasmopara viticola - Abstract
Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance.
- Published
- 2016
- Full Text
- View/download PDF
27. The reliability of leaf bioassays for predicting disease resistance on fruit: a case study on grapevine resistance to downy and powdery mildew
- Author
-
François Delmotte, Agnes Calonnec, C. Schneider, Philippe Cartolaro, Laurent Delière, and Sabine Wiedemann-Merdinoglu
- Subjects
0106 biological sciences ,2. Zero hunger ,0303 health sciences ,biology ,Field experiment ,food and beverages ,Plant Science ,Horticulture ,Quantitative trait locus ,Marker-assisted selection ,Plant disease resistance ,biology.organism_classification ,01 natural sciences ,03 medical and health sciences ,Agronomy ,Plasmopara viticola ,Genetics ,Bioassay ,Downy mildew ,Agronomy and Crop Science ,Powdery mildew ,030304 developmental biology ,010606 plant biology & botany - Abstract
This study was designed to assess the reliability of grapevine leaf bioassays for predicting disease resistance on fruit in the field. The efficacy of various grapevine quantitative trait loci (QTLs) for conferring resistance to downy and powdery mildew was evaluated in bioassays and in a 2-year field experiment for downy mildew. The resistance genes studied were inherited from Muscadinia rotundifolia (Rpv1 and Run1 )a nd from AmericanVitis species through cv. Regent (QTLRgP and QTLRgD). In bioassays, genotypes carrying Run1 blocked powdery mildew development at early stages. Genotypes combining Run1 with QTLRgP displayed no greater level of resistance. For downy mildew, genotypes carrying Rpv1 and ⁄or QTLRgD were more resistant than the susceptible cv. Merlot, and showed a high level of leaf resistance in the field (
- Published
- 2012
- Full Text
- View/download PDF
28. Efficacy of fungicides with various modes of action in controlling the early stages of an Erysiphe necator-induced epidemic
- Author
-
Laurent Delière, Anne Sophie Miclot, Agnes Calonnec, Pierre Sauris, Patrice Rey, Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMRSV), and Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut des Sciences de la Vigne et du Vin (ISVV)
- Subjects
0106 biological sciences ,ERYSIPHE NECATOR ,[SDV]Life Sciences [q-bio] ,Biology ,TRIFLOXYSTROBIN ,01 natural sciences ,Toxicology ,03 medical and health sciences ,chemistry.chemical_compound ,Ascomycota ,LEAF-DISC BIOSSAY ,Bioassay ,Vitis ,Epidemics ,Plant Diseases ,030304 developmental biology ,Tebuconazole ,0303 health sciences ,TEBUCONAZOLE ,General Medicine ,Erysiphe necator ,Limiting ,Spores, Fungal ,POWDERY MILDEW ,QUINOXYFEN ,Fungicides, Industrial ,3. Good health ,Spore ,Fungicide ,chemistry ,Agronomy ,Insect Science ,Quinolines ,UNCINULA NECATOR ,Minor disruption ,Agronomy and Crop Science ,Powdery mildew ,010606 plant biology & botany - Abstract
BACKGROUND: Limiting the use of fungicides is due to become an important issue in managing Erysiphe necator (Schwein) Burrillinfectionsinvineyards.Theauthorsdeterminedhow threefungicides currentlyusedby vinegrowers could be managed to control the early stages of an E.necator-induced epidemic. RESULTS: Leaf-disc bioassays and field experiments suggested that the protectant quinoxyfen induced minor disruption in E. necator development, but compounds with protectant and curative properties (tebuconazole and trifloxystrobin) caused significant, although different, disruption during E. necator-induced epidemics. Bioassays showed that each of the antifungals were most effective at different stages of fungal development, tebuconazole before sporulation and trifloxystrobin after sporulation of the colonies. Results from the bioassay also highlighted likely occurrences in the field, where several stages of fungal development are encountered simultaneously. CONCLUSION: The present findings were complementary: leaf-disc tests showed when the fungicides were most effective at inhibiting E. necator infection cycles; the field trial provided results in terms of incidence and severity of disease on bunches withoutreferencetothepathogeniccycledevelopment.Aprotectionstrategycombiningthedifferenttypesoffungicideunder study is suggested. c � 2010 Society of Chemical Industry Supportinginformationmaybefoundintheonlineversionofthisarticle.
- Published
- 2010
- Full Text
- View/download PDF
29. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew
- Author
-
Frédéric Fabre, François Delmotte, Isabelle D. Mazet, Jérôme Jolivet, Laurent Delière, Chloé E. L. Delmas, Sylvie Richart Cervera, Santé et agroécologie du vignoble (UMR SAVE), and Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
- Subjects
0301 basic medicine ,quantitative resistance ,caractère phénotypique ,[SDV]Life Sciences [q-bio] ,fitness cost ,Quantitative trait locus ,différenciation génétique ,evolvability ,plante résistante ,03 medical and health sciences ,Botany ,Genetics ,mildiou de la vigne ,inoculation ,host specificity ,erosion ,obligate plant pathogen ,virulence ,Vitis vinifera ,Pathogen ,Ecology, Evolution, Behavior and Systematics ,2. Zero hunger ,biology ,Directional selection ,Host (biology) ,Phenotypic trait ,Original Articles ,gestion durable ,biology.organism_classification ,030104 developmental biology ,extraction d'adn ,Plasmopara viticola ,Downy mildew ,Original Article ,Adaptation ,General Agricultural and Biological Sciences ,agent pathogène - Abstract
International audience; An understanding of the evolution of pathogen quantitative traits in response to host selective pressures is essential for the development of durable management strategies for resistant crops. However, we still lack experimental data on the effects of partial host resistance on multiple phenotypic traits (aggressiveness) and evolutionary strategies in pathogens. We performed a cross-inoculation experiment with four grapevine hosts and 103 isolates of grapevine downy mildew (Plasmopara viticola) sampled from susceptible and partially resistant grapevine varieties. We analysed the neutral and adaptive genetic differentiation of five quantitative traits relating to pathogen transmission. Isolates from resistant hosts were more aggressive than isolates from susceptible hosts, as they had a shorter latency period and higher levels of spore production. This pattern of adaptation contrasted with the lack of neutral genetic differentiation, providing evidence for directional selection. No specificity for a particular host variety was detected. Adapted isolates had traits that were advantageous on all resistant varieties. There was no fitness cost associated with this genetic adaptation, but several trade-offs between pathogen traits were observed. These results should improve the accuracy of prediction of fitness trajectories for this biotrophic pathogen, an essential element for the modelling of durable deployment strategies for resistant varieties.
- Published
- 2015
- Full Text
- View/download PDF
30. Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew
- Author
-
Sylvie Richart-Cervera, C. Schneider, Pere Mestre, Hanns-Heinz Kassemeyer, Laurent Delière, Pál Kozma, François Delmotte, Mélanie Rouxel, Santé et agroécologie du vignoble (UMR SAVE), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Santé de la vigne et qualité du vin (SVQV), Institut National de la Recherche Agronomique (INRA)-Université Louis Pasteur - Strasbourg I, Staatliches Weinbauinstitut, Partenaires INRAE, and University of Pecs
- Subjects
0106 biological sciences ,Microbiology (medical) ,erosion of quantitative host resistance ,[SDV]Life Sciences [q-bio] ,Biology ,Plant disease resistance ,01 natural sciences ,Microbiology ,03 medical and health sciences ,vitis vinifera ,Botany ,Genetics ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Vitis ,Molecular Biology ,Ecology, Evolution, Behavior and Systematics ,Disease Resistance ,030304 developmental biology ,2. Zero hunger ,Oomycete ,0303 health sciences ,Geography ,Host (biology) ,Sporangium ,fungi ,food and beverages ,15. Life on land ,aggressiveness ,biology.organism_classification ,life-history traits ,regent grape cultivar ,Infectious Diseases ,Oomycetes ,Plasmopara viticola ,Host-Pathogen Interactions ,Downy mildew ,Host adaptation ,Adaptation ,fungal plant pathogen ,010606 plant biology & botany - Abstract
International audience; Crop pathogens evolve rapidly to adapt to their hosts. The use of crops with quantitative disease resistance is expected to alter selection of pathogen life-history traits. This may result in differential adaptation of the pathogen to host cultivars and, sometimes, to the erosion of quantitative resistance. Here, we assessed the level of host adaptation in an oomycete plant pathogenic species. We analysed the phenotypic and genetic variability of 17 Plasmopara viticola isolates collected on Vitis vinifera and 35 isolates from partially resistant varieties (Regent and genotypes carrying the Rpv1 gene). Cross-inoculation experiments assessed two components of aggressiveness and a life-history trait of the pathogen: disease severity, sporangial production and sporangia size. The results contribute evidence to the emergence of P. viticola aggressive isolates presenting a high level of sporulation on the partially resistant Regent. By contrast, no adaptation to the Rpv1 gene was found in this study. The erosion of Regent resistance may have occurred in less than 5 years and at least three times independently in three distant wine-producing areas. Populations from resistant varieties showed a significant increase in sporangia production capacity, indicating an absence of fitness costs for this adaptation. The increase in the number of sporangia was correlated with a reduction in sporangia size, a result which illustrates how partial plant disease resistance can impact selection of the pathogen’s life-history traits. This case study on grapevine downy mildew shows how new plant pathogen populations emerge in agro-ecosystems by adapting to partial host resistance. This adaptive pattern highlights the need for wise management of plant partial disease resistance to ensure its sustainability over time.
- Published
- 2014
- Full Text
- View/download PDF
31. Simultaneous quantification of sporangia and zoospores in a biotrophic oomycete with an automatic particle analyzer: Disentangling dispersal and infection potentials
- Author
-
Chloé E. L. Delmas, Jérôme Jolivet, François Delmotte, Isabelle D. Mazet, Laurent Delière, Santé et agroécologie du vignoble (UMR SAVE), and Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
- Subjects
Microbiological Techniques ,0106 biological sciences ,Microbiology (medical) ,Zoospore ,[SDV]Life Sciences [q-bio] ,01 natural sciences ,Microbiology ,03 medical and health sciences ,Quantitative Trait, Heritable ,sporangia ,Propagule ,Botany ,oomycete ,Vitis ,Vitis vinifera ,Molecular Biology ,030304 developmental biology ,2. Zero hunger ,Oomycete ,0303 health sciences ,biology ,Sporangium ,Agricultural ecosystems ,fungi ,biology.organism_classification ,Phenotype ,Oomycetes ,Plasmopara viticola ,Biological dispersal ,dispersion ,grapevine downy mildew ,zoospores ,010606 plant biology & botany - Abstract
International audience; Quantitative pathogenicity traits drive the fitness and dynamics of pathogens in agricultural ecosystems and are key determinants of the correct management of crop production over time. However, traits relating to infection potential (i.e. zoospore production) have been less thoroughly investigated in oomycetes than traits relating to dispersal (i.e. sporangium production). We simultaneously quantified sporangium and zoospore production in a biotrophic oomycete, for the joint assessment of life-cycle traits relating to dispersal and infection potentials. We used an automatic particle analyzer to count and size the sporangia and/or zoospores produced at t = 0 min (no zoospore release) and t = 100 min (zoospore release) in 43 Plasmopara viticola isolates growing on the susceptible Vitis vinifera cv. Cabernet Sauvignon. We were able to differentiate and quantify three types of propagules from different stages of the pathogen life cycle: full sporangia, empty sporangia and zoospores. The method was validated by comparing the sporangium and zoospore counts obtained with an automatic particle analyzer and under a stereomicroscope (manual counting). Each isolate produced a mean of 5.8 ± 1.9 (SD) zoospores per sporangium. Significant relationships were found between sporangium production and sporangium size (negative) and between sporangium size and the number of zoospores produced per sporangium (positive). However, there was a significant positive correlation between total sporangium production and total zoospore production. This procedure can provide a valid quantification of the production of both sporangia and zoospores by oomycetes in large numbers of samples, facilitating joint estimation of the dispersal and infection potentials of plant pathogens in various agro-ecological contexts.
- Published
- 2014
- Full Text
- View/download PDF
32. A bioeconomic model of downy mildew damage on grapevine for evaluation of control strategies
- Author
-
Pascal Leroy, Philippe Cartolaro, Adeline Alonso Ugaglia, Nathalie Smits, Laurent Delière, Jean-Pascal Goutouly, Marc Raynal, Alimentation et sciences sociales (ALISS), Institut National de la Recherche Agronomique (INRA), Fonctionnement et conduite des Systèmes de culture Tropicaux et Méditerranéens, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Santé et agroécologie du vignoble (UMR SAVE), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Ecophysiologie et Génomique Fonctionnelle de la Vigne (UMR EGFV), Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1-Université Victor Segalen - Bordeaux 2-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Institut Français de la Vigne et du Vin (IFV), and Institut des Sciences de la Vigne et du Vin (ISVV)
- Subjects
0106 biological sciences ,[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,Adaptive strategies ,yield loss ,[QFIN.RM]Quantitative Finance [q-fin]/Risk Management [q-fin.RM] ,01 natural sciences ,Gross margin ,Crop ,Yield (wine) ,pesticide reduction ,2. Zero hunger ,biology ,Phenology ,04 agricultural and veterinary sciences ,15. Life on land ,biology.organism_classification ,Fungicide ,Agronomy ,treatment strategy evaluation ,crop protection modeling ,Plasmopara viticola ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Downy mildew ,Agronomy and Crop Science ,plasmopara viticola ,010606 plant biology & botany - Abstract
International audience; In order to reduce pesticide use in vineyards, we propose a bioeconomic model to evaluate different fungicide treatment strategies. This model estimates the development of the downy mildew Plasmopara viticola for a given year’s weather on a grapevine plot, and predicts the damage done, the yield loss, and the resulting partial gross margin, depending on the chosen protection strategy. Grapevine growth and phenology are simulated with the STICS grapevine crop model according to the year’s weather; fungal components quantify downy mildew development; damage onto leaves and fruits is characterized as a percent reduction of potential leaf area and yield; the effect of fungicide treatments is simulated as a partial protection against infection; the economic result is calculated at plot level, taking into account simulated yield, local economic conditions and costs of observations and sprayings. The model parameters were estimated using three sets of experimental data from vineyards in the French wine-growing region of Bordeaux. Using these parameter values, the model was used to evaluate the following five protection strategies: 3 systematic fungicide spraying strategies with 2-, 3- or 4-week intervals, the “Mildium” adaptive strategy, which includes field observations and decision rules, and a control untreated strategy. Yield losses and the resulting partial gross margins were calculated for 23 annual weather examples for each strategy and the statistics of these strategies were compared. The adaptive strategy was found to be slightly less protective on average against downy mildew than the 2- week systematic spray strategy. However its low variability ensures sustainability in terms of grower’s income, while reducing by one third the number of sprayings. The model hypotheses and simulation results are discussed, in relation to the particular economic context of the “Bordeaux” protected designation of origin with the objective of reducing pesticide use in vineyards.
- Published
- 2013
- Full Text
- View/download PDF
33. GrapeMilDeWS
- Author
-
Bertrand Léger, Lionel Delbac, Michel Clerjeau, Laurent Delière, Olivier Naud, Véronique Bellon-Maurel, Philippe Cartolaro, Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMRSV), Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut des Sciences de la Vigne et du Vin (ISVV), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Basil Manos, Konstantinos Paparrizos, Nikolaos Matsatsinis, and Jason Papathanasiou
- Subjects
0106 biological sciences ,Integrated pest management ,Agroforestry ,Computer science ,[SDV]Life Sciences [q-bio] ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,04 agricultural and veterinary sciences ,Decision process ,01 natural sciences ,010606 plant biology & botany - Abstract
GrapeMilDeWS is an expert-based approach for the integrated pest management (IPM) of two of the major pathogens of grapevine (Vitis vinifera): Erysiphe necator which causes powdery mildew and Plasmopara viticola which causes downy mildew. GrapeMilDeWS has been designed and tested by a team of phytopathologists. It is presented here as a formal model in Statechart. We argue that formal modelling under the Discrete Event System paradigm (DES) is effective to model this kind of Decision Workflow System. The formalism is introduced and the GrapeMilDeWS system thoroughly described. Formal modelling is discussed as a representation of the dynamics of decision making in pest management and as an aid to large scale experiments
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.