236 results on '"Lenkowicz J."'
Search Results
2. POS1142 DEVELOPMENT AND VALIDATION OF A RULE-BASED FRAMEWORK FOR AUTOMATED IDENTIFICATION OF LONGITUDINAL CLINICAL FEATURES ABOUT SYSTEMIC LUPUS ERYTHEMATOSUS PATIENTS FROM ELECTRONIC HEALTH RECORDS
- Author
-
Ortolan, A., primary, Lilli, L., additional, Bosello, S. L., additional, Antenucci, L., additional, Masciocchi, C., additional, Lenkowicz, J., additional, Cerasuolo, P., additional, Lanzo, L., additional, Piunno, S., additional, Castellino, G., additional, Gorini, M., additional, Patarnello, S., additional, and D’ Agostino, M. A., additional
- Published
- 2024
- Full Text
- View/download PDF
3. AB1067 VALIDATION OF MACHINE LEARNING ALGORITHM TO CHARACTERIZE DISEASE COMPLEXITY AND FLARES IN SYSTEMIC LUPUS ERYTHEMATOSUS
- Author
-
Bosello, S. L., primary, Lilli, L., additional, Masciocchi, C., additional, Antenucci, L., additional, Lenkowicz, J., additional, Ortolan, A., additional, Cerasuolo, P. G., additional, Lanzo, L., additional, Piunno, S., additional, Castellino, G., additional, Gorini, M., additional, Patarnello, S., additional, and D’agostino, M. A., additional
- Published
- 2024
- Full Text
- View/download PDF
4. On dose cube pixel spacing pre-processing for features extraction stability in dosiomic studies
- Author
-
Placidi, L., Cusumano, D., Lenkowicz, J., Boldrini, L., and Valentini, V.
- Published
- 2021
- Full Text
- View/download PDF
5. Stability of dosomics features extraction on grid resolution and algorithm for radiotherapy dose calculation
- Author
-
Placidi, L., Lenkowicz, J., Cusumano, D., Boldrini, L., Dinapoli, N., and Valentini, V.
- Published
- 2020
- Full Text
- View/download PDF
6. A cost-effectiveness analysis of an integrated clinical-radiogenomic screening program for the identification of BRCA 1/2 carriers (e-PROBE study
- Author
-
Di Pilla, Andrea, Nero, Camilla, Specchia, Maria Lucia, Ciccarone, Francesca, Boldrini, Luca, Lenkowicz, Jacopo, Alberghetti, B, Fagotti, Anna, Testa, Antonia Carla, Valentini, Vincenzo, Sala, Evi, Scambia, Giovanni, Di Pilla A, Nero C, Specchia ML (ORCID:0000-0002-3859-4591), Ciccarone F, Boldrini L, Lenkowicz J, Fagotti A (ORCID:0000-0001-5579-335X), Testa AC (ORCID:0000-0003-2217-8726), Valentini V (ORCID:0000-0003-4637-6487), Sala E, Scambia G (ORCID:0000-0003-2758-1063), Di Pilla, Andrea, Nero, Camilla, Specchia, Maria Lucia, Ciccarone, Francesca, Boldrini, Luca, Lenkowicz, Jacopo, Alberghetti, B, Fagotti, Anna, Testa, Antonia Carla, Valentini, Vincenzo, Sala, Evi, Scambia, Giovanni, Di Pilla A, Nero C, Specchia ML (ORCID:0000-0002-3859-4591), Ciccarone F, Boldrini L, Lenkowicz J, Fagotti A (ORCID:0000-0001-5579-335X), Testa AC (ORCID:0000-0003-2217-8726), Valentini V (ORCID:0000-0003-4637-6487), Sala E, and Scambia G (ORCID:0000-0003-2758-1063)
- Abstract
Current approach to identify BRCA 1/2 carriers in the general population is ineffective as most of the carriers remain undiagnosed. Radiomics is an emerging tool for large scale quantitative analysis of features from standard diagnostic imaging and has been applied also to identify gene mutational status. The objective of this study was to evaluate the clinical and economic impact of integrating a radiogenomics model with clinical and family history data in identifying BRCA mutation carriers in the general population. This cost‐effective analysis compares three different approaches to women selection for BRCA testing: established clinical criteria/family history (model 1); established clinical criteria/family history and the currently available radiogenomic model (49% sensitivity and 87% specificity) based on ultrasound images (model 2); same approach used in model 2 but simulating an improvement of the performances of the radiogenomic model (80% sensitivity and 95% specificity) (model 3). All models were trained with literature data. Direct costs were calculated according to the rates currently used in Italy. The analysis was performed simulating different scenarios on the generation of 18‐year‐old girls in Italy (274,000 people). The main outcome was to identify the most effective model comparing the number of years of BRCA‐cancer healthy life expectancy (HLYs). An incremental cost‐effectiveness ratio (ICER) was also derived to determine the cost in order to increase BRCA carriers‐healthy life span by 1 year. Compared to model 1, model 2 increases the detection rate of BRCA carriers by 41.8%, reduces the rate of BRCA‐related cancers by 23.7%, generating over a 62‐year observation period a cost increase by 2.51 €/Year/Person. Moreover, model 3 further increases BRCA carriers detection (+ 68.3%) and decrease in BRCA‐related cancers (− 38.4%) is observed compared to model 1. Model 3 increases costs by 0.7 €/Year/Person. After one generation, the estimated ICER in the
- Published
- 2024
7. DEEP LEARNING APPROACH TO GENERATE SYNTHETIC CT FROM CBCT IN ONLINE ADAPTIVE RADIOTHERAPY IN PELVIS
- Author
-
Menna, S., primary, Vellini, L., additional, Zucca, S., additional, Lenkowicz, J., additional, Catucci, F., additional, Quaranta, F., additional, D’Aviero, A., additional, Pilloni, E., additional, Aquilano, M., additional, Di Dio, C., additional, Iezzi, M., additional, Re, A., additional, Preziosi, F., additional, Piras, A., additional, Votta, C., additional, Piccari, D., additional, Valentini, V., additional, Indovina, L., additional, Mattiucci, G.C., additional, and Cusumano, D., additional
- Published
- 2023
- Full Text
- View/download PDF
8. P207 Scoliosis progression in spinal muscular atrophy type II and III: a comparative study between treated and untreated patients
- Author
-
Coratti, G., primary, Lenkowicz, J., additional, Pera, M., additional, D'Amico, A., additional, Bruno, C., additional, Gullì, C., additional, Brolatti, N., additional, Antonaci, L., additional, Ricci, M., additional, Capasso, A., additional, Cicala, G., additional, De Sanctis, R., additional, Catteruccia, M., additional, Leone, A., additional, Paternello, S., additional, Pane, M., additional, Valentini, V., additional, and Mercuri, E., additional
- Published
- 2023
- Full Text
- View/download PDF
9. CT-Based Radiomics and Deep Learning for BRCA Mutation and Progression-Free Survival Prediction in Ovarian Cancer Using a Multicentric Dataset
- Author
-
Avesani, G, Tran, H, Cammarata, G, Botta, F, Raimondi, S, Russo, L, Persiani, S, Bonatti, M, Tagliaferri, T, Dolciami, M, Celli, V, Boldrini, L, Lenkowicz, J, Pricolo, P, Tomao, F, Rizzo, S, Colombo, N, Manganaro, L, Fagotti, A, Scambia, G, Gui, B, Manfredi, R, Avesani G., Tran H. E., Cammarata G., Botta F., Raimondi S., Russo L., Persiani S., Bonatti M., Tagliaferri T., Dolciami M., Celli V., Boldrini L., Lenkowicz J., Pricolo P., Tomao F., Rizzo S. M. R., Colombo N., Manganaro L., Fagotti A., Scambia G., Gui B., Manfredi R., Avesani, G, Tran, H, Cammarata, G, Botta, F, Raimondi, S, Russo, L, Persiani, S, Bonatti, M, Tagliaferri, T, Dolciami, M, Celli, V, Boldrini, L, Lenkowicz, J, Pricolo, P, Tomao, F, Rizzo, S, Colombo, N, Manganaro, L, Fagotti, A, Scambia, G, Gui, B, Manfredi, R, Avesani G., Tran H. E., Cammarata G., Botta F., Raimondi S., Russo L., Persiani S., Bonatti M., Tagliaferri T., Dolciami M., Celli V., Boldrini L., Lenkowicz J., Pricolo P., Tomao F., Rizzo S. M. R., Colombo N., Manganaro L., Fagotti A., Scambia G., Gui B., and Manfredi R.
- Abstract
Purpose: Build predictive radiomic models for early relapse and BRCA mutation based on a multicentric database of high-grade serous ovarian cancer (HGSOC) and validate them in a test set coming from different institutions. Methods: Preoperative CTs of patients with HGSOC treated at four referral centers were retrospectively acquired and manually segmented. Hand-crafted features and deep radiomics features were extracted respectively by dedicated software (MODDICOM) and a dedicated convolutional neural network (CNN). Features were selected with and without prior harmonization (ComBat harmonization), and models were built using different machine learning algorithms, including clinical variables. Results: We included 218 patients. Radiomic models showed low performance in predicting both BRCA mutation (AUC in test set between 0.46 and 0.59) and 1-year relapse (AUC in test set between 0.46 and 0.56); deep learning models demonstrated similar results (AUC in the test of 0.48 for BRCA and 0.50 for relapse). The inclusion of clinical variables improved the performance of the radiomic models to predict BRCA mutation (AUC in the test set of 0.74). Conclusions: In our multicentric dataset, representative of a real-life clinical scenario, we could not find a good radiomic predicting model for PFS and BRCA mutational status, with both traditional radiomics and deep learning, but the combination of clinical and radiomic models improved model performance for the prediction of BRCA mutation. These findings highlight the need for standardization through the whole radiomic pipelines and robust multicentric external validations of results.
- Published
- 2022
10. GENERATOR HEART FAILURE DataMart: An integrated framework for heart failure research
- Author
-
D'Amario, Domenico, Laborante, Renzo, Delvinioti, A., Lenkowicz, Jacopo, Iacomini, C., Masciocchi, Carlotta, Luraschi, Alice, Damiani, Andrea, Rodolico, Daniele, Restivo, Attilio, Ciliberti, Giuseppe, Paglianiti, Donato Antonio, Canonico, Francesco, Patarnello, S., Cesario, Alfredo, Valentini, Vincenzo, Scambia, Giovanni, Crea, Filippo, D'Amario Domenico, Laborante R., Lenkowicz J., Masciocchi C., Luraschi A., Damiani A., Restivo A., Ciliberti G., Paglianiti D. A., Canonico F. (ORCID:0000-0001-6936-4548), Cesario A. (ORCID:0000-0003-4687-0709), Valentini V. (ORCID:0000-0003-4637-6487), Scambia G. (ORCID:0000-0003-2758-1063), Crea F. (ORCID:0000-0001-9404-8846), D'Amario, Domenico, Laborante, Renzo, Delvinioti, A., Lenkowicz, Jacopo, Iacomini, C., Masciocchi, Carlotta, Luraschi, Alice, Damiani, Andrea, Rodolico, Daniele, Restivo, Attilio, Ciliberti, Giuseppe, Paglianiti, Donato Antonio, Canonico, Francesco, Patarnello, S., Cesario, Alfredo, Valentini, Vincenzo, Scambia, Giovanni, Crea, Filippo, D'Amario Domenico, Laborante R., Lenkowicz J., Masciocchi C., Luraschi A., Damiani A., Restivo A., Ciliberti G., Paglianiti D. A., Canonico F. (ORCID:0000-0001-6936-4548), Cesario A. (ORCID:0000-0003-4687-0709), Valentini V. (ORCID:0000-0003-4637-6487), Scambia G. (ORCID:0000-0003-2758-1063), and Crea F. (ORCID:0000-0001-9404-8846)
- Abstract
Background: Heart failure (HF) is a multifaceted clinical syndrome characterized by different etiologies, risk factors, comorbidities, and a heterogeneous clinical course. The current model, based on data from clinical trials, is limited by the biases related to a highly-selected sample in a protected environment, constraining the applicability of evidence in the real-world scenario. If properly leveraged, the enormous amount of data from real-world may have a groundbreaking impact on clinical care pathways. We present, here, the development of an HF DataMart framework for the management of clinical and research processes. Methods: Within our institution, Fondazione Policlinico Universitario A. Gemelli in Rome (Italy), a digital platform dedicated to HF patients has been envisioned (GENERATOR HF DataMart), based on two building blocks: 1. All retrospective information has been integrated into a multimodal, longitudinal data repository, providing in one single place the description of individual patients with drill-down functionalities in multiple dimensions. This functionality might allow investigators to dynamically filter subsets of patient populations characterized by demographic characteristics, biomarkers, comorbidities, and clinical events (e.g., re-hospitalization), enabling agile analyses of the outcomes by subsets of patients. 2. With respect to expected long-term health status and response to treatments, the use of the disease trajectory toolset and predictive models for the evolution of HF has been implemented. The methodological scaffolding has been constructed in respect of a set of the preferred standards recommended by the CODE-EHR framework. Results: Several examples of GENERATOR HF DataMart utilization are presented as follows: to select a specific retrospective cohort of HF patients within a particular period, along with their clinical and laboratory data, to explore multiple associations between clinical and laboratory data, as well as to identify
- Published
- 2023
11. Early treatment of type II SMA slows rate of progression of scoliosis
- Author
-
Coratti, Giorgia, Lenkowicz, Jacopo, Pera, Maria Carmela, D'Amico, A., Bruno, C., Gulli, C., Brolatti, N., Pedemonte, M., Antonaci, Laura, Ricci, M., Capasso, Anna, Cicala, G., Cutrona, Costanza, De Sanctis, Roberto, Carnicella, S., Forcina, N., Cateruccia, M., Damasio, M. B., Labianca, Luca, Manfroni, F., Leone, A., Bertini, Enrico Silvio, Pane, Marika, Patarnello, S., Valentini, Vincenzo, Mercuri, Eugenio Maria, Coratti G. (ORCID:0000-0001-6666-5628), Lenkowicz J., Pera M. C. (ORCID:0000-0001-6777-1721), Antonaci L., Capasso A., Cutrona C., De Sanctis R., Labianca L., Bertini E., Pane M. (ORCID:0000-0002-4851-6124), Valentini V. (ORCID:0000-0003-4637-6487), Mercuri E. (ORCID:0000-0002-9851-5365), Coratti, Giorgia, Lenkowicz, Jacopo, Pera, Maria Carmela, D'Amico, A., Bruno, C., Gulli, C., Brolatti, N., Pedemonte, M., Antonaci, Laura, Ricci, M., Capasso, Anna, Cicala, G., Cutrona, Costanza, De Sanctis, Roberto, Carnicella, S., Forcina, N., Cateruccia, M., Damasio, M. B., Labianca, Luca, Manfroni, F., Leone, A., Bertini, Enrico Silvio, Pane, Marika, Patarnello, S., Valentini, Vincenzo, Mercuri, Eugenio Maria, Coratti G. (ORCID:0000-0001-6666-5628), Lenkowicz J., Pera M. C. (ORCID:0000-0001-6777-1721), Antonaci L., Capasso A., Cutrona C., De Sanctis R., Labianca L., Bertini E., Pane M. (ORCID:0000-0002-4851-6124), Valentini V. (ORCID:0000-0003-4637-6487), and Mercuri E. (ORCID:0000-0002-9851-5365)
- Abstract
Background: Type II spinal muscular atrophy (SMA) often leads to scoliosis in up to 90% of cases. While pharmacological treatments have shown improvements in motor function, their impact on scoliosis progression remains unclear. This study aims to evaluate potential differences in scoliosis progression between treated and untreated SMA II patients. Methods: Treatment effect on Cobb's angle annual changes and on reaching a 50° Cobb angle was analysed in treated and untreated type II SMA patients with a minimum 1.5-year follow-up. A sliding cut-off approach identified the optimal treatment subpopulation based on age, Cobb angle and Hammersmith Functional Motor Scale Expanded at the initial visit. Mann-Whitney U-test assessed statistical significance. Results: There were no significant differences in baseline characteristics between the untreated (n=46) and treated (n=39) populations. The mean Cobb angle variation did not significantly differ between the two groups (p=0.4). Optimal cut-off values for a better outcome were found to be having a Cobb angle <26° or an age <4.5 years. When using optimal cut-off, the treated group showed a lower mean Cobb variation compared with the untreated group (5.61 (SD 4.72) degrees/year vs 10.05 (SD 6.38) degrees/year; p=0.01). Cox-regression analysis indicated a protective treatment effect in reaching a 50° Cobb angle, significant in patients <4.5 years old (p=0.016). Conclusion: This study highlights that pharmacological treatment, if initiated early, may slow down the progression of scoliosis in type II SMA patients. Larger studies are warranted to further investigate the effectiveness of individual pharmacological treatment on scoliosis progression in this patient population.
- Published
- 2023
12. PO-1679 Deep learning approach to generate synthetic CT from CBCT for online adaptive radiotherapy in pelvis
- Author
-
Vellini, L., primary, Menna, S., additional, Zucca, S., additional, Lenkowicz, J., additional, Catucci, F., additional, Quaranta, F., additional, D'Aviero, A., additional, Pilloni, E., additional, Aquilano, M., additional, Di Dio, C., additional, Iezzi, M., additional, Re, A., additional, Preziosi, F., additional, Piras, A., additional, Votta, C., additional, Piccari, D., additional, Valentini, V., additional, Indovina, L., additional, Mattiucci, G.C., additional, and Cusumano, D., additional
- Published
- 2023
- Full Text
- View/download PDF
13. MO-01.7 - DEEP LEARNING APPROACH TO GENERATE SYNTHETIC CT FROM CBCT IN ONLINE ADAPTIVE RADIOTHERAPY IN PELVIS
- Author
-
Menna, S., Vellini, L., Zucca, S., Lenkowicz, J., Catucci, F., Quaranta, F., D’Aviero, A., Pilloni, E., Aquilano, M., Di Dio, C., Iezzi, M., Re, A., Preziosi, F., Piras, A., Votta, C., Piccari, D., Valentini, V., Indovina, L., Mattiucci, G.C., and Cusumano, D.
- Published
- 2023
- Full Text
- View/download PDF
14. Developing and validating ultrasound‐based radiomics models for predicting high‐risk endometrial cancer
- Author
-
Moro, F., primary, Albanese, M., additional, Boldrini, L., additional, Chiappa, V., additional, Lenkowicz, J., additional, Bertolina, F., additional, Mascilini, F., additional, Moroni, R., additional, Gambacorta, M. A., additional, Raspagliesi, F., additional, Scambia, G., additional, Testa, A. C., additional, and Fanfani, F., additional
- Published
- 2022
- Full Text
- View/download PDF
15. Reply
- Author
-
Moro, F., primary, Boldrini, L., additional, Lenkowicz, J., additional, Scambia, G., additional, Testa, A. C., additional, and Fanfani, F., additional
- Published
- 2022
- Full Text
- View/download PDF
16. Preoperative Tumor Texture Analysis on MRI for High-Risk Disease Prediction in Endometrial Cancer: A Hypothesis-Generating Study
- Author
-
Miccò, M., Gui, Benedetta, Russo, L., Boldrini, Luca, Lenkowicz, Jacopo, Cicogna, S., Cosentino, F., Restaino, Gennaro, Avesani, Giacomo, Panico, C., Moro, Francesca, Ciccarone, Francesca, Macchia, Gabriella, Valentini, Vincenzo, Scambia, Giovanni, Manfredi, Riccardo, Fanfani, Francesco, Gui B., Boldrini L., Lenkowicz J., Restaino G., Avesani G., Moro F., Ciccarone F., Macchia G. (ORCID:0000-0002-0529-201X), Valentini V. (ORCID:0000-0003-4637-6487), Scambia G. (ORCID:0000-0003-2758-1063), Manfredi R. (ORCID:0000-0002-4972-9500), Fanfani F. (ORCID:0000-0003-1991-7284), Miccò, M., Gui, Benedetta, Russo, L., Boldrini, Luca, Lenkowicz, Jacopo, Cicogna, S., Cosentino, F., Restaino, Gennaro, Avesani, Giacomo, Panico, C., Moro, Francesca, Ciccarone, Francesca, Macchia, Gabriella, Valentini, Vincenzo, Scambia, Giovanni, Manfredi, Riccardo, Fanfani, Francesco, Gui B., Boldrini L., Lenkowicz J., Restaino G., Avesani G., Moro F., Ciccarone F., Macchia G. (ORCID:0000-0002-0529-201X), Valentini V. (ORCID:0000-0003-4637-6487), Scambia G. (ORCID:0000-0003-2758-1063), Manfredi R. (ORCID:0000-0002-4972-9500), and Fanfani F. (ORCID:0000-0003-1991-7284)
- Abstract
Objective: To develop and validate magnetic resonance (MR) imaging-based radiomics models for high-risk endometrial cancer (EC) prediction preoperatively, to be able to estimate deep myometrial invasion (DMI) and lymphovascular space invasion (LVSI), and to discriminate between low-risk and other categories of risk as proposed by ESGO/ESTRO/ESP (European Society of Gynaecological Oncology-European Society for Radiotherapy & Oncology and European Society of Pathology) guidelines. Methods: This retrospective study included 96 women with EC who underwent 1.5-T MR imaging before surgical staging between April 2009 and May 2019 in two referral centers divided into training (T = 73) and validation cohorts (V = 23). Radiomics features were extracted using the MODDICOM library with manual delineation of whole-tumor volume on MR images (axial T2-weighted). Diagnostic performances of radiomic models were evaluated by area under the receiver operating characteristic (ROC) curve in training (AUCT) and validation (AUCV) cohorts by using a subset of the most relevant texture features tested individually in univariate analysis using Wilcoxon-Mann-Whitney. Results: A total of 228 radiomics features were extracted and ultimately limited to 38 for DMI, 29 for LVSI, and 15 for risk-classes prediction for logistic radiomic modeling. Whole-tumor radiomic models yielded an AUCT/AUCV of 0.85/0.68 in DMI estimation, 0.92/0.81 in LVSI prediction, and 0.84/0.76 for differentiating low-risk vs other risk classes (intermediate/high-intermediate/high). Conclusion: MRI-based radiomics has great potential in developing advanced prognostication in EC.
- Published
- 2022
17. Correction: Rizzo et al. Artificial Intelligence and OCT Angiography in Full Thickness Macular Hole. New Developments for Personalized Medicine. Diagnostics 2021, 11, 2319
- Author
-
Rizzo, Stanislao, Savastano, Alfonso, Lenkowicz, Jacopo, Savastano, Maria Cristina, Boldrini, Luca, Bacherini, Daniela, Falsini, Benedetto, Valentini, Vincenzo, Rizzo S. (ORCID:0000-0001-6302-063X), Savastano A., Lenkowicz J., Savastano M. C. (ORCID:0000-0003-1397-4333), Boldrini L., Bacherini D., Falsini B. (ORCID:0000-0002-3569-4968), Valentini V. (ORCID:0000-0003-4637-6487), Rizzo, Stanislao, Savastano, Alfonso, Lenkowicz, Jacopo, Savastano, Maria Cristina, Boldrini, Luca, Bacherini, Daniela, Falsini, Benedetto, Valentini, Vincenzo, Rizzo S. (ORCID:0000-0001-6302-063X), Savastano A., Lenkowicz J., Savastano M. C. (ORCID:0000-0003-1397-4333), Boldrini L., Bacherini D., Falsini B. (ORCID:0000-0002-3569-4968), and Valentini V. (ORCID:0000-0003-4637-6487)
- Abstract
Figure Legend In the original publication [1], there was a mistake in the legend for Figure 8. Values for C1 and C2 were inverted. The correct legend appears below. Figure 8 legend becomes: Clustering analysis from Inception V3 deep learning features based on combined superficial and deep OCT-As. The mean 1-year BVCA for C1 and C2 was 66.67 and 49.1, respectively, with a t-test p-value equal to 0.005. Text Correction There was an error in the original publication. Values for C1 and C2 were inverted. A correction has been made to Abstract, sentence: best-corrected visual acuity (BCVA) C1 = 49.10 (18.60 SD) and BCVA C2 = 66.67 (16.00 SD, p = 0.005) The sentence becomes: best-corrected visual acuity (BCVA) C1 = 66.67 (16.00 SD) and BCVA C2 = 49.10 (18.60 SD, p = 0.005). A correction has been made to Results, Paragraph 9, sentence: In this configuration, the mean of letters for C1 and C2 was 49.1 and 66.67, respectively, with a t-test p-value equal to 0.005 (Figure 8) The sentence becomes: In this configuration, the mean of letters for C1 and C2 was 66.67 and 49.1, respectively, with a t-test p-value equal to 0.005 (Figure 8). Error in Table In the original publication, there was a mistake in Table 2 as published. Values for C1 and C2 were inverted. The corrected Table 2 appears below.
- Published
- 2022
18. Predictive models in SMA II natural history trajectories using machine learning: A proof of concept study
- Author
-
Coratti, Giorgia, Lenkowicz, Jacopo, Patarnello, S., Gulli, C., Pera, Maria Carmela, Masciocchi, Carlotta, Rinaldi, Riccardo, Lovato, V., Leone, Antonio, Cesario, Alfredo, Mercuri, Eugenio Maria, Coratti G. (ORCID:0000-0001-6666-5628), Lenkowicz J., Pera M. C. (ORCID:0000-0001-6777-1721), Masciocchi C., Rinaldi R., Leone A. (ORCID:0000-0003-3669-6321), Cesario A. (ORCID:0000-0003-4687-0709), Mercuri E. (ORCID:0000-0002-9851-5365), Coratti, Giorgia, Lenkowicz, Jacopo, Patarnello, S., Gulli, C., Pera, Maria Carmela, Masciocchi, Carlotta, Rinaldi, Riccardo, Lovato, V., Leone, Antonio, Cesario, Alfredo, Mercuri, Eugenio Maria, Coratti G. (ORCID:0000-0001-6666-5628), Lenkowicz J., Pera M. C. (ORCID:0000-0001-6777-1721), Masciocchi C., Rinaldi R., Leone A. (ORCID:0000-0003-3669-6321), Cesario A. (ORCID:0000-0003-4687-0709), and Mercuri E. (ORCID:0000-0002-9851-5365)
- Abstract
It is known from previous literature that type II Spinal Muscular Atrophy (SMA) patients generally, after the age of 5 years, presents a steep deterioration until puberty followed by a relative stability, as most abilities have been lost. Although it is possible to identify points of slope indicating early improvement, steep decline and relative stabilizations, there is still a lot of variability within each age group and it’s not always possible to predict individual trajectories of progression from age only. The aim of the study was to develop a predictive model based on machine learning using an XGBoost algorithm for regression and report, explore and quantify, in a single centre longitudinal natural history study, the influence of clinical variables on the 6/12-months Hammersmith Motor Functional Scale Expanded score prediction (HFMSE). This study represents the first approach to artificial intelligence and trained models for the prediction of individualized trajectories of HFMSE disease progression using individual characteristics of the patient. The application of this method to larger cohorts may allow to identify different classes of progression, a crucial information at the time of the new commercially available therapies.
- Published
- 2022
19. CT-Based Radiomics and Deep Learning for BRCA Mutation and Progression-Free Survival Prediction in Ovarian Cancer Using a Multicentric Dataset
- Author
-
Avesani, Giacomo, Tran, H. E., Cammarata, G., Botta, Francesca, Raimondi, Saveria, Russo, Luca, Persiani, S., Bonatti, Matteo, Tagliaferri, Tiziana, Dolciami, M., Celli, V., Boldrini, Luca, Lenkowicz, Jacopo, Pricolo, P., Tomao, F., Rizzo, S. M. R., Colombo, N., Manganaro, L., Fagotti, Anna, Scambia, Giovanni, Gui, Benedetta, Manfredi, Riccardo, Avesani G., Botta F., Raimondi S., Russo L., Bonatti M., Tagliaferri T., Boldrini L., Lenkowicz J., Fagotti A. (ORCID:0000-0001-5579-335X), Scambia G. (ORCID:0000-0003-2758-1063), Gui B., Manfredi R. (ORCID:0000-0002-4972-9500), Avesani, Giacomo, Tran, H. E., Cammarata, G., Botta, Francesca, Raimondi, Saveria, Russo, Luca, Persiani, S., Bonatti, Matteo, Tagliaferri, Tiziana, Dolciami, M., Celli, V., Boldrini, Luca, Lenkowicz, Jacopo, Pricolo, P., Tomao, F., Rizzo, S. M. R., Colombo, N., Manganaro, L., Fagotti, Anna, Scambia, Giovanni, Gui, Benedetta, Manfredi, Riccardo, Avesani G., Botta F., Raimondi S., Russo L., Bonatti M., Tagliaferri T., Boldrini L., Lenkowicz J., Fagotti A. (ORCID:0000-0001-5579-335X), Scambia G. (ORCID:0000-0003-2758-1063), Gui B., and Manfredi R. (ORCID:0000-0002-4972-9500)
- Abstract
Purpose: Build predictive radiomic models for early relapse and BRCA mutation based on a multicentric database of high-grade serous ovarian cancer (HGSOC) and validate them in a test set coming from different institutions. Methods: Preoperative CTs of patients with HGSOC treated at four referral centers were retrospectively acquired and manually segmented. Hand-crafted features and deep radiomics features were extracted respectively by dedicated software (MODDICOM) and a dedicated convolutional neural network (CNN). Features were selected with and without prior harmonization (ComBat harmonization), and models were built using different machine learning algorithms, including clinical variables. Results: We included 218 patients. Radiomic models showed low performance in predicting both BRCA mutation (AUC in test set between 0.46 and 0.59) and 1-year relapse (AUC in test set between 0.46 and 0.56); deep learning models demonstrated similar results (AUC in the test of 0.48 for BRCA and 0.50 for relapse). The inclusion of clinical variables improved the performance of the radiomic models to predict BRCA mutation (AUC in the test set of 0.74). Conclusions: In our multicentric dataset, representative of a real-life clinical scenario, we could not find a good radiomic predicting model for PFS and BRCA mutational status, with both traditional radiomics and deep learning, but the combination of clinical and radiomic models improved model performance for the prediction of BRCA mutation. These findings highlight the need for standardization through the whole radiomic pipelines and robust multicentric external validations of results.
- Published
- 2022
20. Deep-Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer
- Author
-
Nero, Camilla, Boldrini, Luca, Lenkowicz, Jacopo, Giudice, M. T., Piermattei, Angelo, Inzani, Frediano, Pasciuto, Tina, Minucci, Angelo, Fagotti, Anna, Zannoni, Gian Franco, Valentini, Vincenzo, Scambia, Giovanni, Nero C., Boldrini L., Lenkowicz J., Piermattei A. (ORCID:0000-0002-6835-1179), Inzani F., Pasciuto T. (ORCID:0000-0003-2959-8571), Minucci A., Fagotti A. (ORCID:0000-0001-5579-335X), Zannoni G. (ORCID:0000-0003-1809-129X), Valentini V. (ORCID:0000-0003-4637-6487), Scambia G. (ORCID:0000-0003-2758-1063), Nero, Camilla, Boldrini, Luca, Lenkowicz, Jacopo, Giudice, M. T., Piermattei, Angelo, Inzani, Frediano, Pasciuto, Tina, Minucci, Angelo, Fagotti, Anna, Zannoni, Gian Franco, Valentini, Vincenzo, Scambia, Giovanni, Nero C., Boldrini L., Lenkowicz J., Piermattei A. (ORCID:0000-0002-6835-1179), Inzani F., Pasciuto T. (ORCID:0000-0003-2959-8571), Minucci A., Fagotti A. (ORCID:0000-0001-5579-335X), Zannoni G. (ORCID:0000-0003-1809-129X), Valentini V. (ORCID:0000-0003-4637-6487), and Scambia G. (ORCID:0000-0003-2758-1063)
- Abstract
BRCA 1/2 genes mutation status can already determine the therapeutic algorithm of high grade serous ovarian cancer patients. Nevertheless, its assessment is not sufficient to identify all patients with genomic instability, since BRCA 1/2 mutations are only the most well-known mechanisms of homologous recombination deficiency (HR-d) pathway, and patients displaying HR-d behave similarly to BRCA mutated patients. HRd assessment can be challenging and is progressively overcoming BRCA testing not only for prognostic information but more importantly for drugs prescriptions. However, HR testing is not already integrated in clinical practice, it is quite expensive and it is not refundable in many countries. Selecting patients who are more likely to benefit from this assessment (BRCA 1/2 WT patients) at an early stage of the diagnostic process, would allow an optimization of genomic profiling resources. In this study, we sought to explore whether somatic BRCA1/2 genes status can be predicted using computational pathology from standard hematoxylin and eosin histology. In detail, we adopted a publicly available, deep-learning-based weakly supervised method that uses attention-based learning to automatically identify sub regions of high diagnostic value to accurately classify the whole slide (CLAM). The same model was also tested for progression free survival (PFS) prediction. The model was tested on a cohort of 664 (training set: n = 464, testing set: n = 132) ovarian cancer patients, of whom 233 (35.1%) had a somatic BRCA 1/2 mutation. An area under the curve of 0.7 and 0.55 was achieved in the training and testing set respectively. The model was then further refined by manually identifying areas of interest in half of the cases. 198 images were used for training (126/72) and 87 images for validation (55/32). The model reached a zero classification error on the training set, but the performance was 0.59 in terms of validation ROC AUC, with a 0.57 validation accuracy. Finally
- Published
- 2022
21. A real-time integrated framework to support clinical decision making for covid-19 patients
- Author
-
Murri, Rita, Masciocchi, Carlotta, Lenkowicz, Jacopo, Fantoni, Massimo, Damiani, Andrea, Marchetti, A., Sergi, P. D. A., Arcuri, Giovanni, Cesario, Alfredo, Patarnello, S., Antonelli, Massimo, Bellantone, Rocco Domenico Alfonso, Bernabei, Roberto, Boccia, Stefania, Calabresi, Paolo, Cambieri, Andrea, Cauda, Roberto, Colosimo, Cesare, Crea, Filippo, De Maria Marchiano, Ruggero, De Stefano, Valerio, Franceschi, Francesco, Gasbarrini, Antonio, Landolfi, Raffaele, Parolini, Ornella, Richeldi, Luca, Sanguinetti, Maurizio, Urbani, Andrea, Zega, Maurizio, Scambia, Giovanni, Valentini, Vincenzo, Murri R. (ORCID:0000-0003-4263-7854), Masciocchi C., Lenkowicz J., Fantoni M. (ORCID:0000-0001-6913-8460), Damiani A., Arcuri G., Cesario A. (ORCID:0000-0003-4687-0709), Antonelli M. (ORCID:0000-0003-3007-1670), Bellantone R. (ORCID:0000-0002-0844-3469), Bernabei R. (ORCID:0000-0002-9197-004X), Boccia S. (ORCID:0000-0002-1864-749X), Calabresi P. (ORCID:0000-0003-0326-5509), Cambieri A., Cauda R. (ORCID:0000-0002-1498-4229), Colosimo C. (ORCID:0000-0003-3800-3648), Crea F. (ORCID:0000-0001-9404-8846), De Maria R. (ORCID:0000-0003-2255-0583), De Stefano V. (ORCID:0000-0002-5178-5827), Franceschi F. (ORCID:0000-0001-6266-445X), Gasbarrini A. (ORCID:0000-0002-7278-4823), Landolfi R. (ORCID:0000-0002-7913-8576), Parolini O. (ORCID:0000-0002-5211-6430), Richeldi L. (ORCID:0000-0001-8594-1448), Sanguinetti M. (ORCID:0000-0002-9780-7059), Urbani A. (ORCID:0000-0001-9168-3174), Zega M. (ORCID:0000-0002-7821-2615), Scambia G. (ORCID:0000-0003-2758-1063), Valentini V. (ORCID:0000-0003-4637-6487), Murri, Rita, Masciocchi, Carlotta, Lenkowicz, Jacopo, Fantoni, Massimo, Damiani, Andrea, Marchetti, A., Sergi, P. D. A., Arcuri, Giovanni, Cesario, Alfredo, Patarnello, S., Antonelli, Massimo, Bellantone, Rocco Domenico Alfonso, Bernabei, Roberto, Boccia, Stefania, Calabresi, Paolo, Cambieri, Andrea, Cauda, Roberto, Colosimo, Cesare, Crea, Filippo, De Maria Marchiano, Ruggero, De Stefano, Valerio, Franceschi, Francesco, Gasbarrini, Antonio, Landolfi, Raffaele, Parolini, Ornella, Richeldi, Luca, Sanguinetti, Maurizio, Urbani, Andrea, Zega, Maurizio, Scambia, Giovanni, Valentini, Vincenzo, Murri R. (ORCID:0000-0003-4263-7854), Masciocchi C., Lenkowicz J., Fantoni M. (ORCID:0000-0001-6913-8460), Damiani A., Arcuri G., Cesario A. (ORCID:0000-0003-4687-0709), Antonelli M. (ORCID:0000-0003-3007-1670), Bellantone R. (ORCID:0000-0002-0844-3469), Bernabei R. (ORCID:0000-0002-9197-004X), Boccia S. (ORCID:0000-0002-1864-749X), Calabresi P. (ORCID:0000-0003-0326-5509), Cambieri A., Cauda R. (ORCID:0000-0002-1498-4229), Colosimo C. (ORCID:0000-0003-3800-3648), Crea F. (ORCID:0000-0001-9404-8846), De Maria R. (ORCID:0000-0003-2255-0583), De Stefano V. (ORCID:0000-0002-5178-5827), Franceschi F. (ORCID:0000-0001-6266-445X), Gasbarrini A. (ORCID:0000-0002-7278-4823), Landolfi R. (ORCID:0000-0002-7913-8576), Parolini O. (ORCID:0000-0002-5211-6430), Richeldi L. (ORCID:0000-0001-8594-1448), Sanguinetti M. (ORCID:0000-0002-9780-7059), Urbani A. (ORCID:0000-0001-9168-3174), Zega M. (ORCID:0000-0002-7821-2615), Scambia G. (ORCID:0000-0003-2758-1063), and Valentini V. (ORCID:0000-0003-4637-6487)
- Abstract
Background: The COVID-19 pandemic affected healthcare systems worldwide. Predictive models developed by Artificial Intelligence (AI) and based on timely, centralized and standardized real world patient data could improve management of COVID-19 to achieve better clinical outcomes. The objectives of this manuscript are to describe the structure and technologies used to construct a COVID-19 Data Mart architecture and to present how a large hospital has tackled the challenge of supporting daily management of COVID-19 pandemic emergency, by creating a strong retrospective knowledge base, a real time environment and integrated information dashboard for daily practice and early identification of critical condition at patient level. This framework is also used as an informative, continuously enriched data lake, which is a base for several on-going predictive studies. Methods: The information technology framework for clinical practice and research was described. It was developed using SAS Institute software analytics tool and SAS® Vyia® environment and Open-Source environment R ® and Python ® for fast prototyping and modeling. The included variables and the source extraction procedures were presented. Results: The Data Mart covers a retrospective cohort of 5528 patients with SARS-CoV-2 infection. People who died were older, had more comorbidities, reported more frequently dyspnea at onset, had higher D-dimer, C-reactive protein and urea nitrogen. The dashboard was developed to support the management of COVID-19 patients at three levels: hospital, single ward and individual care level. Interpretation: The COVID-19 Data Mart based on integration of a large collection of clinical data and an AI-based integrated framework has been developed, based on a set of automated procedures for data mining and retrieval, transformation and integration, and has been embedded in the clinical practice to help managing daily care. Benefits from the availability of a Data Mart include the oppor
- Published
- 2022
22. The impact of radiomics in diagnosis and staging of pancreatic cancer
- Author
-
Casa, Cristina, Piras, A., D'Aviero, A., Preziosi, Francesco, Mariani, Silvia, Cusumano, Davide, Romano, Angela, Boskoski, Ivo, Lenkowicz, Jacopo, Dinapoli, Nicola, Cellini, Francesco, Gambacorta, Maria Antonietta, Valentini, Vincenzo, Mattiucci, Gian Carlo, Boldrini, Luca, Casa C., Preziosi F., Mariani S., Cusumano D., Romano A., Boskoski I. (ORCID:0000-0001-8194-2670), Lenkowicz J., Dinapoli N., Cellini F. (ORCID:0000-0002-2145-2300), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Valentini V. (ORCID:0000-0003-4637-6487), Mattiucci G. C. (ORCID:0000-0001-6500-0413), Boldrini L., Casa, Cristina, Piras, A., D'Aviero, A., Preziosi, Francesco, Mariani, Silvia, Cusumano, Davide, Romano, Angela, Boskoski, Ivo, Lenkowicz, Jacopo, Dinapoli, Nicola, Cellini, Francesco, Gambacorta, Maria Antonietta, Valentini, Vincenzo, Mattiucci, Gian Carlo, Boldrini, Luca, Casa C., Preziosi F., Mariani S., Cusumano D., Romano A., Boskoski I. (ORCID:0000-0001-8194-2670), Lenkowicz J., Dinapoli N., Cellini F. (ORCID:0000-0002-2145-2300), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Valentini V. (ORCID:0000-0003-4637-6487), Mattiucci G. C. (ORCID:0000-0001-6500-0413), and Boldrini L.
- Abstract
Introduction: Pancreatic cancer (PC) is one of the most aggressive tumours, and better risk stratification among patients is required to provide tailored treatment. The meaning of radiomics and texture analysis as predictive techniques are not already systematically assessed. The aim of this study is to assess the role of radiomics in PC. Methods: A PubMed/MEDLINE and Embase systematic review was conducted to assess the role of radiomics in PC. The search strategy was ‘radiomics [All Fields] AND (“pancreas” [MeSH Terms] OR “pancreas” [All Fields] OR “pancreatic” [All Fields])’ and only original articles referred to PC in humans in the English language were considered. Results: A total of 123 studies and 183 studies were obtained using the mentioned search strategy on PubMed and Embase, respectively. After the complete selection process, a total of 56 papers were considered eligible for the analysis of the results. Radiomics methods were applied in PC for assessment technical feasibility and reproducibility aspects analysis, risk stratification, biologic or genomic status prediction and treatment response prediction. Discussion: Radiomics seems to be a promising approach to evaluate PC from diagnosis to treatment response prediction. Further and larger studies are required to confirm the role and allowed to include radiomics parameter in a comprehensive decision support system.
- Published
- 2022
23. Developing and validating ultrasound-based radiomics models for predicting high-risk endometrial cancer
- Author
-
Moro, Francesca, Albanese, M, Boldrini, Luca, Chiappa, V, Lenkowicz, Jacopo, Bertolina, F, Mascilini, F, Moroni, R, Gambacorta, Maria Antonietta, Raspagliesi, F, Scambia, Giovanni, Testa, Antonia Carla, Fanfani, Francesco, Moro, F, Boldrini, L, Lenkowicz, J, Gambacorta, M A (ORCID:0000-0001-5455-8737), Scambia, G (ORCID:0000-0003-2758-1063), Testa, A C (ORCID:0000-0003-2217-8726), Fanfani, F (ORCID:0000-0003-1991-7284), Moro, Francesca, Albanese, M, Boldrini, Luca, Chiappa, V, Lenkowicz, Jacopo, Bertolina, F, Mascilini, F, Moroni, R, Gambacorta, Maria Antonietta, Raspagliesi, F, Scambia, Giovanni, Testa, Antonia Carla, Fanfani, Francesco, Moro, F, Boldrini, L, Lenkowicz, J, Gambacorta, M A (ORCID:0000-0001-5455-8737), Scambia, G (ORCID:0000-0003-2758-1063), Testa, A C (ORCID:0000-0003-2217-8726), and Fanfani, F (ORCID:0000-0003-1991-7284)
- Abstract
n/a
- Published
- 2022
24. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development
- Author
-
Chiloiro, Giuditta, Cusumano, Davide, de Franco, P., Lenkowicz, Jacopo, Boldrini, Luca, Carano, Davide, Barbaro, Brunella, Corvari, B., Dinapoli, Nicola, Giraffa, M., Meldolesi, Elisa, Manfredi, Riccardo, Valentini, Vincenzo, Gambacorta, Maria Antonietta, Chiloiro G., Cusumano D., Lenkowicz J., Boldrini L., Carano D., Barbaro B. (ORCID:0000-0002-9638-543X), Dinapoli N., Meldolesi E., Manfredi R. (ORCID:0000-0002-4972-9500), Valentini V. (ORCID:0000-0003-4637-6487), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Chiloiro, Giuditta, Cusumano, Davide, de Franco, P., Lenkowicz, Jacopo, Boldrini, Luca, Carano, Davide, Barbaro, Brunella, Corvari, B., Dinapoli, Nicola, Giraffa, M., Meldolesi, Elisa, Manfredi, Riccardo, Valentini, Vincenzo, Gambacorta, Maria Antonietta, Chiloiro G., Cusumano D., Lenkowicz J., Boldrini L., Carano D., Barbaro B. (ORCID:0000-0002-9638-543X), Dinapoli N., Meldolesi E., Manfredi R. (ORCID:0000-0002-4972-9500), Valentini V. (ORCID:0000-0003-4637-6487), and Gambacorta M. A. (ORCID:0000-0001-5455-8737)
- Abstract
Purpose: Our study investigated the contribution that the application of radiomics analysis on post-treatment magnetic resonance imaging can add to the assessments performed by an experienced disease-specific multidisciplinary tumor board (MTB) for the prediction of pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). Materials and methods: This analysis included consecutively retrospective LARC patients who obtained a complete or near-complete response after nCRT and/or a pCR after surgery between January 2010 and September 2019. A three-step radiomics features selection was performed and three models were generated: a radiomics model (rRM), a multidisciplinary tumor board model (yMTB) and a combined model (CM). The predictive performance of models was quantified using the receiver operating characteristic (ROC) curve, evaluating the area under curve (AUC). Results: The analysis involved 144 LARC patients; a total of 232 radiomics features were extracted from the MR images acquired post-nCRT. The yMTB, rRM and CM predicted pCR with an AUC of 0.82, 0.73 and 0.84, respectively. ROC comparison was not significant (p = 0.6) between yMTB and CM. Conclusion: Radiomics analysis showed good performance in identifying complete responders, which increased when combined with standard clinical evaluation; this increase was not statistically significant but did improve the prediction of clinical response.
- Published
- 2022
25. Avatar: Analysis for visual acuity prediction after eye interventional radiotherapy
- Author
-
Pagliara, M. M., Tagliaferri, L., Lenkowicz, J., Azario, L., Giattini, D., Fionda, B., Sammarco, M. G., Lancellotta, V., Gambacorta, M. A., Blasi, M. A., Pagliara M. M., Tagliaferri L. (ORCID:0000-0003-2308-0982), Lenkowicz J., Azario L. (ORCID:0000-0001-8575-8627), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Blasi M. A. (ORCID:0000-0001-7393-7644), Pagliara, M. M., Tagliaferri, L., Lenkowicz, J., Azario, L., Giattini, D., Fionda, B., Sammarco, M. G., Lancellotta, V., Gambacorta, M. A., Blasi, M. A., Pagliara M. M., Tagliaferri L. (ORCID:0000-0003-2308-0982), Lenkowicz J., Azario L. (ORCID:0000-0001-8575-8627), Gambacorta M. A. (ORCID:0000-0001-5455-8737), and Blasi M. A. (ORCID:0000-0001-7393-7644)
- Abstract
Aim: The aim of this study was to detect clinical factors predictive of loss of visual acuity after treatment in order to develop a predictive model to help identify patients at risk of visual loss. Patients and Methods: This was a retrospective review of patients who underwent interventional radiotherapy (brachytherapy) with 106Ru plaque for primary uveal melanoma. A predictive nomogram for visual acuity loss at 3 years from treatment was developed. Results: A total of 152 patients were selected for the study. The actuarial probability of conservation of 20/40 vision or better was 0.74 at 1 year, 0.59 at 3 years, and 0.54 at 5 years after treatment. Factors positively correlated with loss of visual acuity included: age at start of treatment (p=0.004) and longitudinal basal diameter (p=0.057), while distance of the posterior margin of the tumor from the foveola was inversely correlated (p=0.0007). Conclusion: We identified risk factors affecting visual function and developed a predictive model and decision support tool (AVATAR nomogram).
- Published
- 2020
26. POSC70 The Economic and Social Burden of Spinal Muscular Atrophy (SMA) in the Italian Context
- Author
-
Rumi, F, primary, Calabrò, GE, additional, Coratti, G, additional, Pera, M, additional, Baldini, V, additional, Lauro, D, additional, Casiraghi, J, additional, Lenkowicz, J, additional, Patarnello, S, additional, Mercuri, E, additional, Ricciardi, W, additional, and Cicchetti, A, additional
- Published
- 2022
- Full Text
- View/download PDF
27. Building an Artificial Intelligence Laboratory Based on Real World Data: The Experience of Gemelli Generator
- Author
-
Damiani, A., primary, Masciocchi, C., additional, Lenkowicz, J., additional, Capocchiano, N. D., additional, Boldrini, L., additional, Tagliaferri, L., additional, Cesario, A., additional, Sergi, P., additional, Marchetti, A., additional, Luraschi, A., additional, Patarnello, S., additional, and Valentini, V., additional
- Published
- 2021
- Full Text
- View/download PDF
28. RadiomiK phantom to test the robustness of CT radiomic features
- Author
-
Pallotta, S., primary, Benelli, M., additional, Taddeucci, A., additional, Doria, S., additional, Calusi, S., additional, Marrazzo, L., additional, Talamonti, C., additional, Belli, G., additional, Cusumano, D., additional, Lenkowicz, J., additional, de Spirito, M., additional, Zoppetti, N., additional, and Barucci, A., additional
- Published
- 2021
- Full Text
- View/download PDF
29. Stability of dosiomics features extraction on dose voxel cube pixel spacing and calculation grid resolution and algorithm
- Author
-
Placidi, L., primary, Lenkowicz, J., additional, Cusumano, D., additional, Boldrini, L., additional, and Valentini, V., additional
- Published
- 2021
- Full Text
- View/download PDF
30. PO-1261 Predictive model of 2yDFS during MR guided RT neoadjuvant chemoradiotherapy in LARC patients
- Author
-
Chiloiro, G., Preziosi, F., Boldrini, L., Cusumano, D., Romano, A., Placidi, L., Lenkowicz, J., Dinapoli, N., Gambacorta, M.A., and Valentini, V.
- Published
- 2021
- Full Text
- View/download PDF
31. Local Tuning of an Existing Externally Developed Radiomic-Based Model for Predicting Patient Outcome in Locally Advanced Rectal Cancer
- Author
-
Tang, B., primary, Peng, Q., additional, Lenkowicz, J., additional, Boldrini, L., additional, Hou, Q., additional, Dinapoli, N., additional, Valentini, V., additional, and Orlandini, L.C., additional
- Published
- 2021
- Full Text
- View/download PDF
32. 387 Developing and validating ultrasound-based radiomics models for predicting high-risk endometrial cancer
- Author
-
Moro, F, primary, Albanese, M, additional, Boldrini, L, additional, Chiappa, V, additional, Lenkowicz, J, additional, Bertolina, F, additional, Mascilini, F, additional, Moroni, R, additional, Gambacorta, MA, additional, Raspagliesi, F, additional, Scambia, G, additional, Testa, AC, additional, and Fanfani, F, additional
- Published
- 2021
- Full Text
- View/download PDF
33. OC10.01: *Developing and validating ultrasound‐based radiomics models for predicting high‐risk category in endometrial cancer patients
- Author
-
Moro, F., primary, Albanese, M., additional, Boldrini, L., additional, Chiappa, V., additional, Lenkowicz, J., additional, Bertolina, F., additional, Mascilini, F., additional, Moroni, R., additional, Gambacorta, M., additional, Raspagliesi, F., additional, Scambia, G., additional, Testa, A.C., additional, and Fanfani, F., additional
- Published
- 2021
- Full Text
- View/download PDF
34. PO-1814 Enhancing a radiomic-based model prediction of patient outcome in locally advanced rectal cancer
- Author
-
Tang, B., primary, Peng, Q., additional, Lenkowicz, J., additional, Boldrini, L., additional, Qing, H., additional, Dinapoli, N., additional, Valentini, V., additional, and Orlandini, L.C., additional
- Published
- 2021
- Full Text
- View/download PDF
35. PO-1792 On dose cube pixel spacing pre-processing for features extraction stability in dosomic studies
- Author
-
Placidi, L., primary, Cusumano, D., additional, Lenkowicz, J., additional, Boldrini, L., additional, and Valentini, V., additional
- Published
- 2021
- Full Text
- View/download PDF
36. OC-0521 A deep learning approach to generate synthetic CT in low field MR-guided radiotherapy for lung cases
- Author
-
Cusumano, D., primary, Lenkowicz, J., additional, Votta, C., additional, Nardini, M., additional, Boldrini, L., additional, Placidi, L., additional, Catucci, F., additional, Dinapoli, N., additional, Antonelli, M.V., additional, Romano, A., additional, De Luca, V., additional, Chiloiro, G., additional, Indovina, L., additional, and Valentini, V., additional
- Published
- 2021
- Full Text
- View/download PDF
37. Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation
- Author
-
Cusumano, Davide, Boldrini, Luca, Yadav, P., Yu, G., Musurunu, B., Chiloiro, Giuditta, Piras, A., Lenkowicz, Jacopo, Placidi, Lorenzo, Romano, A., De Luca, V., Votta, C., Barbaro, Brunella, Gambacorta, Maria Antonietta, Bassetti, M. F., Yang, Y., Indovina, L., Valentini, Vincenzo, Cusumano D., Boldrini L., Chiloiro G., Lenkowicz J., Placidi L., Barbaro B. (ORCID:0000-0002-9638-543X), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Valentini V. (ORCID:0000-0003-4637-6487), Cusumano, Davide, Boldrini, Luca, Yadav, P., Yu, G., Musurunu, B., Chiloiro, Giuditta, Piras, A., Lenkowicz, Jacopo, Placidi, Lorenzo, Romano, A., De Luca, V., Votta, C., Barbaro, Brunella, Gambacorta, Maria Antonietta, Bassetti, M. F., Yang, Y., Indovina, L., Valentini, Vincenzo, Cusumano D., Boldrini L., Chiloiro G., Lenkowicz J., Placidi L., Barbaro B. (ORCID:0000-0002-9638-543X), Gambacorta M. A. (ORCID:0000-0001-5455-8737), and Valentini V. (ORCID:0000-0003-4637-6487)
- Published
- 2021
38. Radiogenomics prediction for MYCN amplification in neuroblastoma: A hypothesis generating study
- Author
-
Di Giannatale, A., Di Paolo, P. L., Curione, D., Lenkowicz, J., Napolitano, A., Secinaro, A., Toma, P., Locatelli, Franco, Castellano, A., Boldrini, L., Locatelli F. (ORCID:0000-0002-7976-3654), Di Giannatale, A., Di Paolo, P. L., Curione, D., Lenkowicz, J., Napolitano, A., Secinaro, A., Toma, P., Locatelli, Franco, Castellano, A., Boldrini, L., and Locatelli F. (ORCID:0000-0002-7976-3654)
- Abstract
Background: MYCN amplification represents a powerful prognostic factor in neuroblastoma (NB) and may occasionally account for intratumoral heterogeneity. Radiomics is an emerging field of advanced image analysis that aims to extract a large number of quantitative features from standard radiological images, providing valuable clinical information. Procedure: In this retrospective study, we aimed to create a radiogenomics model by correlating computed tomography (CT) radiomics analysis with MYCN status. NB lesions were segmented on pretherapy CT scans and radiomics features subsequently extracted using a dedicated library. Dimensionality reduction/features selection approaches were then used for features procession and logistic regression models have been developed for the considered outcome. Results: Seventy-eight patients were included in this study, as training dataset, of which 24 presented MYCN amplification. In total, 232 radiomics features were extracted. Eight features were selected through Boruta algorithm and two features were lastly chosen through Pearson correlation analysis: mean of voxel intensity histogram (p =.0082) and zone size non-uniformity (p =.038). Five-times repeated three-fold cross-validation logistic regression models yielded an area under the curve (AUC) value of 0.879 on the training set. The model was then applied to an independent validation cohort of 21 patients, of which five presented MYCN amplification. The validation of the model yielded a 0.813 AUC value, with 0.85 accuracy on previously unseen data. Conclusions: CT-based radiomics is able to predict MYCN amplification status in NB, paving the way to the in-depth analysis of imaging based biomarkers that could enhance outcomes prediction.
- Published
- 2021
39. Artificial intelligence and oct angiography in full thickness macular hole. New developments for personalized medicine
- Author
-
Rizzo, Stanislao, Savastano, Alfonso, Lenkowicz, Jacopo, Savastano, Maria Cristina, Boldrini, Luca, Bacherini, D., Falsini, Benedetto, Valentini, Vincenzo, Rizzo S. (ORCID:0000-0001-6302-063X), Savastano A., Lenkowicz J., Savastano M. C. (ORCID:0000-0003-1397-4333), Boldrini L., Falsini B. (ORCID:0000-0002-3569-4968), Valentini V. (ORCID:0000-0003-4637-6487), Rizzo, Stanislao, Savastano, Alfonso, Lenkowicz, Jacopo, Savastano, Maria Cristina, Boldrini, Luca, Bacherini, D., Falsini, Benedetto, Valentini, Vincenzo, Rizzo S. (ORCID:0000-0001-6302-063X), Savastano A., Lenkowicz J., Savastano M. C. (ORCID:0000-0003-1397-4333), Boldrini L., Falsini B. (ORCID:0000-0002-3569-4968), and Valentini V. (ORCID:0000-0003-4637-6487)
- Abstract
Purpose: To evaluate the 1-year visual acuity predictive performance of an artificial intelligence (AI) based model applied to optical coherence tomography angiography (OCT-A) vascular layers scans from eyes with a full-thickness macular hole (FTMH). Methods: In this observational cross-sectional, single-center study, 35 eyes of 35 patients with FTMH were analyzed by OCT-A before and 1-year after surgery. Superficial vascular plexus (SVP) and deep vascular plexus (DVP) images were collected for the analysis. AI approach based on convolutional neural networks (CNN) was used to generate a continuous predictive variable based on both SVP and DPV. Different pre-trained CNN networks were used for feature extraction and compared for predictive accuracy. Results: Among the different tested models, the inception V3 network, applied on the combination of deep and superficial OCT-A images, showed the most significant differences between the two obtained image clusters defined in C1 and C2 (best-corrected visual acuity [BCVA] C1 = 49.10 [±18.60 SD] and BCVA C2 = 66.67 [±16.00 SD, p = 0.005]). Conclusions: The AI-based analysis of preoperative OCT-A images of eyes affected by FTMH may be a useful support system in setting up visual acuity recovery prediction. The combination of preoperative SVP and DVP images showed a significant morphological predictive performance for visual acuity recovery.
- Published
- 2021
40. A machine-learning parsimonious multivariable predictive model of mortality risk in patients with Covid-19
- Author
-
Murri, Rita, Lenkowicz, Jacopo, Masciocchi, Carlotta, Iacomini, C., Fantoni, Massimo, Damiani, Andrea, Marchetti, A., Sergi, P. D. A., Arcuri, G., Cesario, Alfredo, Patarnello, S., Antonelli, Massimo, Bellantone, Rocco Domenico Alfonso, Bernabei, Roberto, Boccia, Stefania, Calabresi, Paolo, Cambieri, Andrea, Cauda, Roberto, Colosimo, Cesare, Crea, Filippo, De Maria Marchiano, Ruggero, De Stefano, Valerio, Franceschi, Francesco, Gasbarrini, Antonio, Parolini, Ornella, Richeldi, Luca, Sanguinetti, Maurizio, Urbani, Andrea, Zega, Maurizio, Scambia, Giovanni, Valentini, Vincenzo, Armuzzi, Alessandro, Barba, Marta, Baroni, Silvia, Bellesi, Silvia, Bentivoglio, Anna Rita, Biasucci, Luigi Marzio, Biscetti, Federico, Candelli, Marcello, Capalbo, Gennaro, Cattani Franchi, Paola, Chiusolo, Patrizia, Cingolani, Antonella, Corbo, Giuseppe Maria, Covino, Marcello, Cozzolino, A. M., D'Alfonso, Maria Elena, De Angelis, Giulia, De Pascale, Gennaro, Frisullo, Giovanni, Gabrielli, M., Gambassi, Giovanni, Garcovich, M., Gremese, Elisa, Grieco, Domenico Luca, Iaconelli, A., Iorio, Raffaele, Landi, Francesco, Larici, Anna Rita, Liuzzo, Giovanna, Maviglia, Riccardo, Miele, Luca, Montalto, Massimo, Natale, Luigi, Nicolotti, Nicola, Ojetti, Veronica, Pompili, Maurizio, Posteraro, Brunella, Rapaccini, Gian Ludovico, Rinaldi, R., Rossi, Elena, Santoliquido, Angelo, Sica, Simona, Tamburrini, Enrica, Teofili, Luciana, Testa, Antonia Carla, Tosoni, A., Trani, Carlo, Varone, Francesco, Verme, L. Z. D., Murri R. (ORCID:0000-0003-4263-7854), Lenkowicz J., Masciocchi C., Fantoni M. (ORCID:0000-0001-6913-8460), Damiani A., Cesario A. (ORCID:0000-0003-4687-0709), Antonelli M. (ORCID:0000-0003-3007-1670), Bellantone R. (ORCID:0000-0002-0844-3469), Bernabei R. (ORCID:0000-0002-9197-004X), Boccia S. (ORCID:0000-0002-1864-749X), Calabresi P. (ORCID:0000-0003-0326-5509), Cambieri A., Cauda R. (ORCID:0000-0002-1498-4229), Colosimo C. (ORCID:0000-0003-3800-3648), Crea F. (ORCID:0000-0001-9404-8846), De Maria R. (ORCID:0000-0003-2255-0583), De Stefano V. (ORCID:0000-0002-5178-5827), Franceschi F. (ORCID:0000-0001-6266-445X), Gasbarrini A. (ORCID:0000-0002-7278-4823), Parolini O. (ORCID:0000-0002-5211-6430), Richeldi L. (ORCID:0000-0001-8594-1448), Sanguinetti M. (ORCID:0000-0002-9780-7059), Urbani A. (ORCID:0000-0001-9168-3174), Zega M. (ORCID:0000-0002-7821-2615), Scambia G. (ORCID:0000-0003-2758-1063), Valentini V. (ORCID:0000-0003-4637-6487), Armuzzi A. (ORCID:0000-0003-1572-0118), Barba M. (ORCID:0000-0001-6084-7666), Baroni S. (ORCID:0000-0002-3410-2617), Bellesi S., Bentivoglio A. (ORCID:0000-0002-9663-095X), Biasucci L. M. (ORCID:0000-0002-6921-6497), Biscetti F. (ORCID:0000-0001-7449-657X), Candelli M. (ORCID:0000-0001-8443-7880), Capalbo G., Cattani P. (ORCID:0000-0003-4678-4763), Chiusolo P. (ORCID:0000-0002-1355-1587), Cingolani A. (ORCID:0000-0002-3793-2755), Corbo G. (ORCID:0000-0002-8104-4659), Covino M. (ORCID:0000-0002-6709-2531), D'Alfonso M., De Angelis G. (ORCID:0000-0002-7087-7399), De Pascale G. (ORCID:0000-0002-8255-0676), Frisullo G., Gambassi G. (ORCID:0000-0002-7030-9359), Gremese E. (ORCID:0000-0002-2248-1058), Grieco D. L. (ORCID:0000-0002-4557-6308), Iorio R. (ORCID:0000-0002-6270-0956), Landi F. (ORCID:0000-0002-3472-1389), Larici A. (ORCID:0000-0002-1882-6244), Liuzzo G. (ORCID:0000-0002-5714-0907), Maviglia R., Miele L. (ORCID:0000-0003-3464-0068), Montalto M. (ORCID:0000-0001-8819-3684), Natale L. (ORCID:0000-0002-7949-5119), Nicolotti N., Ojetti V. (ORCID:0000-0002-8953-0707), Pompili M. (ORCID:0000-0001-6699-7980), Posteraro B. (ORCID:0000-0002-1663-7546), Rapaccini G. (ORCID:0000-0002-6467-857X), Rossi E. (ORCID:0000-0002-7572-9379), Santoliquido A. (ORCID:0000-0003-1539-4017), Sica S. (ORCID:0000-0003-2426-3465), Tamburrini E. (ORCID:0000-0003-4930-426X), Teofili L. (ORCID:0000-0002-7214-1561), Testa A. (ORCID:0000-0003-2217-8726), Trani C. (ORCID:0000-0001-9777-013X), Varone F., Murri, Rita, Lenkowicz, Jacopo, Masciocchi, Carlotta, Iacomini, C., Fantoni, Massimo, Damiani, Andrea, Marchetti, A., Sergi, P. D. A., Arcuri, G., Cesario, Alfredo, Patarnello, S., Antonelli, Massimo, Bellantone, Rocco Domenico Alfonso, Bernabei, Roberto, Boccia, Stefania, Calabresi, Paolo, Cambieri, Andrea, Cauda, Roberto, Colosimo, Cesare, Crea, Filippo, De Maria Marchiano, Ruggero, De Stefano, Valerio, Franceschi, Francesco, Gasbarrini, Antonio, Parolini, Ornella, Richeldi, Luca, Sanguinetti, Maurizio, Urbani, Andrea, Zega, Maurizio, Scambia, Giovanni, Valentini, Vincenzo, Armuzzi, Alessandro, Barba, Marta, Baroni, Silvia, Bellesi, Silvia, Bentivoglio, Anna Rita, Biasucci, Luigi Marzio, Biscetti, Federico, Candelli, Marcello, Capalbo, Gennaro, Cattani Franchi, Paola, Chiusolo, Patrizia, Cingolani, Antonella, Corbo, Giuseppe Maria, Covino, Marcello, Cozzolino, A. M., D'Alfonso, Maria Elena, De Angelis, Giulia, De Pascale, Gennaro, Frisullo, Giovanni, Gabrielli, M., Gambassi, Giovanni, Garcovich, M., Gremese, Elisa, Grieco, Domenico Luca, Iaconelli, A., Iorio, Raffaele, Landi, Francesco, Larici, Anna Rita, Liuzzo, Giovanna, Maviglia, Riccardo, Miele, Luca, Montalto, Massimo, Natale, Luigi, Nicolotti, Nicola, Ojetti, Veronica, Pompili, Maurizio, Posteraro, Brunella, Rapaccini, Gian Ludovico, Rinaldi, R., Rossi, Elena, Santoliquido, Angelo, Sica, Simona, Tamburrini, Enrica, Teofili, Luciana, Testa, Antonia Carla, Tosoni, A., Trani, Carlo, Varone, Francesco, Verme, L. Z. D., Murri R. (ORCID:0000-0003-4263-7854), Lenkowicz J., Masciocchi C., Fantoni M. (ORCID:0000-0001-6913-8460), Damiani A., Cesario A. (ORCID:0000-0003-4687-0709), Antonelli M. (ORCID:0000-0003-3007-1670), Bellantone R. (ORCID:0000-0002-0844-3469), Bernabei R. (ORCID:0000-0002-9197-004X), Boccia S. (ORCID:0000-0002-1864-749X), Calabresi P. (ORCID:0000-0003-0326-5509), Cambieri A., Cauda R. (ORCID:0000-0002-1498-4229), Colosimo C. (ORCID:0000-0003-3800-3648), Crea F. (ORCID:0000-0001-9404-8846), De Maria R. (ORCID:0000-0003-2255-0583), De Stefano V. (ORCID:0000-0002-5178-5827), Franceschi F. (ORCID:0000-0001-6266-445X), Gasbarrini A. (ORCID:0000-0002-7278-4823), Parolini O. (ORCID:0000-0002-5211-6430), Richeldi L. (ORCID:0000-0001-8594-1448), Sanguinetti M. (ORCID:0000-0002-9780-7059), Urbani A. (ORCID:0000-0001-9168-3174), Zega M. (ORCID:0000-0002-7821-2615), Scambia G. (ORCID:0000-0003-2758-1063), Valentini V. (ORCID:0000-0003-4637-6487), Armuzzi A. (ORCID:0000-0003-1572-0118), Barba M. (ORCID:0000-0001-6084-7666), Baroni S. (ORCID:0000-0002-3410-2617), Bellesi S., Bentivoglio A. (ORCID:0000-0002-9663-095X), Biasucci L. M. (ORCID:0000-0002-6921-6497), Biscetti F. (ORCID:0000-0001-7449-657X), Candelli M. (ORCID:0000-0001-8443-7880), Capalbo G., Cattani P. (ORCID:0000-0003-4678-4763), Chiusolo P. (ORCID:0000-0002-1355-1587), Cingolani A. (ORCID:0000-0002-3793-2755), Corbo G. (ORCID:0000-0002-8104-4659), Covino M. (ORCID:0000-0002-6709-2531), D'Alfonso M., De Angelis G. (ORCID:0000-0002-7087-7399), De Pascale G. (ORCID:0000-0002-8255-0676), Frisullo G., Gambassi G. (ORCID:0000-0002-7030-9359), Gremese E. (ORCID:0000-0002-2248-1058), Grieco D. L. (ORCID:0000-0002-4557-6308), Iorio R. (ORCID:0000-0002-6270-0956), Landi F. (ORCID:0000-0002-3472-1389), Larici A. (ORCID:0000-0002-1882-6244), Liuzzo G. (ORCID:0000-0002-5714-0907), Maviglia R., Miele L. (ORCID:0000-0003-3464-0068), Montalto M. (ORCID:0000-0001-8819-3684), Natale L. (ORCID:0000-0002-7949-5119), Nicolotti N., Ojetti V. (ORCID:0000-0002-8953-0707), Pompili M. (ORCID:0000-0001-6699-7980), Posteraro B. (ORCID:0000-0002-1663-7546), Rapaccini G. (ORCID:0000-0002-6467-857X), Rossi E. (ORCID:0000-0002-7572-9379), Santoliquido A. (ORCID:0000-0003-1539-4017), Sica S. (ORCID:0000-0003-2426-3465), Tamburrini E. (ORCID:0000-0003-4930-426X), Teofili L. (ORCID:0000-0002-7214-1561), Testa A. (ORCID:0000-0003-2217-8726), Trani C. (ORCID:0000-0001-9777-013X), and Varone F.
- Abstract
The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help to identify patients with COVID-19 who are at higher risk of death. The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of fivefold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk sc
- Published
- 2021
41. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer
- Author
-
Cusumano, Davide, Meijer, G., Lenkowicz, Jacopo, Chiloiro, Giuditta, Boldrini, Luca, Masciocchi, Carlotta, Dinapoli, Nicola, Gatta, Roberto, Casa, C., Damiani, Andrea, Barbaro, Brunella, Gambacorta, Maria Antonietta, Azario, Luigi, De Spirito, Marco, Intven, M., Valentini, Vincenzo, Cusumano D., Lenkowicz J., Chiloiro G., Boldrini L., Masciocchi C., Dinapoli N., Gatta R., Damiani A., Barbaro B. (ORCID:0000-0002-9638-543X), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Azario L. (ORCID:0000-0001-8575-8627), De Spirito M. (ORCID:0000-0003-4260-5107), Valentini V. (ORCID:0000-0003-4637-6487), Cusumano, Davide, Meijer, G., Lenkowicz, Jacopo, Chiloiro, Giuditta, Boldrini, Luca, Masciocchi, Carlotta, Dinapoli, Nicola, Gatta, Roberto, Casa, C., Damiani, Andrea, Barbaro, Brunella, Gambacorta, Maria Antonietta, Azario, Luigi, De Spirito, Marco, Intven, M., Valentini, Vincenzo, Cusumano D., Lenkowicz J., Chiloiro G., Boldrini L., Masciocchi C., Dinapoli N., Gatta R., Damiani A., Barbaro B. (ORCID:0000-0002-9638-543X), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Azario L. (ORCID:0000-0001-8575-8627), De Spirito M. (ORCID:0000-0003-4260-5107), and Valentini V. (ORCID:0000-0003-4637-6487)
- Abstract
Purpose: Aim of this study was to develop a generalised radiomics model for predicting pathological complete response after neoadjuvant chemo-radiotherapy in locally advanced rectal cancer patients using pre-CRT T2-weighted images acquired at a 1.5 T and a 3 T scanner. Methods: In two institutions, 195 patients were scanned: 136 patients were scanned on a 1.5 T MR scanner, 59 patients on a 3 T MR scanner. Gross tumour volumes were delineated on the MR images and 496 radiomic features were extracted, applying the intensity-based (IB) filter. Features were standardised with Z-score normalisation and an initial feature selection was carried out using Wilcoxon–Mann–Whitney test: The most significant features at 1.5 T and 3 T were selected as main features. Several logistic regression models combining the main features with a third one selected by those resulting significant were elaborated and evaluated in terms of area under curve (AUC). A tenfold cross-validation was repeated 300 times to evaluate the model robustness. Results: Three features were selected: maximum fractal dimension with IB = 0–50, energy and grey-level non-uniformity calculated on the run-length matrix with IB = 0–50. The AUC of the model applied to the whole dataset after cross-validation was 0.72, while values of 0.70 and 0.83 were obtained when 1.5 T and 3 T patients were considered, respectively. Conclusions: The model elaborated showed good performance, even when data from patients scanned on 1.5 T and 3 T were merged. This shows that magnetic field intensity variability can be overcome by means of selecting appropriate image features.
- Published
- 2021
42. Pretreatment mri radiomics based response prediction model in locally advanced cervical cancer
- Author
-
Gui, Benedetta, Autorino, Rosa, Micco, M., Nardangeli, A., Pesce, A., Lenkowicz, Jacopo, Cusumano, Davide, Russo, Luca, Persiani, Salvatore, Boldrini, Luca, Dinapoli, Nicola, Macchia, Gabriella, Sallustio, Giuseppina, Gambacorta, Maria Antonietta, Ferrandina, Maria Gabriella, Manfredi, Riccardo, Valentini, Vincenzo, Scambia, Giovanni, Gui B., Autorino R., Lenkowicz J., Cusumano D., Russo L., Persiani S., Boldrini L., Dinapoli N., Macchia G. (ORCID:0000-0002-0529-201X), Sallustio G. (ORCID:0000-0002-6641-4914), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Ferrandina G. (ORCID:0000-0003-4672-4197), Manfredi R. (ORCID:0000-0002-4972-9500), Valentini V. (ORCID:0000-0003-4637-6487), Scambia G. (ORCID:0000-0003-2758-1063), Gui, Benedetta, Autorino, Rosa, Micco, M., Nardangeli, A., Pesce, A., Lenkowicz, Jacopo, Cusumano, Davide, Russo, Luca, Persiani, Salvatore, Boldrini, Luca, Dinapoli, Nicola, Macchia, Gabriella, Sallustio, Giuseppina, Gambacorta, Maria Antonietta, Ferrandina, Maria Gabriella, Manfredi, Riccardo, Valentini, Vincenzo, Scambia, Giovanni, Gui B., Autorino R., Lenkowicz J., Cusumano D., Russo L., Persiani S., Boldrini L., Dinapoli N., Macchia G. (ORCID:0000-0002-0529-201X), Sallustio G. (ORCID:0000-0002-6641-4914), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Ferrandina G. (ORCID:0000-0003-4672-4197), Manfredi R. (ORCID:0000-0002-4972-9500), Valentini V. (ORCID:0000-0003-4637-6487), and Scambia G. (ORCID:0000-0003-2758-1063)
- Abstract
The aim of this study was to create a radiomics model for Locally Advanced Cervical Cancer (LACC) patients to predict pathological complete response (pCR) after neoadjuvant chemora-diotherapy (NACRT) analysing T2-weighted 1.5 T magnetic resonance imaging (MRI) acquired before treatment start. Patients with LACC and an International Federation of Gynecology and Obstetrics stage from IB2 to IVA at diagnosis were retrospectively enrolled for this study. All patients underwent NACRT, followed by radical surgery; pCR—assessed on surgical specimen—was defined as absence of any residual tumour. Finally, 1889 features were extracted from MR images; features showing statistical significance in predicting pCR at the univariate analysis were selected following an iterative method, which was ad-hoc developed for this study. Based on this method, 15 different classifiers were trained considering the most significant features selected. Model selection was carried out using the area under the receiver operating characteristic curve (AUC) as target metrics. One hundred eighty-three patients from two institutions were analysed. The model, showing the highest performance with an AUC of 0.80, was the random forest method initialised with default parameters. Radiomics appeared to be a reliable tool in pCR prediction for LACC patients undergoing NACRT, supporting the identification of patient risk groups, which paves treatment pathways tailored according to the predicted outcome.
- Published
- 2021
43. Generator breast datamart—the novel breast cancer data discovery system for research and monitoring: Preliminary results and future perspectives
- Author
-
Marazzi, Fabio, Tagliaferri, Luca, Masiello, V., Moschella, Francesca, Colloca, Giuseppe Ferdinando, Corvari, B., Sanchez, A. M., Capocchiano, Nikola Dino, Pastorino, Roberta, Iacomini, C., Lenkowicz, Jacopo, Masciocchi, Carlotta, Patarnello, S., Franceschini, Gianluca, Gambacorta, Maria Antonietta, Masetti, Riccardo, Valentini, Vincenzo, Marazzi F., Tagliaferri L. (ORCID:0000-0003-2308-0982), Moschella F., Colloca G. F., Capocchiano N. D., Pastorino R. (ORCID:0000-0001-5013-0733), Lenkowicz J., Masciocchi C., Franceschini G. (ORCID:0000-0002-2950-3395), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Masetti R. (ORCID:0000-0002-7520-9111), Valentini V. (ORCID:0000-0003-4637-6487), Marazzi, Fabio, Tagliaferri, Luca, Masiello, V., Moschella, Francesca, Colloca, Giuseppe Ferdinando, Corvari, B., Sanchez, A. M., Capocchiano, Nikola Dino, Pastorino, Roberta, Iacomini, C., Lenkowicz, Jacopo, Masciocchi, Carlotta, Patarnello, S., Franceschini, Gianluca, Gambacorta, Maria Antonietta, Masetti, Riccardo, Valentini, Vincenzo, Marazzi F., Tagliaferri L. (ORCID:0000-0003-2308-0982), Moschella F., Colloca G. F., Capocchiano N. D., Pastorino R. (ORCID:0000-0001-5013-0733), Lenkowicz J., Masciocchi C., Franceschini G. (ORCID:0000-0002-2950-3395), Gambacorta M. A. (ORCID:0000-0001-5455-8737), Masetti R. (ORCID:0000-0002-7520-9111), and Valentini V. (ORCID:0000-0003-4637-6487)
- Abstract
Background: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems present in the hospital, for the creation of a DataMart for the management of clinical and research processes in the field of breast cancer. Materials and methods: A multidisciplinary team of radiation oncologists, epidemiologists, medical oncologists, breast surgeons, data scientists, and data management experts worked together to identify relevant data and sources located inside the hospital system. Combinations of open-source data science packages and industry solutions were used to design the target framework. To validate the DataMart directly on real-life cases, the working team defined tumoral pathology and clinical purposes of proof of concepts (PoCs). Results: Data were classified into “Not organized, not ‘ontologized’ data”, “Organized, not ‘ontologized’ data”, and “Organized and ‘ontologized’ data”. Archives of real-world data (RWD) identified were platform based on ontology, hospital data warehouse, PDF documents, and electronic reports. Data extraction was performed by direct connection with structured data or text-mining technology. Two PoCs were performed, by which waiting time interval for radiotherapy and performance index of breast unit were tested and resulted available. Conclusions: GENERATOR Breast DataMart was created for supporting breast cancer pathways of care. An AI-based process automatically extracts data from different sources and uses them for generating trend studies and clinical evidence. Further studies and more proof of concepts are needed to exploit all the potentials of this system.
- Published
- 2021
44. Process mining to optimize palliative patient flow in a high-volume radiotherapy department
- Author
-
Placidi, L., primary, Boldrini, L., additional, Lenkowicz, J., additional, Manfrida, S., additional, Gatta, R., additional, Damiani, A., additional, Chiesa, S., additional, Ciellini, F., additional, and Valentini, V., additional
- Published
- 2021
- Full Text
- View/download PDF
45. P-177 Italian real world artificial intelligence (AI) based analysis of EaRly-onset COLorEctal cancer: The ERCOLE study
- Author
-
Calegari, M., Salvatore, L., Mastrantoni, L., Lenkowicz, J., Iacomini, C., Di Giorgi, N., Alfieri, S., D'Ugo, D., Persiani, R., Sofo, L., Sganga, G., Agnes, S., Pacelli, F., Coco, C., Bensi, M., Anghelone, A., Basso, M., Pozzo, C., Valentini, V., and Tortora, G.
- Published
- 2023
- Full Text
- View/download PDF
46. P-110 Epidemiological and clinicopathological features of early- (EOPC) and late-onset pancreatic cancer (LOPC) patients (pts): A mono-institutional retrospective analysis
- Author
-
Bensi, M., Salvatore, L., Lenkowicz, J., Bagalà, C., Barone, D., Iacomini, C., Chiaravalli, M., Gurreri, E., Di Giorgi, N., Spring, A., Beccia, V., Di Bello, A., Trovato, G., Quero, G., Alfieri, S., Valentini, V., and Tortora, G.
- Published
- 2023
- Full Text
- View/download PDF
47. PO-2090 Can Radiomics support Early Regression Index in predicting rectal cancer response to MRgRT?
- Author
-
Boldrini, L., Chiloiro, G., Cusumano, D., Yadav, P., Yu, G., Romano, A., Piras, A., Placidi, L., Broggi, S., Catucci, F., Lenkowicz, J., Indovina, L., Bassetti, M.F., Yang, Y., Fiorino, C., Valentini, V., and Gambacorta, M.A.
- Published
- 2023
- Full Text
- View/download PDF
48. PO-1536: RadiomiK: a phantom to test repeatability and reproducibility of CT-derived Radiomic Features
- Author
-
Pallotta, S., primary, Cusumano, D., additional, Taddeucci, A., additional, Benelli, M., additional, Sulejmeni, R., additional, Lenkowicz, J., additional, Calusi, S., additional, Marrazzo, L., additional, Talamonti, C., additional, Belli, G., additional, De Spirito, M., additional, Barucci, A., additional, and Zoppetti, N., additional
- Published
- 2020
- Full Text
- View/download PDF
49. PH-0715: External validation of ERITCP as response predictor in rectal cancer using MR-guided Radiotherapy
- Author
-
Cusumano, D., primary, Boldrini, L., additional, Yadav, P., additional, Gao, Y., additional, Chiloiro, G., additional, Piras, A., additional, Broggi, S., additional, Lenkowicz, J., additional, Placidi, L., additional, Musunuru, H., additional, Dinapoli, N., additional, Barbaro, B., additional, Azario, L., additional, Gambacorta, M.A., additional, De Spirito, M., additional, Basetti, M., additional, Yang, Y., additional, Fiorino, C., additional, and Valentini, V., additional
- Published
- 2020
- Full Text
- View/download PDF
50. 462 Predictive radiogenomic model based on ovarian ultrasound images to detect germline brca 1-2 status (probe study) a radiogenomic model on us images
- Author
-
Nero, C, primary, Ciccarone, F, additional, Boldrini, L, additional, Lenkowicz, J, additional, Paris, I, additional, Capoluongo, ED, additional, Testa, AC, additional, Fagotti, A, additional, Valentini, V, additional, and Scambia, G, additional
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.