1. Highly Repetitive Genome of Coniella granati (syn. Pilidiella granati), the Causal Agent of Pomegranate Fruit Rot, Encodes a Minimalistic Proteome with a Streamlined Arsenal of Effector Proteins
- Author
-
Antonios Zambounis, Elisseos I. Maniatis, Annamaria Mincuzzi, Naomi Gray, Mohitul Hossain, Dimitrios I. Tsitsigiannis, Epaminondas Paplomatas, Antonio Ippolito, Leonardo Schena, and James K. Hane
- Subjects
Coniella granati ,pomegranate ,Sordariomycetes ,plant–pathogen interactions ,pathogenicity effectors ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
This study describes the first genome sequence and analysis of Coniella granati, a fungal pathogen with a broad host range, which is responsible for postharvest crown rot, shoot blight, and canker diseases in pomegranates. C. granati is a geographically widespread pathogen which has been reported across Europe, Asia, the Americas, and Africa. Our analysis revealed a 46.8 Mb genome with features characteristic of hemibiotrophic fungi. Approximately one third of its genome was compartmentalised within ‘AT-rich’ regions exhibiting a low GC content (30 to 45%). These regions primarily comprised transposable elements that are repeated at a high frequency and interspersed throughout the genome. Transcriptome-supported gene annotation of the C. granati genome revealed a streamlined proteome, mirroring similar observations in other pathogens with a latent phase. The genome encoded a relatively compact set of 9568 protein-coding genes with a remarkable 95% having assigned functional annotations. Despite this streamlined nature, a set of 40 cysteine-rich candidate secreted effector-like proteins (CSEPs) was predicted as well as a gene cluster involved in the synthesis of a pomegranate-associated toxin. These potential virulence factors were predominantly located near repeat-rich and AT-rich regions, suggesting that the pathogen evades host defences through Repeat-Induced Point mutation (RIP)-mediated pseudogenisation. Furthermore, 23 of these CSEPs exhibited homology to known effector and pathogenicity genes found in other hemibiotrophic pathogens. The study establishes a foundational resource for the study of the genetic makeup of C. granati, paving the way for future research on its pathogenicity mechanisms and the development of targeted control strategies to safeguard pomegranate production.
- Published
- 2024
- Full Text
- View/download PDF