1. Future Frontiers in Organic Synthesis
- Author
-
Leow D, Thorat V H, Santra S, and Su Y
- Subjects
Organic Synthesis ,palladium-catalyzed cross couplings in organic synthesis ,asymmetric synthesis - Abstract
The role of organic synthesis to the mankind is of paramount importance since the early nineteen century [1]. In 1828, Friedrich Wöhler discovered the synthesis of urea from ammonium cyanate, marking the starting point of modern organic synthesis. Wöhler concluded to his mentor Jöns Jacob Berzelius, "I cannot, so to say, hold my chemical water and must tell you that I can make urea without thereby needing to have kidneys, or anyhow, an animal, be it human or dog". Since then, organic synthesis has become an indispensable tool in industries such as petrochemicals, pharmaceutical, flavors, fragrances, agrochemical, and others. This is evident by the number of Nobel prizes awarded to organic chemists. The Nobel Prize in Chemistry 2001 was awarded to William S. Knowles, Ryoji Noyori, and K. Barry Sharpless for their work in asymmetric synthesis. This was followed by the award of the Nobel Prize in Chemistry 2005 to Yves Chauvin, Robert H. Grubbs and Richard R. Schrock "for the development of the metathesis method in organic synthesis". And just recently, Richard F. Heck, Ei-ichi Negishi and Akira Suzuki won the Nobel Prize in Chemistry 2010 for “palladium-catalyzed cross couplings in organic synthesis”.
- Published
- 2018
- Full Text
- View/download PDF