1. Identification of DOT1L inhibitors by structure-based virtual screening adapted from a nucleoside-focused library.
- Author
-
Gibbons GS, Chakraborty A, Grigsby SM, Umeano AC, Liao C, Moukha-Chafiq O, Pathak V, Mathew B, Lee YT, Dou Y, Schürer SC, Reynolds RC, Snowden TS, and Nikolovska-Coleska Z
- Subjects
- Animals, Bone Marrow enzymology, Computer Simulation, Enzyme Inhibitors chemistry, Leukemia, Experimental enzymology, Mice, Nucleosides chemistry, Structure-Activity Relationship, Triazoles chemistry, Bone Marrow drug effects, Cell Proliferation, Enzyme Inhibitors pharmacology, High-Throughput Screening Assays methods, Histone-Lysine N-Methyltransferase antagonists & inhibitors, Leukemia, Experimental drug therapy, Nucleosides pharmacology, Triazoles pharmacology
- Abstract
Disruptor of Telomeric Silencing 1-Like (DOT1L), the sole histone H3 lysine 79 (H3K79) methyltransferase, is required for leukemogenic transformation in a subset of leukemias bearing chromosomal translocations of the Mixed Lineage Leukemia (MLL) gene, as well as other cancers. Thus, DOT1L is an attractive therapeutic target and discovery of small molecule inhibitors remain of high interest. Herein, we are presenting screening results for a unique focused library of 1200 nucleoside analogs originally produced under the aegis of the NIH Pilot Scale Library Program. The complete nucleoside set was screened virtually against DOT1L, resulting in 210 putative hits. In vitro screening of the virtual hits resulted in validation of 11 compounds as DOT1L inhibitors clustered into two distinct chemical classes, adenosine-based inhibitors and a new chemotype that lacks adenosine. Based on the developed DOT1L ligand binding model, a structure-based design strategy was applied and a second-generation of non-nucleoside DOT1L inhibitors was developed. Newly synthesized compound 25 was the most potent DOT1L inhibitor in the new series with an IC
50 of 1.0 μM, showing 40-fold improvement in comparison with hit 9 and exhibiting reasonable on target effects in a DOT1L dependent murine cell line. These compounds represent novel chemical probes with a unique non-nucleoside scaffold that bind and compete with the SAM binding site of DOT1L, thus providing foundation for further medicinal chemistry efforts to develop more potent compounds., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Masson SAS. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF